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1 IPython: Beyond Normal Python

There are many options for development environments for Python, and I’m often asked which
one I use in my own work. My answer sometimes surprises people: my preferred environment is
IPython plus a text editor (in my case, Emacs or Atom depending on my mood). IPython (short
for Interactive Python) was started in 2001 by Fernando Perez as an enhanced Python interpreter,
and has since grown into a project aiming to provide, in Perez’s words, “Tools for the entire life
cycle of research computing.” If Python is the engine of our data science task, you might think of
IPython as the interactive control panel.

As well as being a useful interactive interface to Python, IPython also provides a number of
useful syntactic additions to the language; we’ll cover the most useful of these additions here. In
addition, IPython is closely tied with the Jupyter project, which provides a browser-based note-
book that is useful for development, collaboration, sharing, and even publication of data science
results. The IPython notebook is actually a special case of the broader Jupyter notebook structure,
which encompasses notebooks for Julia, R, and other programming languages. As an example of
the usefulness of the notebook format, look no further than the page you are reading: the entire
manuscript for this book was composed as a set of IPython notebooks.

IPython is about using Python effectively for interactive scientific and data-intensive comput-
ing. This chapter will start by stepping through some of the IPython features that are useful to the
practice of data science, focusing especially on the syntax it offers beyond the standard features of
Python. Next, we will go into a bit more depth on some of the more useful “magic commands”
that can speed-up common tasks in creating and using data science code. Finally, we will touch
on some of the features of the notebook that make it useful in understanding data and sharing
results.

1.1 Shell or Notebook?

There are two primary means of using IPython that we’ll discuss in this chapter: the IPython shell
and the IPython notebook. The bulk of the material in this chapter is relevant to both, and the
examples will switch between them depending on what is most convenient. In the few sections
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that are relevant to just one or the other, we will explicitly state that fact. Before we start, some
words on how to launch the IPython shell and IPython notebook.

1.1.1 Launching the IPython Shell

This chapter, like most of this book, is not designed to be absorbed passively. I recommend that
as you read through it, you follow along and experiment with the tools and syntax we cover:
the muscle-memory you build through doing this will be far more useful than the simple act of
reading about it. Start by launching the IPython interpreter by typing ipython on the command-
line; alternatively, if you’ve installed a distribution like Anaconda or EPD, there may be a launcher
specific to your system (we’ll discuss this more fully in Help and Documentation in IPython).

Once you do this, you should see a prompt like the following:

IPython 4.0.1 -- An enhanced Interactive Python.
? -> Introduction and overview of IPython's features.
%quickref -> Quick reference.
help -> Python's own help system.
object? -> Details about 'object', use 'object??' for extra details.
In [1]:

With that, you’re ready to follow along.

1.1.2 Launching the Jupyter Notebook

The Jupyter notebook is a browser-based graphical interface to the IPython shell, and builds on it
a rich set of dynamic display capabilities. As well as executing Python/IPython statements, the
notebook allows the user to include formatted text, static and dynamic visualizations, mathemat-
ical equations, JavaScript widgets, and much more. Furthermore, these documents can be saved
in a way that lets other people open them and execute the code on their own systems.

Though the IPython notebook is viewed and edited through your web browser window, it
must connect to a running Python process in order to execute code. This process (known as a
“kernel”) can be started by running the following command in your system shell:

$ jupyter notebook

This command will launch a local web server that will be visible to your browser. It immedi-
ately spits out a log showing what it is doing; that log will look something like this:

$ jupyter notebook
[NotebookApp] Serving notebooks from local directory: /Users/jakevdp/PythonDataScienceHandbook
[NotebookApp] 0 active kernels
[NotebookApp] The IPython Notebook is running at: http://localhost:8888/
[NotebookApp] Use Control-C to stop this server and shut down all kernels (twice to skip confirmation).

Upon issuing the command, your default browser should automatically open and navigate to
the listed local URL; the exact address will depend on your system. If the browser does not open
automatically, you can open a window and manually open this address (http://localhost:8888/ in
this example).

< Preface | Contents | Help and Documentation in IPython >
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1 Help and Documentation in IPython

If you read no other section in this chapter, read this one: I find the tools discussed here to be the
most transformative contributions of IPython to my daily workflow.

When a technologically-minded person is asked to help a friend, family member, or colleague
with a computer problem, most of the time it’s less a matter of knowing the answer as much as
knowing how to quickly find an unknown answer. In data science it’s the same: searchable web
resources such as online documentation, mailing-list threads, and StackOverflow answers contain
a wealth of information, even (especially?) if it is a topic you’ve found yourself searching before.
Being an effective practitioner of data science is less about memorizing the tool or command you
should use for every possible situation, and more about learning to effectively find the information
you don’t know, whether through a web search engine or another means.

One of the most useful functions of IPython/Jupyter is to shorten the gap between the user and
the type of documentation and search that will help them do their work effectively. While web
searches still play a role in answering complicated questions, an amazing amount of information
can be found through IPython alone. Some examples of the questions IPython can help answer in
a few keystrokes:

• How do I call this function? What arguments and options does it have?
• What does the source code of this Python object look like?
• What is in this package I imported? What attributes or methods does this object have?

Here we’ll discuss IPython’s tools to quickly access this information, namely the ? character
to explore documentation, the ?? characters to explore source code, and the Tab key for auto-
completion.

1.1 Accessing Documentation with ?

The Python language and its data science ecosystem is built with the user in mind, and one big part
of that is access to documentation. Every Python object contains the reference to a string, known
as a doc string, which in most cases will contain a concise summary of the object and how to use it.
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Python has a built-in help() function that can access this information and prints the results. For
example, to see the documentation of the built-in len function, you can do the following:

In [1]: help(len)
Help on built-in function len in module builtins:

len(...)
len(object) -> integer

Return the number of items of a sequence or mapping.

Depending on your interpreter, this information may be displayed as inline text, or in some
separate pop-up window.

Because finding help on an object is so common and useful, IPython introduces the ? character
as a shorthand for accessing this documentation and other relevant information:

In [2]: len?
Type: builtin_function_or_method
String form: <built-in function len>
Namespace: Python builtin
Docstring:
len(object) -> integer

Return the number of items of a sequence or mapping.

This notation works for just about anything, including object methods:

In [3]: L = [1, 2, 3]
In [4]: L.insert?
Type: builtin_function_or_method
String form: <built-in method insert of list object at 0x1024b8ea8>
Docstring: L.insert(index, object) -- insert object before index

or even objects themselves, with the documentation from their type:

In [5]: L?
Type: list
String form: [1, 2, 3]
Length: 3
Docstring:
list() -> new empty list
list(iterable) -> new list initialized from iterable's items

Importantly, this will even work for functions or other objects you create yourself! Here we’ll
define a small function with a docstring:

In [6]: def square(a):
....: """Return the square of a."""
....: return a ** 2
....:
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Note that to create a docstring for our function, we simply placed a string literal in the first
line. Because doc strings are usually multiple lines, by convention we used Python’s triple-quote
notation for multi-line strings.

Now we’ll use the ? mark to find this doc string:

In [7]: square?
Type: function
String form: <function square at 0x103713cb0>
Definition: square(a)
Docstring: Return the square of a.

This quick access to documentation via docstrings is one reason you should get in the habit of
always adding such inline documentation to the code you write!

1.2 Accessing Source Code with ??

Because the Python language is so easily readable, another level of insight can usually be gained
by reading the source code of the object you’re curious about. IPython provides a shortcut to the
source code with the double question mark (??):

In [8]: square??
Type: function
String form: <function square at 0x103713cb0>
Definition: square(a)
Source:
def square(a):

"Return the square of a"
return a ** 2

For simple functions like this, the double question-mark can give quick insight into the under-
the-hood details.

If you play with this much, you’ll notice that sometimes the ?? suffix doesn’t display any
source code: this is generally because the object in question is not implemented in Python, but
in C or some other compiled extension language. If this is the case, the ?? suffix gives the same
output as the ? suffix. You’ll find this particularly with many of Python’s built-in objects and
types, for example len from above:

In [9]: len??
Type: builtin_function_or_method
String form: <built-in function len>
Namespace: Python builtin
Docstring:
len(object) -> integer

Return the number of items of a sequence or mapping.

Using ? and/or ?? gives a powerful and quick interface for finding information about what
any Python function or module does.
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1.3 Exploring Modules with Tab-Completion

IPython’s other useful interface is the use of the tab key for auto-completion and exploration of
the contents of objects, modules, and name-spaces. In the examples that follow, we’ll use <TAB> to
indicate when the Tab key should be pressed.

1.3.1 Tab-completion of object contents

Every Python object has various attributes and methods associated with it. Like with the help
function discussed before, Python has a built-in dir function that returns a list of these, but the
tab-completion interface is much easier to use in practice. To see a list of all available attributes of
an object, you can type the name of the object followed by a period (“.”) character and the Tab
key:

In [10]: L.<TAB>
L.append L.copy L.extend L.insert L.remove L.sort
L.clear L.count L.index L.pop L.reverse

To narrow-down the list, you can type the first character or several characters of the name, and
the Tab key will find the matching attributes and methods:

In [10]: L.c<TAB>
L.clear L.copy L.count

In [10]: L.co<TAB>
L.copy L.count

If there is only a single option, pressing the Tab key will complete the line for you. For example,
the following will instantly be replaced with L.count:

In [10]: L.cou<TAB>

Though Python has no strictly-enforced distinction between public/external attributes and
private/internal attributes, by convention a preceding underscore is used to denote such methods.
For clarity, these private methods and special methods are omitted from the list by default, but it’s
possible to list them by explicitly typing the underscore:

In [10]: L._<TAB>
L.__add__ L.__gt__ L.__reduce__
L.__class__ L.__hash__ L.__reduce_ex__

For brevity, we’ve only shown the first couple lines of the output. Most of these are Python’s
special double-underscore methods (often nicknamed “dunder” methods).

1.3.2 Tab completion when importing

Tab completion is also useful when importing objects from packages. Here we’ll use it to find all
possible imports in the itertools package that start with co:
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In [10]: from itertools import co<TAB>
combinations compress
combinations_with_replacement count

Similarly, you can use tab-completion to see which imports are available on your system (this
will change depending on which third-party scripts and modules are visible to your Python ses-
sion):

In [10]: import <TAB>
Display all 399 possibilities? (y or n)
Crypto dis py_compile
Cython distutils pyclbr
... ... ...
difflib pwd zmq

In [10]: import h<TAB>
hashlib hmac http
heapq html husl

(Note that for brevity, I did not print here all 399 importable packages and modules on my
system.)

1.3.3 Beyond tab completion: wildcard matching

Tab completion is useful if you know the first few characters of the object or attribute you’re
looking for, but is little help if you’d like to match characters at the middle or end of the word. For
this use-case, IPython provides a means of wildcard matching for names using the * character.

For example, we can use this to list every object in the namespace that ends with Warning:

In [10]: *Warning?
BytesWarning RuntimeWarning
DeprecationWarning SyntaxWarning
FutureWarning UnicodeWarning
ImportWarning UserWarning
PendingDeprecationWarning Warning
ResourceWarning

Notice that the * character matches any string, including the empty string.
Similarly, suppose we are looking for a string method that contains the word find somewhere

in its name. We can search for it this way:

In [10]: str.*find*?
str.find
str.rfind

I find this type of flexible wildcard search can be very useful for finding a particular command
when getting to know a new package or reacquainting myself with a familiar one.

< IPython: Beyond Normal Python | Contents | Keyboard Shortcuts in the IPython Shell >
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01.02-Shell-Keyboard-Shortcuts

October 29, 2018

This notebook contains an excerpt from the Python Data Science Handbook by Jake VanderPlas; the
content is available on GitHub.

The text is released under the CC-BY-NC-ND license, and code is released under the MIT license. If
you find this content useful, please consider supporting the work by buying the book!

< Help and Documentation in IPython | Contents | IPython Magic Commands >

1 Keyboard Shortcuts in the IPython Shell

If you spend any amount of time on the computer, you’ve probably found a use for keyboard
shortcuts in your workflow. Most familiar perhaps are the Cmd-C and Cmd-V (or Ctrl-C and
Ctrl-V) for copying and pasting in a wide variety of programs and systems. Power-users tend
to go even further: popular text editors like Emacs, Vim, and others provide users an incredible
range of operations through intricate combinations of keystrokes.

The IPython shell doesn’t go this far, but does provide a number of keyboard shortcuts for fast
navigation while typing commands. These shortcuts are not in fact provided by IPython itself, but
through its dependency on the GNU Readline library: as such, some of the following shortcuts
may differ depending on your system configuration. Also, while some of these shortcuts do work
in the browser-based notebook, this section is primarily about shortcuts in the IPython shell.

Once you get accustomed to these, they can be very useful for quickly performing certain com-
mands without moving your hands from the “home” keyboard position. If you’re an Emacs user
or if you have experience with Linux-style shells, the following will be very familiar. We’ll group
these shortcuts into a few categories: navigation shortcuts, text entry shortcuts, command history short-
cuts, and miscellaneous shortcuts.

1.1 Navigation shortcuts

While the use of the left and right arrow keys to move backward and forward in the line is quite
obvious, there are other options that don’t require moving your hands from the “home” keyboard
position:

Keystroke Action

Ctrl-a Move cursor to the beginning of the line
Ctrl-e Move cursor to the end of the line
Ctrl-b or the left arrow key Move cursor back one character
Ctrl-f or the right arrow key Move cursor forward one character
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1.2 Text Entry Shortcuts

While everyone is familiar with using the Backspace key to delete the previous character, reaching
for the key often requires some minor finger gymnastics, and it only deletes a single character at a
time. In IPython there are several shortcuts for removing some portion of the text you’re typing.
The most immediately useful of these are the commands to delete entire lines of text. You’ll know
these have become second-nature if you find yourself using a combination of Ctrl-b and Ctrl-d
instead of reaching for Backspace to delete the previous character!

Keystroke Action

Backspace key Delete previous character in line
Ctrl-d Delete next character in line
Ctrl-k Cut text from cursor to end of line
Ctrl-u Cut text from beginning of line to cursor
Ctrl-y Yank (i.e. paste) text that was previously cut
Ctrl-t Transpose (i.e., switch) previous two characters

1.3 Command History Shortcuts

Perhaps the most impactful shortcuts discussed here are the ones IPython provides for navigating
the command history. This command history goes beyond your current IPython session: your
entire command history is stored in a SQLite database in your IPython profile directory. The most
straightforward way to access these is with the up and down arrow keys to step through the
history, but other options exist as well:

Keystroke Action

Ctrl-p (or the up arrow key) Access previous command in history
Ctrl-n (or the down arrow key) Access next command in history
Ctrl-r Reverse-search through command history

The reverse-search can be particularly useful. Recall that in the previous section we defined
a function called square. Let’s reverse-search our Python history from a new IPython shell and
find this definition again. When you press Ctrl-r in the IPython terminal, you’ll see the following
prompt:

In [1]:
(reverse-i-search)`':

If you start typing characters at this prompt, IPython will auto-fill the most recent command,
if any, that matches those characters:

In [1]:
(reverse-i-search)`sqa': square??

At any point, you can add more characters to refine the search, or press Ctrl-r again to search
further for another command that matches the query. If you followed along in the previous sec-
tion, pressing Ctrl-r twice more gives:
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In [1]:
(reverse-i-search)`sqa': def square(a):

"""Return the square of a"""
return a ** 2

Once you have found the command you’re looking for, press Return and the search will end.
We can then use the retrieved command, and carry-on with our session:

In [1]: def square(a):
"""Return the square of a"""
return a ** 2

In [2]: square(2)
Out[2]: 4

Note that Ctrl-p/Ctrl-n or the up/down arrow keys can also be used to search through history,
but only by matching characters at the beginning of the line. That is, if you type def and then
press Ctrl-p, it would find the most recent command (if any) in your history that begins with the
characters def.

1.4 Miscellaneous Shortcuts

Finally, there are a few miscellaneous shortcuts that don’t fit into any of the preceding categories,
but are nevertheless useful to know:

Keystroke Action

Ctrl-l Clear terminal screen
Ctrl-c Interrupt current Python command
Ctrl-d Exit IPython session

The Ctrl-c in particular can be useful when you inadvertently start a very long-running job.
While some of the shortcuts discussed here may seem a bit tedious at first, they quickly become

automatic with practice. Once you develop that muscle memory, I suspect you will even find
yourself wishing they were available in other contexts.

< Help and Documentation in IPython | Contents | IPython Magic Commands >
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01.03-Magic-Commands

October 29, 2018

This notebook contains an excerpt from the Python Data Science Handbook by Jake VanderPlas; the
content is available on GitHub.

The text is released under the CC-BY-NC-ND license, and code is released under the MIT license. If
you find this content useful, please consider supporting the work by buying the book!

< Keyboard Shortcuts in the IPython Shell | Contents | Input and Output History >

1 IPython Magic Commands

The previous two sections showed how IPython lets you use and explore Python efficiently and
interactively. Here we’ll begin discussing some of the enhancements that IPython adds on top of
the normal Python syntax. These are known in IPython as magic commands, and are prefixed by the
% character. These magic commands are designed to succinctly solve various common problems
in standard data analysis. Magic commands come in two flavors: line magics, which are denoted
by a single % prefix and operate on a single line of input, and cell magics, which are denoted by a
double %% prefix and operate on multiple lines of input. We’ll demonstrate and discuss a few brief
examples here, and come back to more focused discussion of several useful magic commands later
in the chapter.

1.1 Pasting Code Blocks: %paste and %cpaste

When working in the IPython interpreter, one common gotcha is that pasting multi-line code
blocks can lead to unexpected errors, especially when indentation and interpreter markers are
involved. A common case is that you find some example code on a website and want to paste it
into your interpreter. Consider the following simple function:

>>> def donothing(x):
... return x

The code is formatted as it would appear in the Python interpreter, and if you copy and paste
this directly into IPython you get an error:

In [2]: >>> def donothing(x):
...: ... return x
...:

File "<ipython-input-20-5a66c8964687>", line 2
... return x

^
SyntaxError: invalid syntax
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In the direct paste, the interpreter is confused by the additional prompt characters. But never
fear–IPython’s %paste magic function is designed to handle this exact type of multi-line, marked-
up input:

In [3]: %paste
>>> def donothing(x):
... return x

## -- End pasted text --

The %paste command both enters and executes the code, so now the function is ready to be
used:

In [4]: donothing(10)
Out[4]: 10

A command with a similar intent is %cpaste, which opens up an interactive multiline prompt
in which you can paste one or more chunks of code to be executed in a batch:

In [5]: %cpaste
Pasting code; enter '--' alone on the line to stop or use Ctrl-D.
:>>> def donothing(x):
:... return x
:--

These magic commands, like others we’ll see, make available functionality that would be dif-
ficult or impossible in a standard Python interpreter.

1.2 Running External Code: %run

As you begin developing more extensive code, you will likely find yourself working in both
IPython for interactive exploration, as well as a text editor to store code that you want to reuse.
Rather than running this code in a new window, it can be convenient to run it within your IPython
session. This can be done with the %run magic.

For example, imagine you’ve created a myscript.py file with the following contents:

#-------------------------------------
# file: myscript.py

def square(x):
"""square a number"""
return x ** 2

for N in range(1, 4):
print(N, "squared is", square(N))

You can execute this from your IPython session as follows:
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In [6]: %run myscript.py
1 squared is 1
2 squared is 4
3 squared is 9

Note also that after you’ve run this script, any functions defined within it are available for use
in your IPython session:

In [7]: square(5)
Out[7]: 25

There are several options to fine-tune how your code is run; you can see the documentation in
the normal way, by typing %run? in the IPython interpreter.

1.3 Timing Code Execution: %timeit

Another example of a useful magic function is %timeit, which will automatically determine the
execution time of the single-line Python statement that follows it. For example, we may want to
check the performance of a list comprehension:

In [8]: %timeit L = [n ** 2 for n in range(1000)]
1000 loops, best of 3: 325 ţs per loop

The benefit of %timeit is that for short commands it will automatically perform multiple runs
in order to attain more robust results. For multi line statements, adding a second % sign will turn
this into a cell magic that can handle multiple lines of input. For example, here’s the equivalent
construction with a for-loop:

In [9]: %%timeit
...: L = []
...: for n in range(1000):
...: L.append(n ** 2)
...:

1000 loops, best of 3: 373 ţs per loop

We can immediately see that list comprehensions are about 10% faster than the equivalent for-
loop construction in this case. We’ll explore %timeit and other approaches to timing and profiling
code in Profiling and Timing Code.

1.4 Help on Magic Functions: ?, %magic, and %lsmagic

Like normal Python functions, IPython magic functions have docstrings, and this useful docu-
mentation can be accessed in the standard manner. So, for example, to read the documentation of
the %timeit magic simply type this:

In [10]: %timeit?

Documentation for other functions can be accessed similarly. To access a general description
of available magic functions, including some examples, you can type this:
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In [11]: %magic

For a quick and simple list of all available magic functions, type this:

In [12]: %lsmagic

Finally, I’ll mention that it is quite straightforward to define your own magic functions if you
wish. We won’t discuss it here, but if you are interested, see the references listed in More IPython
Resources.

< Keyboard Shortcuts in the IPython Shell | Contents | Input and Output History >
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This notebook contains an excerpt from the Python Data Science Handbook by Jake VanderPlas; the
content is available on GitHub.

The text is released under the CC-BY-NC-ND license, and code is released under the MIT license. If
you find this content useful, please consider supporting the work by buying the book!

< IPython Magic Commands | Contents | IPython and Shell Commands >

1 Input and Output History

Previously we saw that the IPython shell allows you to access previous commands with the up
and down arrow keys, or equivalently the Ctrl-p/Ctrl-n shortcuts. Additionally, in both the shell
and the notebook, IPython exposes several ways to obtain the output of previous commands, as
well as string versions of the commands themselves. We’ll explore those here.

1.1 IPython’s In and Out Objects

By now I imagine you’re quite familiar with the In [1]:/Out[1]: style prompts used by IPython.
But it turns out that these are not just pretty decoration: they give a clue as to how you can access
previous inputs and outputs in your current session. Imagine you start a session that looks like
this:

In [1]: import math

In [2]: math.sin(2)
Out[2]: 0.9092974268256817

In [3]: math.cos(2)
Out[3]: -0.4161468365471424

We’ve imported the built-in math package, then computed the sine and the cosine of the num-
ber 2. These inputs and outputs are displayed in the shell with In/Out labels, but there’s more–
IPython actually creates some Python variables called In and Out that are automatically updated
to reflect this history:

In [4]: print(In)
['', 'import math', 'math.sin(2)', 'math.cos(2)', 'print(In)']

In [5]: Out
Out[5]: {2: 0.9092974268256817, 3: -0.4161468365471424}
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The In object is a list, which keeps track of the commands in order (the first item in the list is a
place-holder so that In[1] can refer to the first command):

In [6]: print(In[1])
import math

The Out object is not a list but a dictionary mapping input numbers to their outputs (if any):

In [7]: print(Out[2])
0.9092974268256817

Note that not all operations have outputs: for example, import statements and print state-
ments don’t affect the output. The latter may be surprising, but makes sense if you consider that
print is a function that returns None; for brevity, any command that returns None is not added to
Out.

Where this can be useful is if you want to interact with past results. For example, let’s check
the sum of sin(2) ** 2 and cos(2) ** 2 using the previously-computed results:

In [8]: Out[2] ** 2 + Out[3] ** 2
Out[8]: 1.0

The result is 1.0 as we’d expect from the well-known trigonometric identity. In this case, using
these previous results probably is not necessary, but it can become very handy if you execute a
very expensive computation and want to reuse the result!

1.2 Underscore Shortcuts and Previous Outputs

The standard Python shell contains just one simple shortcut for accessing previous output; the
variable _ (i.e., a single underscore) is kept updated with the previous output; this works in
IPython as well:

In [9]: print(_)
1.0

But IPython takes this a bit further—you can use a double underscore to access the second-
to-last output, and a triple underscore to access the third-to-last output (skipping any commands
with no output):

In [10]: print(__)
-0.4161468365471424

In [11]: print(___)
0.9092974268256817

IPython stops there: more than three underscores starts to get a bit hard to count, and at that
point it’s easier to refer to the output by line number.

There is one more shortcut we should mention, however–a shorthand for Out[X] is _X (i.e., a
single underscore followed by the line number):

In [12]: Out[2]
Out[12]: 0.9092974268256817

In [13]: _2
Out[13]: 0.9092974268256817
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1.3 Suppressing Output

Sometimes you might wish to suppress the output of a statement (this is perhaps most common
with the plotting commands that we’ll explore in Introduction to Matplotlib). Or maybe the com-
mand you’re executing produces a result that you’d prefer not like to store in your output history,
perhaps so that it can be deallocated when other references are removed. The easiest way to sup-
press the output of a command is to add a semicolon to the end of the line:

In [14]: math.sin(2) + math.cos(2);

Note that the result is computed silently, and the output is neither displayed on the screen or
stored in the Out dictionary:

In [15]: 14 in Out
Out[15]: False

1.4 Related Magic Commands

For accessing a batch of previous inputs at once, the %history magic command is very helpful.
Here is how you can print the first four inputs:

In [16]: %history -n 1-4
1: import math
2: math.sin(2)
3: math.cos(2)
4: print(In)

As usual, you can type %history? for more information and a description of options available.
Other similar magic commands are %rerun (which will re-execute some portion of the command
history) and %save (which saves some set of the command history to a file). For more information,
I suggest exploring these using the ? help functionality discussed in Help and Documentation in
IPython.

< IPython Magic Commands | Contents | IPython and Shell Commands >
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< Input and Output History | Contents | Errors and Debugging >

1 IPython and Shell Commands

When working interactively with the standard Python interpreter, one of the frustrations is the
need to switch between multiple windows to access Python tools and system command-line tools.
IPython bridges this gap, and gives you a syntax for executing shell commands directly from
within the IPython terminal. The magic happens with the exclamation point: anything appearing
after ! on a line will be executed not by the Python kernel, but by the system command-line.

The following assumes you’re on a Unix-like system, such as Linux or Mac OSX. Some of the
examples that follow will fail on Windows, which uses a different type of shell by default (though
with the 2016 announcement of native Bash shells on Windows, soon this may no longer be an
issue!). If you’re unfamiliar with shell commands, I’d suggest reviewing the Shell Tutorial put
together by the always excellent Software Carpentry Foundation.

1.1 Quick Introduction to the Shell

A full intro to using the shell/terminal/command-line is well beyond the scope of this chapter, but
for the uninitiated we will offer a quick introduction here. The shell is a way to interact textually
with your computer. Ever since the mid 1980s, when Microsoft and Apple introduced the first ver-
sions of their now ubiquitous graphical operating systems, most computer users have interacted
with their operating system through familiar clicking of menus and drag-and-drop movements.
But operating systems existed long before these graphical user interfaces, and were primarily con-
trolled through sequences of text input: at the prompt, the user would type a command, and the
computer would do what the user told it to. Those early prompt systems are the precursors of the
shells and terminals that most active data scientists still use today.

Someone unfamiliar with the shell might ask why you would bother with this, when many
results can be accomplished by simply clicking on icons and menus. A shell user might reply
with another question: why hunt icons and click menus when you can accomplish things much
more easily by typing? While it might sound like a typical tech preference impasse, when moving
beyond basic tasks it quickly becomes clear that the shell offers much more control of advanced
tasks, though admittedly the learning curve can intimidate the average computer user.
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As an example, here is a sample of a Linux/OSX shell session where a user explores, creates,
and modifies directories and files on their system (osx:~ $ is the prompt, and everything after the
$ sign is the typed command; text that is preceded by a # is meant just as description, rather than
something you would actually type in):

osx:~ $ echo "hello world" # echo is like Python's print function
hello world

osx:~ $ pwd # pwd = print working directory
/home/jake # this is the "path" that we're sitting in

osx:~ $ ls # ls = list working directory contents
notebooks projects

osx:~ $ cd projects/ # cd = change directory

osx:projects $ pwd
/home/jake/projects

osx:projects $ ls
datasci_book mpld3 myproject.txt

osx:projects $ mkdir myproject # mkdir = make new directory

osx:projects $ cd myproject/

osx:myproject $ mv ../myproject.txt ./ # mv = move file. Here we're moving the
# file myproject.txt from one directory
# up (../) to the current directory (./)

osx:myproject $ ls
myproject.txt

Notice that all of this is just a compact way to do familiar operations (navigating a directory
structure, creating a directory, moving a file, etc.) by typing commands rather than clicking icons
and menus. Note that with just a few commands (pwd, ls, cd, mkdir, and cp) you can do many
of the most common file operations. It’s when you go beyond these basics that the shell approach
becomes really powerful.

1.2 Shell Commands in IPython

Any command that works at the command-line can be used in IPython by prefixing it with the !
character. For example, the ls, pwd, and echo commands can be run as follows:

In [1]: !ls
myproject.txt

In [2]: !pwd
/home/jake/projects/myproject
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In [3]: !echo "printing from the shell"
printing from the shell

1.3 Passing Values to and from the Shell

Shell commands can not only be called from IPython, but can also be made to interact with the
IPython namespace. For example, you can save the output of any shell command to a Python list
using the assignment operator:

In [4]: contents = !ls

In [5]: print(contents)
['myproject.txt']

In [6]: directory = !pwd

In [7]: print(directory)
['/Users/jakevdp/notebooks/tmp/myproject']

Note that these results are not returned as lists, but as a special shell return type defined in
IPython:

In [8]: type(directory)
IPython.utils.text.SList

This looks and acts a lot like a Python list, but has additional functionality, such as the grep
and fields methods and the s, n, and p properties that allow you to search, filter, and display the
results in convenient ways. For more information on these, you can use IPython’s built-in help
features.

Communication in the other direction–passing Python variables into the shell–is possible us-
ing the {varname} syntax:

In [9]: message = "hello from Python"

In [10]: !echo {message}
hello from Python

The curly braces contain the variable name, which is replaced by the variable’s contents in the
shell command.

2 Shell-Related Magic Commands

If you play with IPython’s shell commands for a while, you might notice that you cannot use !cd
to navigate the filesystem:

In [11]: !pwd
/home/jake/projects/myproject

In [12]: !cd ..
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In [13]: !pwd
/home/jake/projects/myproject

The reason is that shell commands in the notebook are executed in a temporary subshell. If
you’d like to change the working directory in a more enduring way, you can use the %cd magic
command:

In [14]: %cd ..
/home/jake/projects

In fact, by default you can even use this without the % sign:

In [15]: cd myproject
/home/jake/projects/myproject

This is known as an automagic function, and this behavior can be toggled with the %automagic
magic function.

Besides %cd, other available shell-like magic functions are %cat, %cp, %env, %ls, %man, %mkdir,
%more, %mv, %pwd, %rm, and %rmdir, any of which can be used without the % sign if automagic is on.
This makes it so that you can almost treat the IPython prompt as if it’s a normal shell:

In [16]: mkdir tmp

In [17]: ls
myproject.txt tmp/

In [18]: cp myproject.txt tmp/

In [19]: ls tmp
myproject.txt

In [20]: rm -r tmp

This access to the shell from within the same terminal window as your Python session means
that there is a lot less switching back and forth between interpreter and shell as you write your
Python code.

< Input and Output History | Contents | Errors and Debugging >
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< IPython and Shell Commands | Contents | Profiling and Timing Code >

1 Errors and Debugging

Code development and data analysis always require a bit of trial and error, and IPython con-
tains tools to streamline this process. This section will briefly cover some options for controlling
Python’s exception reporting, followed by exploring tools for debugging errors in code.

1.1 Controlling Exceptions: %xmode

Most of the time when a Python script fails, it will raise an Exception. When the interpreter hits
one of these exceptions, information about the cause of the error can be found in the traceback,
which can be accessed from within Python. With the %xmode magic function, IPython allows you
to control the amount of information printed when the exception is raised. Consider the following
code:

In [1]: def func1(a, b):
return a / b

def func2(x):
a = x
b = x - 1
return func1(a, b)

In [2]: func2(1)

---------------------------------------------------------------------------
ZeroDivisionError Traceback (most recent call last)

<ipython-input-2-b2e110f6fc8f> in <module>()
----> 1 func2(1)
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<ipython-input-1-d849e34d61fb> in func2(x)
5 a = x
6 b = x - 1

----> 7 return func1(a, b)

<ipython-input-1-d849e34d61fb> in func1(a, b)
1 def func1(a, b):

----> 2 return a / b
3
4 def func2(x):
5 a = x

ZeroDivisionError: division by zero

Calling func2 results in an error, and reading the printed trace lets us see exactly what hap-
pened. By default, this trace includes several lines showing the context of each step that led to the
error. Using the %xmode magic function (short for Exception mode), we can change what information
is printed.

%xmode takes a single argument, the mode, and there are three possibilities: Plain, Context,
and Verbose. The default is Context, and gives output like that just shown before. Plain is more
compact and gives less information:

In [3]: %xmode Plain

Exception reporting mode: Plain

In [4]: func2(1)

Traceback (most recent call last):

File "<ipython-input-4-b2e110f6fc8f>", line 1, in <module>
func2(1)

File "<ipython-input-1-d849e34d61fb>", line 7, in func2
return func1(a, b)

File "<ipython-input-1-d849e34d61fb>", line 2, in func1
return a / b
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ZeroDivisionError: division by zero

The Verbose mode adds some extra information, including the arguments to any functions
that are called:

In [5]: %xmode Verbose

Exception reporting mode: Verbose

In [6]: func2(1)

---------------------------------------------------------------------------
ZeroDivisionError Traceback (most recent call last)

<ipython-input-6-b2e110f6fc8f> in <module>()
----> 1 func2(1)

global func2 = <function func2 at 0x103729320>

<ipython-input-1-d849e34d61fb> in func2(x=1)
5 a = x
6 b = x - 1

----> 7 return func1(a, b)
global func1 = <function func1 at 0x1037294d0>
a = 1
b = 0

<ipython-input-1-d849e34d61fb> in func1(a=1, b=0)
1 def func1(a, b):

----> 2 return a / b
a = 1
b = 0

3
4 def func2(x):
5 a = x

ZeroDivisionError: division by zero

This extra information can help narrow-in on why the exception is being raised. So why not
use the Verbose mode all the time? As code gets complicated, this kind of traceback can get
extremely long. Depending on the context, sometimes the brevity of Default mode is easier to
work with.
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1.2 Debugging: When Reading Tracebacks Is Not Enough

The standard Python tool for interactive debugging is pdb, the Python debugger. This debugger
lets the user step through the code line by line in order to see what might be causing a more
difficult error. The IPython-enhanced version of this is ipdb, the IPython debugger.

There are many ways to launch and use both these debuggers; we won’t cover them fully here.
Refer to the online documentation of these two utilities to learn more.

In IPython, perhaps the most convenient interface to debugging is the %debug magic command.
If you call it after hitting an exception, it will automatically open an interactive debugging prompt
at the point of the exception. The ipdb prompt lets you explore the current state of the stack,
explore the available variables, and even run Python commands!

Let’s look at the most recent exception, then do some basic tasks–print the values of a and b,
and type quit to quit the debugging session:

In [7]: %debug

> <ipython-input-1-d849e34d61fb>(2)func1()
1 def func1(a, b):

----> 2 return a / b
3

ipdb> print(a)
1
ipdb> print(b)
0
ipdb> quit

The interactive debugger allows much more than this, though–we can even step up and down
through the stack and explore the values of variables there:

In [8]: %debug

> <ipython-input-1-d849e34d61fb>(2)func1()
1 def func1(a, b):

----> 2 return a / b
3

ipdb> up
> <ipython-input-1-d849e34d61fb>(7)func2()

5 a = x
6 b = x - 1

----> 7 return func1(a, b)

ipdb> print(x)
1
ipdb> up
> <ipython-input-6-b2e110f6fc8f>(1)<module>()
----> 1 func2(1)
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ipdb> down
> <ipython-input-1-d849e34d61fb>(7)func2()

5 a = x
6 b = x - 1

----> 7 return func1(a, b)

ipdb> quit

This allows you to quickly find out not only what caused the error, but what function calls led
up to the error.

If you’d like the debugger to launch automatically whenever an exception is raised, you can
use the %pdb magic function to turn on this automatic behavior:

In [9]: %xmode Plain
%pdb on
func2(1)

Exception reporting mode: Plain
Automatic pdb calling has been turned ON

Traceback (most recent call last):

File "<ipython-input-9-569a67d2d312>", line 3, in <module>
func2(1)

File "<ipython-input-1-d849e34d61fb>", line 7, in func2
return func1(a, b)

File "<ipython-input-1-d849e34d61fb>", line 2, in func1
return a / b

ZeroDivisionError: division by zero

> <ipython-input-1-d849e34d61fb>(2)func1()
1 def func1(a, b):

----> 2 return a / b
3

ipdb> print(b)

5



0
ipdb> quit

Finally, if you have a script that you’d like to run from the beginning in interactive mode, you
can run it with the command %run -d, and use the next command to step through the lines of
code interactively.

1.2.1 Partial list of debugging commands

There are many more available commands for interactive debugging than we’ve listed here; the
following table contains a description of some of the more common and useful ones:

Command Description

list Show the current location in the file
h(elp) Show a list of commands, or find help on a specific command
q(uit) Quit the debugger and the program
c(ontinue) Quit the debugger, continue in the program
n(ext) Go to the next step of the program
<enter> Repeat the previous command
p(rint) Print variables
s(tep) Step into a subroutine
r(eturn) Return out of a subroutine

For more information, use the help command in the debugger, or take a look at ipdb’s online
documentation.

< IPython and Shell Commands | Contents | Profiling and Timing Code >
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< Errors and Debugging | Contents | More IPython Resources >

1 Profiling and Timing Code

In the process of developing code and creating data processing pipelines, there are often trade-offs
you can make between various implementations. Early in developing your algorithm, it can be
counterproductive to worry about such things. As Donald Knuth famously quipped, “We should
forget about small efficiencies, say about 97% of the time: premature optimization is the root of all
evil.”

But once you have your code working, it can be useful to dig into its efficiency a bit. Sometimes
it’s useful to check the execution time of a given command or set of commands; other times it’s
useful to dig into a multiline process and determine where the bottleneck lies in some complicated
series of operations. IPython provides access to a wide array of functionality for this kind of timing
and profiling of code. Here we’ll discuss the following IPython magic commands:

• %time: Time the execution of a single statement
• %timeit: Time repeated execution of a single statement for more accuracy
• %prun: Run code with the profiler
• %lprun: Run code with the line-by-line profiler
• %memit: Measure the memory use of a single statement
• %mprun: Run code with the line-by-line memory profiler

The last four commands are not bundled with IPython–you’ll need to get the line_profiler
and memory_profiler extensions, which we will discuss in the following sections.

1.1 Timing Code Snippets: %timeit and %time

We saw the %timeit line-magic and %%timeit cell-magic in the introduction to magic functions in
IPython Magic Commands; it can be used to time the repeated execution of snippets of code:

In [1]: %timeit sum(range(100))

100000 loops, best of 3: 1.54 ţs per loop
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Note that because this operation is so fast, %timeit automatically does a large number of rep-
etitions. For slower commands, %timeit will automatically adjust and perform fewer repetitions:

In [2]: %%timeit
total = 0
for i in range(1000):

for j in range(1000):
total += i * (-1) ** j

1 loops, best of 3: 407 ms per loop

Sometimes repeating an operation is not the best option. For example, if we have a list that
we’d like to sort, we might be misled by a repeated operation. Sorting a pre-sorted list is much
faster than sorting an unsorted list, so the repetition will skew the result:

In [3]: import random
L = [random.random() for i in range(100000)]
%timeit L.sort()

100 loops, best of 3: 1.9 ms per loop

For this, the %time magic function may be a better choice. It also is a good choice for longer-
running commands, when short, system-related delays are unlikely to affect the result. Let’s time
the sorting of an unsorted and a presorted list:

In [4]: import random
L = [random.random() for i in range(100000)]
print("sorting an unsorted list:")
%time L.sort()

sorting an unsorted list:
CPU times: user 40.6 ms, sys: 896 ţs, total: 41.5 ms
Wall time: 41.5 ms

In [5]: print("sorting an already sorted list:")
%time L.sort()

sorting an already sorted list:
CPU times: user 8.18 ms, sys: 10 ţs, total: 8.19 ms
Wall time: 8.24 ms

Notice how much faster the presorted list is to sort, but notice also how much longer the
timing takes with %time versus %timeit, even for the presorted list! This is a result of the fact that
%timeit does some clever things under the hood to prevent system calls from interfering with the
timing. For example, it prevents cleanup of unused Python objects (known as garbage collection)
which might otherwise affect the timing. For this reason, %timeit results are usually noticeably
faster than %time results.

For %time as with %timeit, using the double-percent-sign cell magic syntax allows timing of
multiline scripts:
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In [6]: %%time
total = 0
for i in range(1000):

for j in range(1000):
total += i * (-1) ** j

CPU times: user 504 ms, sys: 979 ţs, total: 505 ms
Wall time: 505 ms

For more information on %time and %timeit, as well as their available options, use the IPython
help functionality (i.e., type %time? at the IPython prompt).

1.2 Profiling Full Scripts: %prun

A program is made of many single statements, and sometimes timing these statements in context
is more important than timing them on their own. Python contains a built-in code profiler (which
you can read about in the Python documentation), but IPython offers a much more convenient
way to use this profiler, in the form of the magic function %prun.

By way of example, we’ll define a simple function that does some calculations:

In [7]: def sum_of_lists(N):
total = 0
for i in range(5):

L = [j ^ (j >> i) for j in range(N)]
total += sum(L)

return total

Now we can call %prun with a function call to see the profiled results:

In [8]: %prun sum_of_lists(1000000)

In the notebook, the output is printed to the pager, and looks something like this:

14 function calls in 0.714 seconds

Ordered by: internal time

ncalls tottime percall cumtime percall filename:lineno(function)
5 0.599 0.120 0.599 0.120 <ipython-input-19>:4(<listcomp>)
5 0.064 0.013 0.064 0.013 {built-in method sum}
1 0.036 0.036 0.699 0.699 <ipython-input-19>:1(sum_of_lists)
1 0.014 0.014 0.714 0.714 <string>:1(<module>)
1 0.000 0.000 0.714 0.714 {built-in method exec}

The result is a table that indicates, in order of total time on each function call, where the execu-
tion is spending the most time. In this case, the bulk of execution time is in the list comprehension
inside sum_of_lists. From here, we could start thinking about what changes we might make to
improve the performance in the algorithm.

For more information on %prun, as well as its available options, use the IPython help function-
ality (i.e., type %prun? at the IPython prompt).

3



1.3 Line-By-Line Profiling with %lprun

The function-by-function profiling of %prun is useful, but sometimes it’s more convenient to have
a line-by-line profile report. This is not built into Python or IPython, but there is a line_profiler
package available for installation that can do this. Start by using Python’s packaging tool, pip, to
install the line_profiler package:

$ pip install line_profiler

Next, you can use IPython to load the line_profiler IPython extension, offered as part of this
package:

In [9]: %load_ext line_profiler

Now the %lprun command will do a line-by-line profiling of any function–in this case, we need
to tell it explicitly which functions we’re interested in profiling:

In [10]: %lprun -f sum_of_lists sum_of_lists(5000)

As before, the notebook sends the result to the pager, but it looks something like this:

Timer unit: 1e-06 s

Total time: 0.009382 s
File: <ipython-input-19-fa2be176cc3e>
Function: sum_of_lists at line 1

Line # Hits Time Per Hit % Time Line Contents
==============================================================

1 def sum_of_lists(N):
2 1 2 2.0 0.0 total = 0
3 6 8 1.3 0.1 for i in range(5):
4 5 9001 1800.2 95.9 L = [j ^ (j >> i) for j in range(N)]
5 5 371 74.2 4.0 total += sum(L)
6 1 0 0.0 0.0 return total

The information at the top gives us the key to reading the results: the time is reported in
microseconds and we can see where the program is spending the most time. At this point, we
may be able to use this information to modify aspects of the script and make it perform better for
our desired use case.

For more information on %lprun, as well as its available options, use the IPython help func-
tionality (i.e., type %lprun? at the IPython prompt).

1.4 Profiling Memory Use: %memit and %mprun

Another aspect of profiling is the amount of memory an operation uses. This can be evaluated
with another IPython extension, the memory_profiler. As with the line_profiler, we start by
pip-installing the extension:

$ pip install memory_profiler
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Then we can use IPython to load the extension:

In [12]: %load_ext memory_profiler

The memory profiler extension contains two useful magic functions: the %memit magic (which
offers a memory-measuring equivalent of %timeit) and the %mprun function (which offers a
memory-measuring equivalent of %lprun). The %memit function can be used rather simply:

In [13]: %memit sum_of_lists(1000000)

peak memory: 100.08 MiB, increment: 61.36 MiB

We see that this function uses about 100 MB of memory.
For a line-by-line description of memory use, we can use the %mprun magic. Unfortunately,

this magic works only for functions defined in separate modules rather than the notebook itself,
so we’ll start by using the %%file magic to create a simple module called mprun_demo.py, which
contains our sum_of_lists function, with one addition that will make our memory profiling re-
sults more clear:

In [14]: %%file mprun_demo.py
def sum_of_lists(N):

total = 0
for i in range(5):

L = [j ^ (j >> i) for j in range(N)]
total += sum(L)
del L # remove reference to L

return total

Overwriting mprun_demo.py

We can now import the new version of this function and run the memory line profiler:

In [15]: from mprun_demo import sum_of_lists
%mprun -f sum_of_lists sum_of_lists(1000000)

The result, printed to the pager, gives us a summary of the memory use of the function, and
looks something like this:

Filename: ./mprun_demo.py

Line # Mem usage Increment Line Contents
================================================

4 71.9 MiB 0.0 MiB L = [j ^ (j >> i) for j in range(N)]
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Filename: ./mprun_demo.py

Line # Mem usage Increment Line Contents
================================================

1 39.0 MiB 0.0 MiB def sum_of_lists(N):
2 39.0 MiB 0.0 MiB total = 0
3 46.5 MiB 7.5 MiB for i in range(5):
4 71.9 MiB 25.4 MiB L = [j ^ (j >> i) for j in range(N)]
5 71.9 MiB 0.0 MiB total += sum(L)
6 46.5 MiB -25.4 MiB del L # remove reference to L
7 39.1 MiB -7.4 MiB return total

Here the Increment column tells us how much each line affects the total memory budget:
observe that when we create and delete the list L, we are adding about 25 MB of memory usage.
This is on top of the background memory usage from the Python interpreter itself.

For more information on %memit and %mprun, as well as their available options, use the IPython
help functionality (i.e., type %memit? at the IPython prompt).

< Errors and Debugging | Contents | More IPython Resources >
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This notebook contains an excerpt from the Python Data Science Handbook by Jake VanderPlas; the
content is available on GitHub.

The text is released under the CC-BY-NC-ND license, and code is released under the MIT license. If
you find this content useful, please consider supporting the work by buying the book!

< Profiling and Timing Code | Contents | Introduction to NumPy >

1 More IPython Resources

In this chapter, we’ve just scratched the surface of using IPython to enable data science tasks.
Much more information is available both in print and on the Web, and here we’ll list some other
resources that you may find helpful.

1.1 Web Resources

• The IPython website: The IPython website links to documentation, examples, tutorials, and
a variety of other resources.

• The nbviewer website: This site shows static renderings of any IPython notebook available
on the internet. The front page features some example notebooks that you can browse to see
what other folks are using IPython for!

• A gallery of interesting Jupyter Notebooks: This ever-growing list of notebooks, powered
by nbviewer, shows the depth and breadth of numerical analysis you can do with IPython.
It includes everything from short examples and tutorials to full-blown courses and books
composed in the notebook format!

• Video Tutorials: searching the Internet, you will find many video-recorded tutorials on
IPython. I’d especially recommend seeking tutorials from the PyCon, SciPy, and PyData
conferenes by Fernando Perez and Brian Granger, two of the primary creators and maintain-
ers of IPython and Jupyter.

1.2 Books

• Python for Data Analysis: Wes McKinney’s book includes a chapter that covers using IPython
as a data scientist. Although much of the material overlaps what we’ve discussed here,
another perspective is always helpful.

• Learning IPython for Interactive Computing and Data Visualization: This short book by Cyrille
Rossant offers a good introduction to using IPython for data analysis.
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• IPython Interactive Computing and Visualization Cookbook: Also by Cyrille Rossant, this book is
a longer and more advanced treatment of using IPython for data science. Despite its name,
it’s not just about IPython–it also goes into some depth on a broad range of data science
topics.

Finally, a reminder that you can find help on your own: IPython’s ?-based help functionality
(discussed in Help and Documentation in IPython) can be very useful if you use it well and use it
often. As you go through the examples here and elsewhere, this can be used to familiarize yourself
with all the tools that IPython has to offer.

< Profiling and Timing Code | Contents | Introduction to NumPy >
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< More IPython Resources | Contents | Understanding Data Types in Python >

1 Introduction to NumPy

This chapter, along with chapter 3, outlines techniques for effectively loading, storing, and manip-
ulating in-memory data in Python. The topic is very broad: datasets can come from a wide range
of sources and a wide range of formats, including be collections of documents, collections of im-
ages, collections of sound clips, collections of numerical measurements, or nearly anything else.
Despite this apparent heterogeneity, it will help us to think of all data fundamentally as arrays of
numbers.

For example, images–particularly digital images–can be thought of as simply two-dimensional
arrays of numbers representing pixel brightness across the area. Sound clips can be thought of
as one-dimensional arrays of intensity versus time. Text can be converted in various ways into
numerical representations, perhaps binary digits representing the frequency of certain words or
pairs of words. No matter what the data are, the first step in making it analyzable will be to
transform them into arrays of numbers. (We will discuss some specific examples of this process
later in Feature Engineering)

For this reason, efficient storage and manipulation of numerical arrays is absolutely funda-
mental to the process of doing data science. We’ll now take a look at the specialized tools that
Python has for handling such numerical arrays: the NumPy package, and the Pandas package
(discussed in Chapter 3).

This chapter will cover NumPy in detail. NumPy (short for Numerical Python) provides an
efficient interface to store and operate on dense data buffers. In some ways, NumPy arrays are
like Python’s built-in list type, but NumPy arrays provide much more efficient storage and data
operations as the arrays grow larger in size. NumPy arrays form the core of nearly the entire
ecosystem of data science tools in Python, so time spent learning to use NumPy effectively will be
valuable no matter what aspect of data science interests you.

If you followed the advice outlined in the Preface and installed the Anaconda stack, you al-
ready have NumPy installed and ready to go. If you’re more the do-it-yourself type, you can go to
http://www.numpy.org/ and follow the installation instructions found there. Once you do, you
can import NumPy and double-check the version:
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In [1]: import numpy
numpy.__version__

Out[1]: '1.11.1'

For the pieces of the package discussed here, I’d recommend NumPy version 1.8 or later. By
convention, you’ll find that most people in the SciPy/PyData world will import NumPy using np
as an alias:

In [2]: import numpy as np

Throughout this chapter, and indeed the rest of the book, you’ll find that this is the way we
will import and use NumPy.

1.1 Reminder about Built In Documentation

As you read through this chapter, don’t forget that IPython gives you the ability to quickly explore
the contents of a package (by using the tab-completion feature), as well as the documentation of
various functions (using the ? character – Refer back to Help and Documentation in IPython).

For example, to display all the contents of the numpy namespace, you can type this:

In [3]: np.<TAB>

And to display NumPy’s built-in documentation, you can use this:

In [4]: np?

More detailed documentation, along with tutorials and other resources, can be found at
http://www.numpy.org.

< More IPython Resources | Contents | Understanding Data Types in Python >
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< Introduction to NumPy | Contents | The Basics of NumPy Arrays >

1 Understanding Data Types in Python

Effective data-driven science and computation requires understanding how data is stored and
manipulated. This section outlines and contrasts how arrays of data are handled in the Python
language itself, and how NumPy improves on this. Understanding this difference is fundamental
to understanding much of the material throughout the rest of the book.

Users of Python are often drawn-in by its ease of use, one piece of which is dynamic typing.
While a statically-typed language like C or Java requires each variable to be explicitly declared,
a dynamically-typed language like Python skips this specification. For example, in C you might
specify a particular operation as follows:

/* C code */
int result = 0;
for(int i=0; i<100; i++){

result += i;
}

While in Python the equivalent operation could be written this way:

# Python code
result = 0
for i in range(100):

result += i

Notice the main difference: in C, the data types of each variable are explicitly declared, while
in Python the types are dynamically inferred. This means, for example, that we can assign any
kind of data to any variable:

# Python code
x = 4
x = "four"
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Here we’ve switched the contents of x from an integer to a string. The same thing in C would
lead (depending on compiler settings) to a compilation error or other unintented consequences:

/* C code */
int x = 4;
x = "four"; // FAILS

This sort of flexibility is one piece that makes Python and other dynamically-typed languages
convenient and easy to use. Understanding how this works is an important piece of learning to
analyze data efficiently and effectively with Python. But what this type-flexibility also points to is
the fact that Python variables are more than just their value; they also contain extra information
about the type of the value. We’ll explore this more in the sections that follow.

1.1 A Python Integer Is More Than Just an Integer

The standard Python implementation is written in C. This means that every Python object is sim-
ply a cleverly-disguised C structure, which contains not only its value, but other information as
well. For example, when we define an integer in Python, such as x = 10000, x is not just a “raw”
integer. It’s actually a pointer to a compound C structure, which contains several values. Looking
through the Python 3.4 source code, we find that the integer (long) type definition effectively looks
like this (once the C macros are expanded):

struct _longobject {
long ob_refcnt;
PyTypeObject *ob_type;
size_t ob_size;
long ob_digit[1];

};

A single integer in Python 3.4 actually contains four pieces:

• ob_refcnt, a reference count that helps Python silently handle memory allocation and deal-
location

• ob_type, which encodes the type of the variable
• ob_size, which specifies the size of the following data members
• ob_digit, which contains the actual integer value that we expect the Python variable to

represent.

This means that there is some overhead in storing an integer in Python as compared to an
integer in a compiled language like C, as illustrated in the following figure:

Here PyObject_HEAD is the part of the structure containing the reference count, type code, and
other pieces mentioned before.

Notice the difference here: a C integer is essentially a label for a position in memory whose
bytes encode an integer value. A Python integer is a pointer to a position in memory contain-
ing all the Python object information, including the bytes that contain the integer value. This
extra information in the Python integer structure is what allows Python to be coded so freely and
dynamically. All this additional information in Python types comes at a cost, however, which
becomes especially apparent in structures that combine many of these objects.
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Integer Memory Layout

1.2 A Python List Is More Than Just a List

Let’s consider now what happens when we use a Python data structure that holds many Python
objects. The standard mutable multi-element container in Python is the list. We can create a list of
integers as follows:

In [1]: L = list(range(10))
L

Out[1]: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

In [2]: type(L[0])

Out[2]: int

Or, similarly, a list of strings:

In [3]: L2 = [str(c) for c in L]
L2

Out[3]: ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9']

In [4]: type(L2[0])

Out[4]: str

Because of Python’s dynamic typing, we can even create heterogeneous lists:

In [5]: L3 = [True, "2", 3.0, 4]
[type(item) for item in L3]

Out[5]: [bool, str, float, int]

But this flexibility comes at a cost: to allow these flexible types, each item in the list must
contain its own type info, reference count, and other information–that is, each item is a complete
Python object. In the special case that all variables are of the same type, much of this information
is redundant: it can be much more efficient to store data in a fixed-type array. The difference
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Array Memory Layout

between a dynamic-type list and a fixed-type (NumPy-style) array is illustrated in the following
figure:

At the implementation level, the array essentially contains a single pointer to one contiguous
block of data. The Python list, on the other hand, contains a pointer to a block of pointers, each
of which in turn points to a full Python object like the Python integer we saw earlier. Again, the
advantage of the list is flexibility: because each list element is a full structure containing both data
and type information, the list can be filled with data of any desired type. Fixed-type NumPy-style
arrays lack this flexibility, but are much more efficient for storing and manipulating data.

1.3 Fixed-Type Arrays in Python

Python offers several different options for storing data in efficient, fixed-type data buffers. The
built-in array module (available since Python 3.3) can be used to create dense arrays of a uniform
type:

In [6]: import array
L = list(range(10))
A = array.array('i', L)
A

Out[6]: array('i', [0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

Here 'i' is a type code indicating the contents are integers.
Much more useful, however, is the ndarray object of the NumPy package. While Python’s

array object provides efficient storage of array-based data, NumPy adds to this efficient operations
on that data. We will explore these operations in later sections; here we’ll demonstrate several
ways of creating a NumPy array.

We’ll start with the standard NumPy import, under the alias np:

In [7]: import numpy as np

4



1.4 Creating Arrays from Python Lists

First, we can use np.array to create arrays from Python lists:

In [8]: # integer array:
np.array([1, 4, 2, 5, 3])

Out[8]: array([1, 4, 2, 5, 3])

Remember that unlike Python lists, NumPy is constrained to arrays that all contain the same
type. If types do not match, NumPy will upcast if possible (here, integers are up-cast to floating
point):

In [9]: np.array([3.14, 4, 2, 3])

Out[9]: array([ 3.14, 4. , 2. , 3. ])

If we want to explicitly set the data type of the resulting array, we can use the dtype keyword:

In [10]: np.array([1, 2, 3, 4], dtype='float32')

Out[10]: array([ 1., 2., 3., 4.], dtype=float32)

Finally, unlike Python lists, NumPy arrays can explicitly be multi-dimensional; here’s one way
of initializing a multidimensional array using a list of lists:

In [11]: # nested lists result in multi-dimensional arrays
np.array([range(i, i + 3) for i in [2, 4, 6]])

Out[11]: array([[2, 3, 4],
[4, 5, 6],
[6, 7, 8]])

The inner lists are treated as rows of the resulting two-dimensional array.

1.5 Creating Arrays from Scratch

Especially for larger arrays, it is more efficient to create arrays from scratch using routines built
into NumPy. Here are several examples:

In [12]: # Create a length-10 integer array filled with zeros
np.zeros(10, dtype=int)

Out[12]: array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0])

In [13]: # Create a 3x5 floating-point array filled with ones
np.ones((3, 5), dtype=float)

Out[13]: array([[ 1., 1., 1., 1., 1.],
[ 1., 1., 1., 1., 1.],
[ 1., 1., 1., 1., 1.]])
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In [14]: # Create a 3x5 array filled with 3.14
np.full((3, 5), 3.14)

Out[14]: array([[ 3.14, 3.14, 3.14, 3.14, 3.14],
[ 3.14, 3.14, 3.14, 3.14, 3.14],
[ 3.14, 3.14, 3.14, 3.14, 3.14]])

In [15]: # Create an array filled with a linear sequence
# Starting at 0, ending at 20, stepping by 2
# (this is similar to the built-in range() function)
np.arange(0, 20, 2)

Out[15]: array([ 0, 2, 4, 6, 8, 10, 12, 14, 16, 18])

In [16]: # Create an array of five values evenly spaced between 0 and 1
np.linspace(0, 1, 5)

Out[16]: array([ 0. , 0.25, 0.5 , 0.75, 1. ])

In [17]: # Create a 3x3 array of uniformly distributed
# random values between 0 and 1
np.random.random((3, 3))

Out[17]: array([[ 0.99844933, 0.52183819, 0.22421193],
[ 0.08007488, 0.45429293, 0.20941444],
[ 0.14360941, 0.96910973, 0.946117 ]])

In [18]: # Create a 3x3 array of normally distributed random values
# with mean 0 and standard deviation 1
np.random.normal(0, 1, (3, 3))

Out[18]: array([[ 1.51772646, 0.39614948, -0.10634696],
[ 0.25671348, 0.00732722, 0.37783601],
[ 0.68446945, 0.15926039, -0.70744073]])

In [19]: # Create a 3x3 array of random integers in the interval [0, 10)
np.random.randint(0, 10, (3, 3))

Out[19]: array([[2, 3, 4],
[5, 7, 8],
[0, 5, 0]])

In [20]: # Create a 3x3 identity matrix
np.eye(3)

Out[20]: array([[ 1., 0., 0.],
[ 0., 1., 0.],
[ 0., 0., 1.]])

In [21]: # Create an uninitialized array of three integers
# The values will be whatever happens to already exist at that memory location
np.empty(3)

Out[21]: array([ 1., 1., 1.])
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1.6 NumPy Standard Data Types

NumPy arrays contain values of a single type, so it is important to have detailed knowledge of
those types and their limitations. Because NumPy is built in C, the types will be familiar to users
of C, Fortran, and other related languages.

The standard NumPy data types are listed in the following table. Note that when constructing
an array, they can be specified using a string:

np.zeros(10, dtype='int16')

Or using the associated NumPy object:

np.zeros(10, dtype=np.int16)

Data type Description

bool_ Boolean (True or False) stored as a byte
int_ Default integer type (same as C long;

normally either int64 or int32)
intc Identical to C int (normally int32 or

int64)
intp Integer used for indexing (same as C

ssize_t; normally either int32 or int64)
int8 Byte (-128 to 127)
int16 Integer (-32768 to 32767)
int32 Integer (-2147483648 to 2147483647)
int64 Integer (-9223372036854775808 to

9223372036854775807)
uint8 Unsigned integer (0 to 255)
uint16 Unsigned integer (0 to 65535)
uint32 Unsigned integer (0 to 4294967295)
uint64 Unsigned integer (0 to

18446744073709551615)
float_ Shorthand for float64.
float16 Half precision float: sign bit, 5 bits

exponent, 10 bits mantissa
float32 Single precision float: sign bit, 8 bits

exponent, 23 bits mantissa
float64 Double precision float: sign bit, 11 bits

exponent, 52 bits mantissa
complex_ Shorthand for complex128.
complex64 Complex number, represented by two

32-bit floats
complex128 Complex number, represented by two

64-bit floats

More advanced type specification is possible, such as specifying big or little endian numbers;
for more information, refer to the NumPy documentation. NumPy also supports compound data
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types, which will be covered in Structured Data: NumPy’s Structured Arrays.
< Introduction to NumPy | Contents | The Basics of NumPy Arrays >
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< Understanding Data Types in Python | Contents | Computation on NumPy Arrays: Uni-
versal Functions >

1 The Basics of NumPy Arrays

Data manipulation in Python is nearly synonymous with NumPy array manipulation: even newer
tools like Pandas (Chapter 3) are built around the NumPy array. This section will present several
examples of using NumPy array manipulation to access data and subarrays, and to split, reshape,
and join the arrays. While the types of operations shown here may seem a bit dry and pedantic,
they comprise the building blocks of many other examples used throughout the book. Get to
know them well!

We’ll cover a few categories of basic array manipulations here:

• Attributes of arrays: Determining the size, shape, memory consumption, and data types of
arrays

• Indexing of arrays: Getting and setting the value of individual array elements
• Slicing of arrays: Getting and setting smaller subarrays within a larger array
• Reshaping of arrays: Changing the shape of a given array
• Joining and splitting of arrays: Combining multiple arrays into one, and splitting one array

into many

1.1 NumPy Array Attributes

First let’s discuss some useful array attributes. We’ll start by defining three random arrays, a one-
dimensional, two-dimensional, and three-dimensional array. We’ll use NumPy’s random number
generator, which we will seed with a set value in order to ensure that the same random arrays are
generated each time this code is run:

In [1]: import numpy as np
np.random.seed(0) # seed for reproducibility

x1 = np.random.randint(10, size=6) # One-dimensional array
x2 = np.random.randint(10, size=(3, 4)) # Two-dimensional array
x3 = np.random.randint(10, size=(3, 4, 5)) # Three-dimensional array
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Each array has attributes ndim (the number of dimensions), shape (the size of each dimension),
and size (the total size of the array):

In [2]: print("x3 ndim: ", x3.ndim)
print("x3 shape:", x3.shape)
print("x3 size: ", x3.size)

x3 ndim: 3
x3 shape: (3, 4, 5)
x3 size: 60

Another useful attribute is the dtype, the data type of the array (which we discussed previ-
ously in Understanding Data Types in Python):

In [3]: print("dtype:", x3.dtype)

dtype: int64

Other attributes include itemsize, which lists the size (in bytes) of each array element, and
nbytes, which lists the total size (in bytes) of the array:

In [4]: print("itemsize:", x3.itemsize, "bytes")
print("nbytes:", x3.nbytes, "bytes")

itemsize: 8 bytes
nbytes: 480 bytes

In general, we expect that nbytes is equal to itemsize times size.

1.2 Array Indexing: Accessing Single Elements

If you are familiar with Python’s standard list indexing, indexing in NumPy will feel quite familiar.
In a one-dimensional array, the ith value (counting from zero) can be accessed by specifying the
desired index in square brackets, just as with Python lists:

In [5]: x1

Out[5]: array([5, 0, 3, 3, 7, 9])

In [6]: x1[0]

Out[6]: 5

In [7]: x1[4]

Out[7]: 7

To index from the end of the array, you can use negative indices:
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In [8]: x1[-1]

Out[8]: 9

In [9]: x1[-2]

Out[9]: 7

In a multi-dimensional array, items can be accessed using a comma-separated tuple of indices:

In [10]: x2

Out[10]: array([[3, 5, 2, 4],
[7, 6, 8, 8],
[1, 6, 7, 7]])

In [11]: x2[0, 0]

Out[11]: 3

In [12]: x2[2, 0]

Out[12]: 1

In [13]: x2[2, -1]

Out[13]: 7

Values can also be modified using any of the above index notation:

In [14]: x2[0, 0] = 12
x2

Out[14]: array([[12, 5, 2, 4],
[ 7, 6, 8, 8],
[ 1, 6, 7, 7]])

Keep in mind that, unlike Python lists, NumPy arrays have a fixed type. This means, for
example, that if you attempt to insert a floating-point value to an integer array, the value will be
silently truncated. Don’t be caught unaware by this behavior!

In [15]: x1[0] = 3.14159 # this will be truncated!
x1

Out[15]: array([3, 0, 3, 3, 7, 9])

1.3 Array Slicing: Accessing Subarrays

Just as we can use square brackets to access individual array elements, we can also use them to
access subarrays with the slice notation, marked by the colon (:) character. The NumPy slicing
syntax follows that of the standard Python list; to access a slice of an array x, use this:

x[start:stop:step]

If any of these are unspecified, they default to the values start=0, stop=size of dimension,
step=1. We’ll take a look at accessing sub-arrays in one dimension and in multiple dimensions.
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1.3.1 One-dimensional subarrays

In [16]: x = np.arange(10)
x

Out[16]: array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

In [17]: x[:5] # first five elements

Out[17]: array([0, 1, 2, 3, 4])

In [18]: x[5:] # elements after index 5

Out[18]: array([5, 6, 7, 8, 9])

In [19]: x[4:7] # middle sub-array

Out[19]: array([4, 5, 6])

In [20]: x[::2] # every other element

Out[20]: array([0, 2, 4, 6, 8])

In [21]: x[1::2] # every other element, starting at index 1

Out[21]: array([1, 3, 5, 7, 9])

A potentially confusing case is when the step value is negative. In this case, the defaults for
start and stop are swapped. This becomes a convenient way to reverse an array:

In [22]: x[::-1] # all elements, reversed

Out[22]: array([9, 8, 7, 6, 5, 4, 3, 2, 1, 0])

In [23]: x[5::-2] # reversed every other from index 5

Out[23]: array([5, 3, 1])

1.3.2 Multi-dimensional subarrays

Multi-dimensional slices work in the same way, with multiple slices separated by commas. For
example:

In [24]: x2

Out[24]: array([[12, 5, 2, 4],
[ 7, 6, 8, 8],
[ 1, 6, 7, 7]])

In [25]: x2[:2, :3] # two rows, three columns
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Out[25]: array([[12, 5, 2],
[ 7, 6, 8]])

In [26]: x2[:3, ::2] # all rows, every other column

Out[26]: array([[12, 2],
[ 7, 8],
[ 1, 7]])

Finally, subarray dimensions can even be reversed together:

In [27]: x2[::-1, ::-1]

Out[27]: array([[ 7, 7, 6, 1],
[ 8, 8, 6, 7],
[ 4, 2, 5, 12]])

Accessing array rows and columns One commonly needed routine is accessing of single rows
or columns of an array. This can be done by combining indexing and slicing, using an empty slice
marked by a single colon (:):

In [28]: print(x2[:, 0]) # first column of x2

[12 7 1]

In [29]: print(x2[0, :]) # first row of x2

[12 5 2 4]

In the case of row access, the empty slice can be omitted for a more compact syntax:

In [30]: print(x2[0]) # equivalent to x2[0, :]

[12 5 2 4]

1.3.3 Subarrays as no-copy views

One important–and extremely useful–thing to know about array slices is that they return views
rather than copies of the array data. This is one area in which NumPy array slicing differs from
Python list slicing: in lists, slices will be copies. Consider our two-dimensional array from before:

In [31]: print(x2)

[[12 5 2 4]
[ 7 6 8 8]
[ 1 6 7 7]]
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Let’s extract a 2 × 2 subarray from this:

In [32]: x2_sub = x2[:2, :2]
print(x2_sub)

[[12 5]
[ 7 6]]

Now if we modify this subarray, we’ll see that the original array is changed! Observe:

In [33]: x2_sub[0, 0] = 99
print(x2_sub)

[[99 5]
[ 7 6]]

In [34]: print(x2)

[[99 5 2 4]
[ 7 6 8 8]
[ 1 6 7 7]]

This default behavior is actually quite useful: it means that when we work with large datasets,
we can access and process pieces of these datasets without the need to copy the underlying data
buffer.

1.3.4 Creating copies of arrays

Despite the nice features of array views, it is sometimes useful to instead explicitly copy the data
within an array or a subarray. This can be most easily done with the copy() method:

In [35]: x2_sub_copy = x2[:2, :2].copy()
print(x2_sub_copy)

[[99 5]
[ 7 6]]

If we now modify this subarray, the original array is not touched:

In [36]: x2_sub_copy[0, 0] = 42
print(x2_sub_copy)

[[42 5]
[ 7 6]]

In [37]: print(x2)

[[99 5 2 4]
[ 7 6 8 8]
[ 1 6 7 7]]
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1.4 Reshaping of Arrays

Another useful type of operation is reshaping of arrays. The most flexible way of doing this is
with the reshape method. For example, if you want to put the numbers 1 through 9 in a 3 × 3
grid, you can do the following:

In [38]: grid = np.arange(1, 10).reshape((3, 3))
print(grid)

[[1 2 3]
[4 5 6]
[7 8 9]]

Note that for this to work, the size of the initial array must match the size of the reshaped
array. Where possible, the reshape method will use a no-copy view of the initial array, but with
non-contiguous memory buffers this is not always the case.

Another common reshaping pattern is the conversion of a one-dimensional array into a two-
dimensional row or column matrix. This can be done with the reshape method, or more easily
done by making use of the newaxis keyword within a slice operation:

In [39]: x = np.array([1, 2, 3])

# row vector via reshape
x.reshape((1, 3))

Out[39]: array([[1, 2, 3]])

In [40]: # row vector via newaxis
x[np.newaxis, :]

Out[40]: array([[1, 2, 3]])

In [41]: # column vector via reshape
x.reshape((3, 1))

Out[41]: array([[1],
[2],
[3]])

In [42]: # column vector via newaxis
x[:, np.newaxis]

Out[42]: array([[1],
[2],
[3]])

We will see this type of transformation often throughout the remainder of the book.
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1.5 Array Concatenation and Splitting

All of the preceding routines worked on single arrays. It’s also possible to combine multiple
arrays into one, and to conversely split a single array into multiple arrays. We’ll take a look at
those operations here.

1.5.1 Concatenation of arrays

Concatenation, or joining of two arrays in NumPy, is primarily accomplished using the routines
np.concatenate, np.vstack, and np.hstack. np.concatenate takes a tuple or list of arrays as its
first argument, as we can see here:

In [43]: x = np.array([1, 2, 3])
y = np.array([3, 2, 1])
np.concatenate([x, y])

Out[43]: array([1, 2, 3, 3, 2, 1])

You can also concatenate more than two arrays at once:

In [44]: z = [99, 99, 99]
print(np.concatenate([x, y, z]))

[ 1 2 3 3 2 1 99 99 99]

It can also be used for two-dimensional arrays:

In [45]: grid = np.array([[1, 2, 3],
[4, 5, 6]])

In [46]: # concatenate along the first axis
np.concatenate([grid, grid])

Out[46]: array([[1, 2, 3],
[4, 5, 6],
[1, 2, 3],
[4, 5, 6]])

In [47]: # concatenate along the second axis (zero-indexed)
np.concatenate([grid, grid], axis=1)

Out[47]: array([[1, 2, 3, 1, 2, 3],
[4, 5, 6, 4, 5, 6]])

For working with arrays of mixed dimensions, it can be clearer to use the np.vstack (vertical
stack) and np.hstack (horizontal stack) functions:
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In [48]: x = np.array([1, 2, 3])
grid = np.array([[9, 8, 7],

[6, 5, 4]])

# vertically stack the arrays
np.vstack([x, grid])

Out[48]: array([[1, 2, 3],
[9, 8, 7],
[6, 5, 4]])

In [49]: # horizontally stack the arrays
y = np.array([[99],

[99]])
np.hstack([grid, y])

Out[49]: array([[ 9, 8, 7, 99],
[ 6, 5, 4, 99]])

Similary, np.dstack will stack arrays along the third axis.

1.5.2 Splitting of arrays

The opposite of concatenation is splitting, which is implemented by the functions np.split,
np.hsplit, and np.vsplit. For each of these, we can pass a list of indices giving the split points:

In [50]: x = [1, 2, 3, 99, 99, 3, 2, 1]
x1, x2, x3 = np.split(x, [3, 5])
print(x1, x2, x3)

[1 2 3] [99 99] [3 2 1]

Notice that N split-points, leads to N + 1 subarrays. The related functions np.hsplit and
np.vsplit are similar:

In [51]: grid = np.arange(16).reshape((4, 4))
grid

Out[51]: array([[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11],
[12, 13, 14, 15]])

In [52]: upper, lower = np.vsplit(grid, [2])
print(upper)
print(lower)
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[[0 1 2 3]
[4 5 6 7]]

[[ 8 9 10 11]
[12 13 14 15]]

In [53]: left, right = np.hsplit(grid, [2])
print(left)
print(right)

[[ 0 1]
[ 4 5]
[ 8 9]
[12 13]]

[[ 2 3]
[ 6 7]
[10 11]
[14 15]]

Similarly, np.dsplit will split arrays along the third axis.
< Understanding Data Types in Python | Contents | Computation on NumPy Arrays: Uni-

versal Functions >
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02.03-Computation-on-arrays-ufuncs

October 29, 2018

This notebook contains an excerpt from the Python Data Science Handbook by Jake VanderPlas; the
content is available on GitHub.

The text is released under the CC-BY-NC-ND license, and code is released under the MIT license. If
you find this content useful, please consider supporting the work by buying the book!

< The Basics of NumPy Arrays | Contents | Aggregations: Min, Max, and Everything In
Between >

1 Computation on NumPy Arrays: Universal Functions

Up until now, we have been discussing some of the basic nuts and bolts of NumPy; in the next
few sections, we will dive into the reasons that NumPy is so important in the Python data science
world. Namely, it provides an easy and flexible interface to optimized computation with arrays of
data.

Computation on NumPy arrays can be very fast, or it can be very slow. The key to making
it fast is to use vectorized operations, generally implemented through NumPy’s universal functions
(ufuncs). This section motivates the need for NumPy’s ufuncs, which can be used to make re-
peated calculations on array elements much more efficient. It then introduces many of the most
common and useful arithmetic ufuncs available in the NumPy package.

1.1 The Slowness of Loops

Python’s default implementation (known as CPython) does some operations very slowly. This is
in part due to the dynamic, interpreted nature of the language: the fact that types are flexible, so
that sequences of operations cannot be compiled down to efficient machine code as in languages
like C and Fortran. Recently there have been various attempts to address this weakness: well-
known examples are the PyPy project, a just-in-time compiled implementation of Python; the
Cython project, which converts Python code to compilable C code; and the Numba project, which
converts snippets of Python code to fast LLVM bytecode. Each of these has its strengths and
weaknesses, but it is safe to say that none of the three approaches has yet surpassed the reach and
popularity of the standard CPython engine.

The relative sluggishness of Python generally manifests itself in situations where many small
operations are being repeated – for instance looping over arrays to operate on each element. For
example, imagine we have an array of values and we’d like to compute the reciprocal of each. A
straightforward approach might look like this:

In [1]: import numpy as np
np.random.seed(0)
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def compute_reciprocals(values):
output = np.empty(len(values))
for i in range(len(values)):

output[i] = 1.0 / values[i]
return output

values = np.random.randint(1, 10, size=5)
compute_reciprocals(values)

Out[1]: array([ 0.16666667, 1. , 0.25 , 0.25 , 0.125 ])

This implementation probably feels fairly natural to someone from, say, a C or Java back-
ground. But if we measure the execution time of this code for a large input, we see that this
operation is very slow, perhaps surprisingly so! We’ll benchmark this with IPython’s %timeit
magic (discussed in Profiling and Timing Code):

In [2]: big_array = np.random.randint(1, 100, size=1000000)
%timeit compute_reciprocals(big_array)

1 loop, best of 3: 2.91 s per loop

It takes several seconds to compute these million operations and to store the result! When even
cell phones have processing speeds measured in Giga-FLOPS (i.e., billions of numerical operations
per second), this seems almost absurdly slow. It turns out that the bottleneck here is not the
operations themselves, but the type-checking and function dispatches that CPython must do at
each cycle of the loop. Each time the reciprocal is computed, Python first examines the object’s
type and does a dynamic lookup of the correct function to use for that type. If we were working in
compiled code instead, this type specification would be known before the code executes and the
result could be computed much more efficiently.

1.2 Introducing UFuncs

For many types of operations, NumPy provides a convenient interface into just this kind of stati-
cally typed, compiled routine. This is known as a vectorized operation. This can be accomplished
by simply performing an operation on the array, which will then be applied to each element. This
vectorized approach is designed to push the loop into the compiled layer that underlies NumPy,
leading to much faster execution.

Compare the results of the following two:

In [3]: print(compute_reciprocals(values))
print(1.0 / values)

[ 0.16666667 1. 0.25 0.25 0.125 ]
[ 0.16666667 1. 0.25 0.25 0.125 ]

Looking at the execution time for our big array, we see that it completes orders of magnitude
faster than the Python loop:
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In [4]: %timeit (1.0 / big_array)

100 loops, best of 3: 4.6 ms per loop

Vectorized operations in NumPy are implemented via ufuncs, whose main purpose is to
quickly execute repeated operations on values in NumPy arrays. Ufuncs are extremely flexible
– before we saw an operation between a scalar and an array, but we can also operate between two
arrays:

In [5]: np.arange(5) / np.arange(1, 6)

Out[5]: array([ 0. , 0.5 , 0.66666667, 0.75 , 0.8 ])

And ufunc operations are not limited to one-dimensional arrays–they can also act on multi-
dimensional arrays as well:

In [6]: x = np.arange(9).reshape((3, 3))
2 ** x

Out[6]: array([[ 1, 2, 4],
[ 8, 16, 32],
[ 64, 128, 256]])

Computations using vectorization through ufuncs are nearly always more efficient than their
counterpart implemented using Python loops, especially as the arrays grow in size. Any time
you see such a loop in a Python script, you should consider whether it can be replaced with a
vectorized expression.

1.3 Exploring NumPy’s UFuncs

Ufuncs exist in two flavors: unary ufuncs, which operate on a single input, and binary ufuncs, which
operate on two inputs. We’ll see examples of both these types of functions here.

1.3.1 Array arithmetic

NumPy’s ufuncs feel very natural to use because they make use of Python’s native arithmetic
operators. The standard addition, subtraction, multiplication, and division can all be used:

In [7]: x = np.arange(4)
print("x =", x)
print("x + 5 =", x + 5)
print("x - 5 =", x - 5)
print("x * 2 =", x * 2)
print("x / 2 =", x / 2)
print("x // 2 =", x // 2) # floor division

x = [0 1 2 3]
x + 5 = [5 6 7 8]
x - 5 = [-5 -4 -3 -2]
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x * 2 = [0 2 4 6]
x / 2 = [ 0. 0.5 1. 1.5]
x // 2 = [0 0 1 1]

There is also a unary ufunc for negation, and a ** operator for exponentiation, and a % operator
for modulus:

In [8]: print("-x = ", -x)
print("x ** 2 = ", x ** 2)
print("x % 2 = ", x % 2)

-x = [ 0 -1 -2 -3]
x ** 2 = [0 1 4 9]
x % 2 = [0 1 0 1]

In addition, these can be strung together however you wish, and the standard order of opera-
tions is respected:

In [9]: -(0.5*x + 1) ** 2

Out[9]: array([-1. , -2.25, -4. , -6.25])

Each of these arithmetic operations are simply convenient wrappers around specific functions
built into NumPy; for example, the + operator is a wrapper for the add function:

In [10]: np.add(x, 2)

Out[10]: array([2, 3, 4, 5])

The following table lists the arithmetic operators implemented in NumPy:

Operator Equivalent ufunc Description

+ np.add Addition (e.g., 1 + 1 = 2)
- np.subtract Subtraction (e.g., 3 - 2 = 1)
- np.negative Unary negation (e.g., -2)
* np.multiply Multiplication (e.g., 2 * 3 = 6)
/ np.divide Division (e.g., 3 / 2 = 1.5)
// np.floor_divide Floor division (e.g., 3 // 2 = 1)
** np.power Exponentiation (e.g., 2 ** 3 = 8)
% np.mod Modulus/remainder (e.g., 9 % 4 = 1)

Additionally there are Boolean/bitwise operators; we will explore these in Comparisons,
Masks, and Boolean Logic.
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1.3.2 Absolute value

Just as NumPy understands Python’s built-in arithmetic operators, it also understands Python’s
built-in absolute value function:

In [11]: x = np.array([-2, -1, 0, 1, 2])
abs(x)

Out[11]: array([2, 1, 0, 1, 2])

The corresponding NumPy ufunc is np.absolute, which is also available under the alias
np.abs:

In [12]: np.absolute(x)

Out[12]: array([2, 1, 0, 1, 2])

In [13]: np.abs(x)

Out[13]: array([2, 1, 0, 1, 2])

This ufunc can also handle complex data, in which the absolute value returns the magnitude:

In [14]: x = np.array([3 - 4j, 4 - 3j, 2 + 0j, 0 + 1j])
np.abs(x)

Out[14]: array([ 5., 5., 2., 1.])

1.3.3 Trigonometric functions

NumPy provides a large number of useful ufuncs, and some of the most useful for the data scien-
tist are the trigonometric functions. We’ll start by defining an array of angles:

In [15]: theta = np.linspace(0, np.pi, 3)

Now we can compute some trigonometric functions on these values:

In [16]: print("theta = ", theta)
print("sin(theta) = ", np.sin(theta))
print("cos(theta) = ", np.cos(theta))
print("tan(theta) = ", np.tan(theta))

theta = [ 0. 1.57079633 3.14159265]
sin(theta) = [ 0.00000000e+00 1.00000000e+00 1.22464680e-16]
cos(theta) = [ 1.00000000e+00 6.12323400e-17 -1.00000000e+00]
tan(theta) = [ 0.00000000e+00 1.63312394e+16 -1.22464680e-16]

The values are computed to within machine precision, which is why values that should be zero
do not always hit exactly zero. Inverse trigonometric functions are also available:
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In [17]: x = [-1, 0, 1]
print("x = ", x)
print("arcsin(x) = ", np.arcsin(x))
print("arccos(x) = ", np.arccos(x))
print("arctan(x) = ", np.arctan(x))

x = [-1, 0, 1]
arcsin(x) = [-1.57079633 0. 1.57079633]
arccos(x) = [ 3.14159265 1.57079633 0. ]
arctan(x) = [-0.78539816 0. 0.78539816]

1.3.4 Exponents and logarithms

Another common type of operation available in a NumPy ufunc are the exponentials:

In [18]: x = [1, 2, 3]
print("x =", x)
print("e^x =", np.exp(x))
print("2^x =", np.exp2(x))
print("3^x =", np.power(3, x))

x = [1, 2, 3]
eˆx = [ 2.71828183 7.3890561 20.08553692]
2ˆx = [ 2. 4. 8.]
3ˆx = [ 3 9 27]

The inverse of the exponentials, the logarithms, are also available. The basic np.log gives the
natural logarithm; if you prefer to compute the base-2 logarithm or the base-10 logarithm, these
are available as well:

In [19]: x = [1, 2, 4, 10]
print("x =", x)
print("ln(x) =", np.log(x))
print("log2(x) =", np.log2(x))
print("log10(x) =", np.log10(x))

x = [1, 2, 4, 10]
ln(x) = [ 0. 0.69314718 1.38629436 2.30258509]
log2(x) = [ 0. 1. 2. 3.32192809]
log10(x) = [ 0. 0.30103 0.60205999 1. ]

There are also some specialized versions that are useful for maintaining precision with very
small input:

In [20]: x = [0, 0.001, 0.01, 0.1]
print("exp(x) - 1 =", np.expm1(x))
print("log(1 + x) =", np.log1p(x))
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exp(x) - 1 = [ 0. 0.0010005 0.01005017 0.10517092]
log(1 + x) = [ 0. 0.0009995 0.00995033 0.09531018]

When x is very small, these functions give more precise values than if the raw np.log or np.exp
were to be used.

1.3.5 Specialized ufuncs

NumPy has many more ufuncs available, including hyperbolic trig functions, bitwise arithmetic,
comparison operators, conversions from radians to degrees, rounding and remainders, and much
more. A look through the NumPy documentation reveals a lot of interesting functionality.

Another excellent source for more specialized and obscure ufuncs is the submodule
scipy.special. If you want to compute some obscure mathematical function on your data,
chances are it is implemented in scipy.special. There are far too many functions to list them
all, but the following snippet shows a couple that might come up in a statistics context:

In [21]: from scipy import special

In [22]: # Gamma functions (generalized factorials) and related functions
x = [1, 5, 10]
print("gamma(x) =", special.gamma(x))
print("ln|gamma(x)| =", special.gammaln(x))
print("beta(x, 2) =", special.beta(x, 2))

gamma(x) = [ 1.00000000e+00 2.40000000e+01 3.62880000e+05]
ln|gamma(x)| = [ 0. 3.17805383 12.80182748]
beta(x, 2) = [ 0.5 0.03333333 0.00909091]

In [23]: # Error function (integral of Gaussian)
# its complement, and its inverse
x = np.array([0, 0.3, 0.7, 1.0])
print("erf(x) =", special.erf(x))
print("erfc(x) =", special.erfc(x))
print("erfinv(x) =", special.erfinv(x))

erf(x) = [ 0. 0.32862676 0.67780119 0.84270079]
erfc(x) = [ 1. 0.67137324 0.32219881 0.15729921]
erfinv(x) = [ 0. 0.27246271 0.73286908 inf]

There are many, many more ufuncs available in both NumPy and scipy.special. Because
the documentation of these packages is available online, a web search along the lines of “gamma
function python” will generally find the relevant information.

1.4 Advanced Ufunc Features

Many NumPy users make use of ufuncs without ever learning their full set of features. We’ll
outline a few specialized features of ufuncs here.
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1.4.1 Specifying output

For large calculations, it is sometimes useful to be able to specify the array where the result of
the calculation will be stored. Rather than creating a temporary array, this can be used to write
computation results directly to the memory location where you’d like them to be. For all ufuncs,
this can be done using the out argument of the function:

In [24]: x = np.arange(5)
y = np.empty(5)
np.multiply(x, 10, out=y)
print(y)

[ 0. 10. 20. 30. 40.]

This can even be used with array views. For example, we can write the results of a computation
to every other element of a specified array:

In [25]: y = np.zeros(10)
np.power(2, x, out=y[::2])
print(y)

[ 1. 0. 2. 0. 4. 0. 8. 0. 16. 0.]

If we had instead written y[::2] = 2 ** x, this would have resulted in the creation of a tem-
porary array to hold the results of 2 ** x, followed by a second operation copying those values
into the y array. This doesn’t make much of a difference for such a small computation, but for very
large arrays the memory savings from careful use of the out argument can be significant.

1.4.2 Aggregates

For binary ufuncs, there are some interesting aggregates that can be computed directly from the
object. For example, if we’d like to reduce an array with a particular operation, we can use the
reduce method of any ufunc. A reduce repeatedly applies a given operation to the elements of an
array until only a single result remains.

For example, calling reduce on the add ufunc returns the sum of all elements in the array:

In [26]: x = np.arange(1, 6)
np.add.reduce(x)

Out[26]: 15

Similarly, calling reduce on the multiply ufunc results in the product of all array elements:

In [27]: np.multiply.reduce(x)

Out[27]: 120

If we’d like to store all the intermediate results of the computation, we can instead use
accumulate:
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In [28]: np.add.accumulate(x)

Out[28]: array([ 1, 3, 6, 10, 15])

In [29]: np.multiply.accumulate(x)

Out[29]: array([ 1, 2, 6, 24, 120])

Note that for these particular cases, there are dedicated NumPy functions to compute the re-
sults (np.sum, np.prod, np.cumsum, np.cumprod), which we’ll explore in Aggregations: Min, Max,
and Everything In Between.

1.4.3 Outer products

Finally, any ufunc can compute the output of all pairs of two different inputs using the outer
method. This allows you, in one line, to do things like create a multiplication table:

In [30]: x = np.arange(1, 6)
np.multiply.outer(x, x)

Out[30]: array([[ 1, 2, 3, 4, 5],
[ 2, 4, 6, 8, 10],
[ 3, 6, 9, 12, 15],
[ 4, 8, 12, 16, 20],
[ 5, 10, 15, 20, 25]])

The ufunc.at and ufunc.reduceat methods, which we’ll explore in Fancy Indexing, are very
helpful as well.

Another extremely useful feature of ufuncs is the ability to operate between arrays of different
sizes and shapes, a set of operations known as broadcasting. This subject is important enough that
we will devote a whole section to it (see Computation on Arrays: Broadcasting).

1.5 Ufuncs: Learning More

More information on universal functions (including the full list of available functions) can be
found on the NumPy and SciPy documentation websites.

Recall that you can also access information directly from within IPython by importing the
packages and using IPython’s tab-completion and help (?) functionality, as described in Help and
Documentation in IPython.

< The Basics of NumPy Arrays | Contents | Aggregations: Min, Max, and Everything In
Between >
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02.04-Computation-on-arrays-aggregates

October 29, 2018

This notebook contains an excerpt from the Python Data Science Handbook by Jake VanderPlas; the
content is available on GitHub.

The text is released under the CC-BY-NC-ND license, and code is released under the MIT license. If
you find this content useful, please consider supporting the work by buying the book!

< Computation on NumPy Arrays: Universal Functions | Contents | Computation on Arrays:
Broadcasting >

1 Aggregations: Min, Max, and Everything In Between

Often when faced with a large amount of data, a first step is to compute summary statistics for
the data in question. Perhaps the most common summary statistics are the mean and standard
deviation, which allow you to summarize the “typical” values in a dataset, but other aggregates
are useful as well (the sum, product, median, minimum and maximum, quantiles, etc.).

NumPy has fast built-in aggregation functions for working on arrays; we’ll discuss and
demonstrate some of them here.

1.1 Summing the Values in an Array

As a quick example, consider computing the sum of all values in an array. Python itself can do
this using the built-in sum function:

In [1]: import numpy as np

In [2]: L = np.random.random(100)
sum(L)

Out[2]: 55.61209116604941

The syntax is quite similar to that of NumPy’s sum function, and the result is the same in the
simplest case:

In [3]: np.sum(L)

Out[3]: 55.612091166049424

However, because it executes the operation in compiled code, NumPy’s version of the opera-
tion is computed much more quickly:
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In [4]: big_array = np.random.rand(1000000)
%timeit sum(big_array)
%timeit np.sum(big_array)

10 loops, best of 3: 104 ms per loop
1000 loops, best of 3: 442 ţs per loop

Be careful, though: the sum function and the np.sum function are not identical, which can
sometimes lead to confusion! In particular, their optional arguments have different meanings,
and np.sum is aware of multiple array dimensions, as we will see in the following section.

1.2 Minimum and Maximum

Similarly, Python has built-in min and max functions, used to find the minimum value and maxi-
mum value of any given array:

In [5]: min(big_array), max(big_array)

Out[5]: (1.1717128136634614e-06, 0.9999976784968716)

NumPy’s corresponding functions have similar syntax, and again operate much more quickly:

In [6]: np.min(big_array), np.max(big_array)

Out[6]: (1.1717128136634614e-06, 0.9999976784968716)

In [7]: %timeit min(big_array)
%timeit np.min(big_array)

10 loops, best of 3: 82.3 ms per loop
1000 loops, best of 3: 497 ţs per loop

For min, max, sum, and several other NumPy aggregates, a shorter syntax is to use methods of
the array object itself:

In [8]: print(big_array.min(), big_array.max(), big_array.sum())

1.17171281366e-06 0.999997678497 499911.628197

Whenever possible, make sure that you are using the NumPy version of these aggregates when
operating on NumPy arrays!
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1.2.1 Multi dimensional aggregates

One common type of aggregation operation is an aggregate along a row or column. Say you have
some data stored in a two-dimensional array:

In [9]: M = np.random.random((3, 4))
print(M)

[[ 0.8967576 0.03783739 0.75952519 0.06682827]
[ 0.8354065 0.99196818 0.19544769 0.43447084]
[ 0.66859307 0.15038721 0.37911423 0.6687194 ]]

By default, each NumPy aggregation function will return the aggregate over the entire array:

In [10]: M.sum()

Out[10]: 6.0850555667307118

Aggregation functions take an additional argument specifying the axis along which the aggre-
gate is computed. For example, we can find the minimum value within each column by specifying
axis=0:

In [11]: M.min(axis=0)

Out[11]: array([ 0.66859307, 0.03783739, 0.19544769, 0.06682827])

The function returns four values, corresponding to the four columns of numbers.
Similarly, we can find the maximum value within each row:

In [12]: M.max(axis=1)

Out[12]: array([ 0.8967576 , 0.99196818, 0.6687194 ])

The way the axis is specified here can be confusing to users coming from other languages. The
axis keyword specifies the dimension of the array that will be collapsed, rather than the dimension
that will be returned. So specifying axis=0 means that the first axis will be collapsed: for two-
dimensional arrays, this means that values within each column will be aggregated.

1.2.2 Other aggregation functions

NumPy provides many other aggregation functions, but we won’t discuss them in detail here.
Additionally, most aggregates have a NaN-safe counterpart that computes the result while ignor-
ing missing values, which are marked by the special IEEE floating-point NaN value (for a fuller
discussion of missing data, see Handling Missing Data). Some of these NaN-safe functions were
not added until NumPy 1.8, so they will not be available in older NumPy versions.

The following table provides a list of useful aggregation functions available in NumPy:

Function Name NaN-safe Version Description

np.sum np.nansum Compute sum of elements
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Function Name NaN-safe Version Description

np.prod np.nanprod Compute product of elements
np.mean np.nanmean Compute mean of elements
np.std np.nanstd Compute standard deviation
np.var np.nanvar Compute variance
np.min np.nanmin Find minimum value
np.max np.nanmax Find maximum value
np.argmin np.nanargmin Find index of minimum value
np.argmax np.nanargmax Find index of maximum value
np.median np.nanmedian Compute median of elements
np.percentile np.nanpercentile Compute rank-based statistics of elements
np.any N/A Evaluate whether any elements are true
np.all N/A Evaluate whether all elements are true

We will see these aggregates often throughout the rest of the book.

1.3 Example: What is the Average Height of US Presidents?

Aggregates available in NumPy can be extremely useful for summarizing a set of values. As a
simple example, let’s consider the heights of all US presidents. This data is available in the file
president_heights.csv, which is a simple comma-separated list of labels and values:

In [13]: !head -4 data/president_heights.csv

order,name,height(cm)

1,George Washington,189

2,John Adams,170

3,Thomas Jefferson,189

We’ll use the Pandas package, which we’ll explore more fully in Chapter 3, to read the file and
extract this information (note that the heights are measured in centimeters).

In [14]: import pandas as pd
data = pd.read_csv('data/president_heights.csv')
heights = np.array(data['height(cm)'])
print(heights)

[189 170 189 163 183 171 185 168 173 183 173 173 175 178 183 193 178 173
174 183 183 168 170 178 182 180 183 178 182 188 175 179 183 193 182 183
177 185 188 188 182 185]

Now that we have this data array, we can compute a variety of summary statistics:
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In [15]: print("Mean height: ", heights.mean())
print("Standard deviation:", heights.std())
print("Minimum height: ", heights.min())
print("Maximum height: ", heights.max())

Mean height: 179.738095238
Standard deviation: 6.93184344275
Minimum height: 163
Maximum height: 193

Note that in each case, the aggregation operation reduced the entire array to a single summa-
rizing value, which gives us information about the distribution of values. We may also wish to
compute quantiles:

In [16]: print("25th percentile: ", np.percentile(heights, 25))
print("Median: ", np.median(heights))
print("75th percentile: ", np.percentile(heights, 75))

25th percentile: 174.25
Median: 182.0
75th percentile: 183.0

We see that the median height of US presidents is 182 cm, or just shy of six feet.
Of course, sometimes it’s more useful to see a visual representation of this data, which we

can accomplish using tools in Matplotlib (we’ll discuss Matplotlib more fully in Chapter 4). For
example, this code generates the following chart:

In [17]: %matplotlib inline
import matplotlib.pyplot as plt
import seaborn; seaborn.set() # set plot style

In [18]: plt.hist(heights)
plt.title('Height Distribution of US Presidents')
plt.xlabel('height (cm)')
plt.ylabel('number');
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These aggregates are some of the fundamental pieces of exploratory data analysis that we’ll
explore in more depth in later chapters of the book.

< Computation on NumPy Arrays: Universal Functions | Contents | Computation on Arrays:
Broadcasting >
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02.05-Computation-on-arrays-broadcasting

October 29, 2018

This notebook contains an excerpt from the Python Data Science Handbook by Jake VanderPlas; the
content is available on GitHub.

The text is released under the CC-BY-NC-ND license, and code is released under the MIT license. If
you find this content useful, please consider supporting the work by buying the book!

< Aggregations: Min, Max, and Everything In Between | Contents | Comparisons, Masks,
and Boolean Logic >

1 Computation on Arrays: Broadcasting

We saw in the previous section how NumPy’s universal functions can be used to vectorize op-
erations and thereby remove slow Python loops. Another means of vectorizing operations is to
use NumPy’s broadcasting functionality. Broadcasting is simply a set of rules for applying binary
ufuncs (e.g., addition, subtraction, multiplication, etc.) on arrays of different sizes.

1.1 Introducing Broadcasting

Recall that for arrays of the same size, binary operations are performed on an element-by-element
basis:

In [1]: import numpy as np

In [2]: a = np.array([0, 1, 2])
b = np.array([5, 5, 5])
a + b

Out[2]: array([5, 6, 7])

Broadcasting allows these types of binary operations to be performed on arrays of different
sizes–for example, we can just as easily add a scalar (think of it as a zero-dimensional array) to an
array:

In [3]: a + 5

Out[3]: array([5, 6, 7])

We can think of this as an operation that stretches or duplicates the value 5 into the array [5,
5, 5], and adds the results. The advantage of NumPy’s broadcasting is that this duplication of
values does not actually take place, but it is a useful mental model as we think about broadcasting.

We can similarly extend this to arrays of higher dimension. Observe the result when we add a
one-dimensional array to a two-dimensional array:
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In [4]: M = np.ones((3, 3))
M

Out[4]: array([[ 1., 1., 1.],
[ 1., 1., 1.],
[ 1., 1., 1.]])

In [5]: M + a

Out[5]: array([[ 1., 2., 3.],
[ 1., 2., 3.],
[ 1., 2., 3.]])

Here the one-dimensional array a is stretched, or broadcast across the second dimension in
order to match the shape of M.

While these examples are relatively easy to understand, more complicated cases can involve
broadcasting of both arrays. Consider the following example:

In [6]: a = np.arange(3)
b = np.arange(3)[:, np.newaxis]

print(a)
print(b)

[0 1 2]
[[0]
[1]
[2]]

In [7]: a + b

Out[7]: array([[0, 1, 2],
[1, 2, 3],
[2, 3, 4]])

Just as before we stretched or broadcasted one value to match the shape of the other, here we’ve
stretched both a and b to match a common shape, and the result is a two-dimensional array! The
geometry of these examples is visualized in the following figure (Code to produce this plot can
be found in the appendix, and is adapted from source published in the astroML documentation.
Used by permission).

The light boxes represent the broadcasted values: again, this extra memory is not actually
allocated in the course of the operation, but it can be useful conceptually to imagine that it is.

1.2 Rules of Broadcasting

Broadcasting in NumPy follows a strict set of rules to determine the interaction between the two
arrays:
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Broadcasting Visual

• Rule 1: If the two arrays differ in their number of dimensions, the shape of the one with
fewer dimensions is padded with ones on its leading (left) side.

• Rule 2: If the shape of the two arrays does not match in any dimension, the array with shape
equal to 1 in that dimension is stretched to match the other shape.

• Rule 3: If in any dimension the sizes disagree and neither is equal to 1, an error is raised.

To make these rules clear, let’s consider a few examples in detail.

1.2.1 Broadcasting example 1

Let’s look at adding a two-dimensional array to a one-dimensional array:

In [8]: M = np.ones((2, 3))
a = np.arange(3)

Let’s consider an operation on these two arrays. The shape of the arrays are

• M.shape = (2, 3)
• a.shape = (3,)

We see by rule 1 that the array a has fewer dimensions, so we pad it on the left with ones:

• M.shape -> (2, 3)
• a.shape -> (1, 3)

By rule 2, we now see that the first dimension disagrees, so we stretch this dimension to match:
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• M.shape -> (2, 3)
• a.shape -> (2, 3)

The shapes match, and we see that the final shape will be (2, 3):

In [9]: M + a

Out[9]: array([[ 1., 2., 3.],
[ 1., 2., 3.]])

1.2.2 Broadcasting example 2

Let’s take a look at an example where both arrays need to be broadcast:

In [10]: a = np.arange(3).reshape((3, 1))
b = np.arange(3)

Again, we’ll start by writing out the shape of the arrays:

• a.shape = (3, 1)
• b.shape = (3,)

Rule 1 says we must pad the shape of b with ones:

• a.shape -> (3, 1)
• b.shape -> (1, 3)

And rule 2 tells us that we upgrade each of these ones to match the corresponding size of the
other array:

• a.shape -> (3, 3)
• b.shape -> (3, 3)

Because the result matches, these shapes are compatible. We can see this here:

In [11]: a + b

Out[11]: array([[0, 1, 2],
[1, 2, 3],
[2, 3, 4]])

1.2.3 Broadcasting example 3

Now let’s take a look at an example in which the two arrays are not compatible:

In [12]: M = np.ones((3, 2))
a = np.arange(3)

This is just a slightly different situation than in the first example: the matrix M is transposed.
How does this affect the calculation? The shape of the arrays are
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• M.shape = (3, 2)
• a.shape = (3,)

Again, rule 1 tells us that we must pad the shape of a with ones:

• M.shape -> (3, 2)
• a.shape -> (1, 3)

By rule 2, the first dimension of a is stretched to match that of M:

• M.shape -> (3, 2)
• a.shape -> (3, 3)

Now we hit rule 3–the final shapes do not match, so these two arrays are incompatible, as we
can observe by attempting this operation:

In [13]: M + a

---------------------------------------------------------------------------

ValueError Traceback (most recent call last)

<ipython-input-13-9e16e9f98da6> in <module>()
----> 1 M + a

ValueError: operands could not be broadcast together with shapes (3,2) (3,)

Note the potential confusion here: you could imagine making a and M compatible by, say,
padding a’s shape with ones on the right rather than the left. But this is not how the broadcasting
rules work! That sort of flexibility might be useful in some cases, but it would lead to potential
areas of ambiguity. If right-side padding is what you’d like, you can do this explicitly by reshaping
the array (we’ll use the np.newaxis keyword introduced in The Basics of NumPy Arrays):

In [14]: a[:, np.newaxis].shape

Out[14]: (3, 1)

In [15]: M + a[:, np.newaxis]

Out[15]: array([[ 1., 1.],
[ 2., 2.],
[ 3., 3.]])

Also note that while we’ve been focusing on the + operator here, these broadcasting rules
apply to any binary ufunc. For example, here is the logaddexp(a, b) function, which computes
log(exp(a) + exp(b)) with more precision than the naive approach:
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In [16]: np.logaddexp(M, a[:, np.newaxis])

Out[16]: array([[ 1.31326169, 1.31326169],
[ 1.69314718, 1.69314718],
[ 2.31326169, 2.31326169]])

For more information on the many available universal functions, refer to Computation on
NumPy Arrays: Universal Functions.

1.3 Broadcasting in Practice

Broadcasting operations form the core of many examples we’ll see throughout this book. We’ll
now take a look at a couple simple examples of where they can be useful.

1.3.1 Centering an array

In the previous section, we saw that ufuncs allow a NumPy user to remove the need to explicitly
write slow Python loops. Broadcasting extends this ability. One commonly seen example is when
centering an array of data. Imagine you have an array of 10 observations, each of which consists
of 3 values. Using the standard convention (see Data Representation in Scikit-Learn), we’ll store
this in a 10 × 3 array:

In [17]: X = np.random.random((10, 3))

We can compute the mean of each feature using the mean aggregate across the first dimension:

In [18]: Xmean = X.mean(0)
Xmean

Out[18]: array([ 0.53514715, 0.66567217, 0.44385899])

And now we can center the X array by subtracting the mean (this is a broadcasting operation):

In [19]: X_centered = X - Xmean

To double-check that we’ve done this correctly, we can check that the centered array has near
zero mean:

In [20]: X_centered.mean(0)

Out[20]: array([ 2.22044605e-17, -7.77156117e-17, -1.66533454e-17])

To within machine precision, the mean is now zero.
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1.3.2 Plotting a two-dimensional function

One place that broadcasting is very useful is in displaying images based on two-dimensional func-
tions. If we want to define a function z = f (x, y), broadcasting can be used to compute the function
across the grid:

In [21]: # x and y have 50 steps from 0 to 5
x = np.linspace(0, 5, 50)
y = np.linspace(0, 5, 50)[:, np.newaxis]

z = np.sin(x) ** 10 + np.cos(10 + y * x) * np.cos(x)

We’ll use Matplotlib to plot this two-dimensional array (these tools will be discussed in full in
Density and Contour Plots):

In [22]: %matplotlib inline
import matplotlib.pyplot as plt

In [23]: plt.imshow(z, origin='lower', extent=[0, 5, 0, 5],
cmap='viridis')

plt.colorbar();

The result is a compelling visualization of the two-dimensional function.
< Aggregations: Min, Max, and Everything In Between | Contents | Comparisons, Masks,

and Boolean Logic >
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02.06-Boolean-Arrays-and-Masks

October 29, 2018

This notebook contains an excerpt from the Python Data Science Handbook by Jake VanderPlas; the
content is available on GitHub.

The text is released under the CC-BY-NC-ND license, and code is released under the MIT license. If
you find this content useful, please consider supporting the work by buying the book!

< Computation on Arrays: Broadcasting | Contents | Fancy Indexing >

1 Comparisons, Masks, and Boolean Logic

This section covers the use of Boolean masks to examine and manipulate values within NumPy
arrays. Masking comes up when you want to extract, modify, count, or otherwise manipulate
values in an array based on some criterion: for example, you might wish to count all values
greater than a certain value, or perhaps remove all outliers that are above some threshold. In
NumPy, Boolean masking is often the most efficient way to accomplish these types of tasks.

1.1 Example: Counting Rainy Days

Imagine you have a series of data that represents the amount of precipitation each day for a year
in a given city. For example, here we’ll load the daily rainfall statistics for the city of Seattle in
2014, using Pandas (which is covered in more detail in Chapter 3):

In [1]: import numpy as np
import pandas as pd

# use pandas to extract rainfall inches as a NumPy array
rainfall = pd.read_csv('data/Seattle2014.csv')['PRCP'].values
inches = rainfall / 254.0 # 1/10mm -> inches
inches.shape

Out[1]: (365,)

The array contains 365 values, giving daily rainfall in inches from January 1 to December 31,
2014.

As a first quick visualization, let’s look at the histogram of rainy days, which was generated
using Matplotlib (we will explore this tool more fully in Chapter 4):

In [2]: %matplotlib inline
import matplotlib.pyplot as plt
import seaborn; seaborn.set() # set plot styles
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In [3]: plt.hist(inches, 40);

This histogram gives us a general idea of what the data looks like: despite its reputation, the
vast majority of days in Seattle saw near zero measured rainfall in 2014. But this doesn’t do a good
job of conveying some information we’d like to see: for example, how many rainy days were there
in the year? What is the average precipitation on those rainy days? How many days were there
with more than half an inch of rain?

1.1.1 Digging into the data

One approach to this would be to answer these questions by hand: loop through the data, incre-
menting a counter each time we see values in some desired range. For reasons discussed through-
out this chapter, such an approach is very inefficient, both from the standpoint of time writing code
and time computing the result. We saw in Computation on NumPy Arrays: Universal Functions
that NumPy’s ufuncs can be used in place of loops to do fast element-wise arithmetic operations
on arrays; in the same way, we can use other ufuncs to do element-wise comparisons over arrays,
and we can then manipulate the results to answer the questions we have. We’ll leave the data
aside for right now, and discuss some general tools in NumPy to use masking to quickly answer
these types of questions.

1.2 Comparison Operators as ufuncs

In Computation on NumPy Arrays: Universal Functions we introduced ufuncs, and focused in
particular on arithmetic operators. We saw that using +, -, *, /, and others on arrays leads to
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element-wise operations. NumPy also implements comparison operators such as < (less than)
and > (greater than) as element-wise ufuncs. The result of these comparison operators is always
an array with a Boolean data type. All six of the standard comparison operations are available:

In [4]: x = np.array([1, 2, 3, 4, 5])

In [5]: x < 3 # less than

Out[5]: array([ True, True, False, False, False], dtype=bool)

In [6]: x > 3 # greater than

Out[6]: array([False, False, False, True, True], dtype=bool)

In [7]: x <= 3 # less than or equal

Out[7]: array([ True, True, True, False, False], dtype=bool)

In [8]: x >= 3 # greater than or equal

Out[8]: array([False, False, True, True, True], dtype=bool)

In [9]: x != 3 # not equal

Out[9]: array([ True, True, False, True, True], dtype=bool)

In [10]: x == 3 # equal

Out[10]: array([False, False, True, False, False], dtype=bool)

It is also possible to do an element-wise comparison of two arrays, and to include compound
expressions:

In [11]: (2 * x) == (x ** 2)

Out[11]: array([False, True, False, False, False], dtype=bool)

As in the case of arithmetic operators, the comparison operators are implemented as ufuncs in
NumPy; for example, when you write x < 3, internally NumPy uses np.less(x, 3). A summary
of the comparison operators and their equivalent ufunc is shown here:

Operator | Equivalent ufunc || Operator | Equivalent ufunc |
|—————|———————||—————|———————| |== |np.equal ||!=

|np.not_equal | |< |np.less ||<= |np.less_equal | |> |np.greater ||>=
|np.greater_equal |

Just as in the case of arithmetic ufuncs, these will work on arrays of any size and shape. Here
is a two-dimensional example:

In [12]: rng = np.random.RandomState(0)
x = rng.randint(10, size=(3, 4))
x
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Out[12]: array([[5, 0, 3, 3],
[7, 9, 3, 5],
[2, 4, 7, 6]])

In [13]: x < 6

Out[13]: array([[ True, True, True, True],
[False, False, True, True],
[ True, True, False, False]], dtype=bool)

In each case, the result is a Boolean array, and NumPy provides a number of straightforward
patterns for working with these Boolean results.

1.3 Working with Boolean Arrays

Given a Boolean array, there are a host of useful operations you can do. We’ll work with x, the
two-dimensional array we created earlier.

In [14]: print(x)

[[5 0 3 3]
[7 9 3 5]
[2 4 7 6]]

1.3.1 Counting entries

To count the number of True entries in a Boolean array, np.count_nonzero is useful:

In [15]: # how many values less than 6?
np.count_nonzero(x < 6)

Out[15]: 8

We see that there are eight array entries that are less than 6. Another way to get at this infor-
mation is to use np.sum; in this case, False is interpreted as 0, and True is interpreted as 1:

In [16]: np.sum(x < 6)

Out[16]: 8

The benefit of sum() is that like with other NumPy aggregation functions, this summation can
be done along rows or columns as well:

In [17]: # how many values less than 6 in each row?
np.sum(x < 6, axis=1)

Out[17]: array([4, 2, 2])

This counts the number of values less than 6 in each row of the matrix.
If we’re interested in quickly checking whether any or all the values are true, we can use (you

guessed it) np.any or np.all:
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In [18]: # are there any values greater than 8?
np.any(x > 8)

Out[18]: True

In [19]: # are there any values less than zero?
np.any(x < 0)

Out[19]: False

In [20]: # are all values less than 10?
np.all(x < 10)

Out[20]: True

In [21]: # are all values equal to 6?
np.all(x == 6)

Out[21]: False

np.all and np.any can be used along particular axes as well. For example:

In [22]: # are all values in each row less than 8?
np.all(x < 8, axis=1)

Out[22]: array([ True, False, True], dtype=bool)

Here all the elements in the first and third rows are less than 8, while this is not the case for the
second row.

Finally, a quick warning: as mentioned in Aggregations: Min, Max, and Everything In Be-
tween, Python has built-in sum(), any(), and all() functions. These have a different syntax than
the NumPy versions, and in particular will fail or produce unintended results when used on mul-
tidimensional arrays. Be sure that you are using np.sum(), np.any(), and np.all() for these
examples!

1.3.2 Boolean operators

We’ve already seen how we might count, say, all days with rain less than four inches, or all days
with rain greater than two inches. But what if we want to know about all days with rain less
than four inches and greater than one inch? This is accomplished through Python’s bitwise logic
operators, &, |, ˆ, and ~. Like with the standard arithmetic operators, NumPy overloads these as
ufuncs which work element-wise on (usually Boolean) arrays.

For example, we can address this sort of compound question as follows:

In [23]: np.sum((inches > 0.5) & (inches < 1))

Out[23]: 29

So we see that there are 29 days with rainfall between 0.5 and 1.0 inches.
Note that the parentheses here are important–because of operator precedence rules, with

parentheses removed this expression would be evaluated as follows, which results in an error:
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inches > (0.5 & inches) < 1

Using the equivalence of A AND B and NOT (NOT A OR NOT B) (which you may remember if
you’ve taken an introductory logic course), we can compute the same result in a different manner:

In [24]: np.sum(~( (inches <= 0.5) | (inches >= 1) ))

Out[24]: 29

Combining comparison operators and Boolean operators on arrays can lead to a wide range of
efficient logical operations.

The following table summarizes the bitwise Boolean operators and their equivalent ufuncs:
Operator | Equivalent ufunc || Operator | Equivalent ufunc |
|—————|———————||—————|———————| |& |np.bitwise_and |||

|np.bitwise_or | |ˆ |np.bitwise_xor ||~ |np.bitwise_not |
Using these tools, we might start to answer the types of questions we have about our weather

data. Here are some examples of results we can compute when combining masking with aggre-
gations:

In [25]: print("Number days without rain: ", np.sum(inches == 0))
print("Number days with rain: ", np.sum(inches != 0))
print("Days with more than 0.5 inches:", np.sum(inches > 0.5))
print("Rainy days with < 0.2 inches :", np.sum((inches > 0) &

(inches < 0.2)))

Number days without rain: 215
Number days with rain: 150
Days with more than 0.5 inches: 37
Rainy days with < 0.2 inches : 75

1.4 Boolean Arrays as Masks

In the preceding section we looked at aggregates computed directly on Boolean arrays. A more
powerful pattern is to use Boolean arrays as masks, to select particular subsets of the data them-
selves. Returning to our x array from before, suppose we want an array of all values in the array
that are less than, say, 5:

In [26]: x

Out[26]: array([[5, 0, 3, 3],
[7, 9, 3, 5],
[2, 4, 7, 6]])

We can obtain a Boolean array for this condition easily, as we’ve already seen:

In [27]: x < 5

Out[27]: array([[False, True, True, True],
[False, False, True, False],
[ True, True, False, False]], dtype=bool)
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Now to select these values from the array, we can simply index on this Boolean array; this is
known as a masking operation:

In [28]: x[x < 5]

Out[28]: array([0, 3, 3, 3, 2, 4])

What is returned is a one-dimensional array filled with all the values that meet this condition;
in other words, all the values in positions at which the mask array is True.

We are then free to operate on these values as we wish. For example, we can compute some
relevant statistics on our Seattle rain data:

In [29]: # construct a mask of all rainy days
rainy = (inches > 0)

# construct a mask of all summer days (June 21st is the 172nd day)
days = np.arange(365)
summer = (days > 172) & (days < 262)

print("Median precip on rainy days in 2014 (inches): ",
np.median(inches[rainy]))

print("Median precip on summer days in 2014 (inches): ",
np.median(inches[summer]))

print("Maximum precip on summer days in 2014 (inches): ",
np.max(inches[summer]))

print("Median precip on non-summer rainy days (inches):",
np.median(inches[rainy & ~summer]))

Median precip on rainy days in 2014 (inches): 0.194881889764
Median precip on summer days in 2014 (inches): 0.0
Maximum precip on summer days in 2014 (inches): 0.850393700787
Median precip on non-summer rainy days (inches): 0.200787401575

By combining Boolean operations, masking operations, and aggregates, we can very quickly
answer these sorts of questions for our dataset.

1.5 Aside: Using the Keywords and/or Versus the Operators &/|

One common point of confusion is the difference between the keywords and and or on one hand,
and the operators & and | on the other hand. When would you use one versus the other?

The difference is this: and and or gauge the truth or falsehood of entire object, while & and |
refer to bits within each object.

When you use and or or, it’s equivalent to asking Python to treat the object as a single Boolean
entity. In Python, all nonzero integers will evaluate as True. Thus:

In [30]: bool(42), bool(0)

Out[30]: (True, False)
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In [31]: bool(42 and 0)

Out[31]: False

In [32]: bool(42 or 0)

Out[32]: True

When you use & and | on integers, the expression operates on the bits of the element, applying
the and or the or to the individual bits making up the number:

In [33]: bin(42)

Out[33]: '0b101010'

In [34]: bin(59)

Out[34]: '0b111011'

In [35]: bin(42 & 59)

Out[35]: '0b101010'

In [36]: bin(42 | 59)

Out[36]: '0b111011'

Notice that the corresponding bits of the binary representation are compared in order to yield
the result.

When you have an array of Boolean values in NumPy, this can be thought of as a string of bits
where 1 = True and 0 = False, and the result of & and | operates similarly to above:

In [37]: A = np.array([1, 0, 1, 0, 1, 0], dtype=bool)
B = np.array([1, 1, 1, 0, 1, 1], dtype=bool)
A | B

Out[37]: array([ True, True, True, False, True, True], dtype=bool)

Using or on these arrays will try to evaluate the truth or falsehood of the entire array object,
which is not a well-defined value:

In [38]: A or B

---------------------------------------------------------------------------

ValueError Traceback (most recent call last)

<ipython-input-38-5d8e4f2e21c0> in <module>()
----> 1 A or B

ValueError: The truth value of an array with more than one element is ambiguous. Use a.any() or a.all()
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Similarly, when doing a Boolean expression on a given array, you should use | or & rather than
or or and:

In [39]: x = np.arange(10)
(x > 4) & (x < 8)

Out[39]: array([False, False, False, False, False, True, True, True, False, False], dtype=bool)

Trying to evaluate the truth or falsehood of the entire array will give the same ValueError we
saw previously:

In [40]: (x > 4) and (x < 8)

---------------------------------------------------------------------------

ValueError Traceback (most recent call last)

<ipython-input-40-3d24f1ffd63d> in <module>()
----> 1 (x > 4) and (x < 8)

ValueError: The truth value of an array with more than one element is ambiguous. Use a.any() or a.all()

So remember this: and and or perform a single Boolean evaluation on an entire object, while
& and | perform multiple Boolean evaluations on the content (the individual bits or bytes) of an
object. For Boolean NumPy arrays, the latter is nearly always the desired operation.

< Computation on Arrays: Broadcasting | Contents | Fancy Indexing >
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02.07-Fancy-Indexing

October 29, 2018

This notebook contains an excerpt from the Python Data Science Handbook by Jake VanderPlas; the
content is available on GitHub.

The text is released under the CC-BY-NC-ND license, and code is released under the MIT license. If
you find this content useful, please consider supporting the work by buying the book!

< Comparisons, Masks, and Boolean Logic | Contents | Sorting Arrays >

1 Fancy Indexing

In the previous sections, we saw how to access and modify portions of arrays using simple indices
(e.g., arr[0]), slices (e.g., arr[:5]), and Boolean masks (e.g., arr[arr > 0]). In this section, we’ll
look at another style of array indexing, known as fancy indexing. Fancy indexing is like the simple
indexing we’ve already seen, but we pass arrays of indices in place of single scalars. This allows
us to very quickly access and modify complicated subsets of an array’s values.

1.1 Exploring Fancy Indexing

Fancy indexing is conceptually simple: it means passing an array of indices to access multiple
array elements at once. For example, consider the following array:

In [1]: import numpy as np
rand = np.random.RandomState(42)

x = rand.randint(100, size=10)
print(x)

[51 92 14 71 60 20 82 86 74 74]

Suppose we want to access three different elements. We could do it like this:

In [2]: [x[3], x[7], x[2]]

Out[2]: [71, 86, 14]

Alternatively, we can pass a single list or array of indices to obtain the same result:

In [3]: ind = [3, 7, 4]
x[ind]
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Out[3]: array([71, 86, 60])

When using fancy indexing, the shape of the result reflects the shape of the index arrays rather
than the shape of the array being indexed:

In [4]: ind = np.array([[3, 7],
[4, 5]])

x[ind]

Out[4]: array([[71, 86],
[60, 20]])

Fancy indexing also works in multiple dimensions. Consider the following array:

In [5]: X = np.arange(12).reshape((3, 4))
X

Out[5]: array([[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11]])

Like with standard indexing, the first index refers to the row, and the second to the column:

In [6]: row = np.array([0, 1, 2])
col = np.array([2, 1, 3])
X[row, col]

Out[6]: array([ 2, 5, 11])

Notice that the first value in the result is X[0, 2], the second is X[1, 1], and the third is X[2,
3]. The pairing of indices in fancy indexing follows all the broadcasting rules that were mentioned
in Computation on Arrays: Broadcasting. So, for example, if we combine a column vector and a
row vector within the indices, we get a two-dimensional result:

In [7]: X[row[:, np.newaxis], col]

Out[7]: array([[ 2, 1, 3],
[ 6, 5, 7],
[10, 9, 11]])

Here, each row value is matched with each column vector, exactly as we saw in broadcasting
of arithmetic operations. For example:

In [8]: row[:, np.newaxis] * col

Out[8]: array([[0, 0, 0],
[2, 1, 3],
[4, 2, 6]])

It is always important to remember with fancy indexing that the return value reflects the broad-
casted shape of the indices, rather than the shape of the array being indexed.
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1.2 Combined Indexing

For even more powerful operations, fancy indexing can be combined with the other indexing
schemes we’ve seen:

In [9]: print(X)

[[ 0 1 2 3]
[ 4 5 6 7]
[ 8 9 10 11]]

We can combine fancy and simple indices:

In [10]: X[2, [2, 0, 1]]

Out[10]: array([10, 8, 9])

We can also combine fancy indexing with slicing:

In [11]: X[1:, [2, 0, 1]]

Out[11]: array([[ 6, 4, 5],
[10, 8, 9]])

And we can combine fancy indexing with masking:

In [12]: mask = np.array([1, 0, 1, 0], dtype=bool)
X[row[:, np.newaxis], mask]

Out[12]: array([[ 0, 2],
[ 4, 6],
[ 8, 10]])

All of these indexing options combined lead to a very flexible set of operations for accessing
and modifying array values.

1.3 Example: Selecting Random Points

One common use of fancy indexing is the selection of subsets of rows from a matrix. For example,
we might have an N by D matrix representing N points in D dimensions, such as the following
points drawn from a two-dimensional normal distribution:

In [13]: mean = [0, 0]
cov = [[1, 2],

[2, 5]]
X = rand.multivariate_normal(mean, cov, 100)
X.shape

Out[13]: (100, 2)
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Using the plotting tools we will discuss in Introduction to Matplotlib, we can visualize these
points as a scatter-plot:

In [14]: %matplotlib inline
import matplotlib.pyplot as plt
import seaborn; seaborn.set() # for plot styling

plt.scatter(X[:, 0], X[:, 1]);

Let’s use fancy indexing to select 20 random points. We’ll do this by first choosing 20 random
indices with no repeats, and use these indices to select a portion of the original array:

In [15]: indices = np.random.choice(X.shape[0], 20, replace=False)
indices

Out[15]: array([93, 45, 73, 81, 50, 10, 98, 94, 4, 64, 65, 89, 47, 84, 82, 80, 25,
90, 63, 20])

In [16]: selection = X[indices] # fancy indexing here
selection.shape

Out[16]: (20, 2)

Now to see which points were selected, let’s over-plot large circles at the locations of the se-
lected points:
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In [17]: plt.scatter(X[:, 0], X[:, 1], alpha=0.3)
plt.scatter(selection[:, 0], selection[:, 1],

facecolor='none', s=200);

This sort of strategy is often used to quickly partition datasets, as is often needed in train/test
splitting for validation of statistical models (see Hyperparameters and Model Validation), and in
sampling approaches to answering statistical questions.

1.4 Modifying Values with Fancy Indexing

Just as fancy indexing can be used to access parts of an array, it can also be used to modify parts of
an array. For example, imagine we have an array of indices and we’d like to set the corresponding
items in an array to some value:

In [18]: x = np.arange(10)
i = np.array([2, 1, 8, 4])
x[i] = 99
print(x)

[ 0 99 99 3 99 5 6 7 99 9]

We can use any assignment-type operator for this. For example:
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In [19]: x[i] -= 10
print(x)

[ 0 89 89 3 89 5 6 7 89 9]

Notice, though, that repeated indices with these operations can cause some potentially unex-
pected results. Consider the following:

In [20]: x = np.zeros(10)
x[[0, 0]] = [4, 6]
print(x)

[ 6. 0. 0. 0. 0. 0. 0. 0. 0. 0.]

Where did the 4 go? The result of this operation is to first assign x[0] = 4, followed by x[0]
= 6. The result, of course, is that x[0] contains the value 6.

Fair enough, but consider this operation:

In [21]: i = [2, 3, 3, 4, 4, 4]
x[i] += 1
x

Out[21]: array([ 6., 0., 1., 1., 1., 0., 0., 0., 0., 0.])

You might expect that x[3] would contain the value 2, and x[4] would contain the value 3,
as this is how many times each index is repeated. Why is this not the case? Conceptually, this is
because x[i] += 1 is meant as a shorthand of x[i] = x[i] + 1. x[i] + 1 is evaluated, and then
the result is assigned to the indices in x. With this in mind, it is not the augmentation that happens
multiple times, but the assignment, which leads to the rather nonintuitive results.

So what if you want the other behavior where the operation is repeated? For this, you can use
the at() method of ufuncs (available since NumPy 1.8), and do the following:

In [22]: x = np.zeros(10)
np.add.at(x, i, 1)
print(x)

[ 0. 0. 1. 2. 3. 0. 0. 0. 0. 0.]

The at() method does an in-place application of the given operator at the specified in-
dices (here, i) with the specified value (here, 1). Another method that is similar in spirit is the
reduceat() method of ufuncs, which you can read about in the NumPy documentation.

1.5 Example: Binning Data

You can use these ideas to efficiently bin data to create a histogram by hand. For example, imagine
we have 1,000 values and would like to quickly find where they fall within an array of bins. We
could compute it using ufunc.at like this:
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In [23]: np.random.seed(42)
x = np.random.randn(100)

# compute a histogram by hand
bins = np.linspace(-5, 5, 20)
counts = np.zeros_like(bins)

# find the appropriate bin for each x
i = np.searchsorted(bins, x)

# add 1 to each of these bins
np.add.at(counts, i, 1)

The counts now reflect the number of points within each bin–in other words, a histogram:

In [24]: # plot the results
plt.plot(bins, counts, linestyle='steps');

Of course, it would be silly to have to do this each time you want to plot a histogram. This is
why Matplotlib provides the plt.hist() routine, which does the same in a single line:

plt.hist(x, bins, histtype='step');
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This function will create a nearly identical plot to the one seen here. To compute the binning,
matplotlib uses the np.histogram function, which does a very similar computation to what we
did before. Let’s compare the two here:

In [25]: print("NumPy routine:")
%timeit counts, edges = np.histogram(x, bins)

print("Custom routine:")
%timeit np.add.at(counts, np.searchsorted(bins, x), 1)

NumPy routine:
10000 loops, best of 3: 97.6 ţs per loop
Custom routine:
10000 loops, best of 3: 19.5 ţs per loop

Our own one-line algorithm is several times faster than the optimized algorithm in NumPy!
How can this be? If you dig into the np.histogram source code (you can do this in IPython by
typing np.histogram??), you’ll see that it’s quite a bit more involved than the simple search-and-
count that we’ve done; this is because NumPy’s algorithm is more flexible, and particularly is
designed for better performance when the number of data points becomes large:

In [26]: x = np.random.randn(1000000)
print("NumPy routine:")
%timeit counts, edges = np.histogram(x, bins)

print("Custom routine:")
%timeit np.add.at(counts, np.searchsorted(bins, x), 1)

NumPy routine:
10 loops, best of 3: 68.7 ms per loop
Custom routine:
10 loops, best of 3: 135 ms per loop

What this comparison shows is that algorithmic efficiency is almost never a simple question.
An algorithm efficient for large datasets will not always be the best choice for small datasets, and
vice versa (see Big-O Notation). But the advantage of coding this algorithm yourself is that with
an understanding of these basic methods, you could use these building blocks to extend this to
do some very interesting custom behaviors. The key to efficiently using Python in data-intensive
applications is knowing about general convenience routines like np.histogram and when they’re
appropriate, but also knowing how to make use of lower-level functionality when you need more
pointed behavior.

< Comparisons, Masks, and Boolean Logic | Contents | Sorting Arrays >
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02.08-Sorting

October 29, 2018

This notebook contains an excerpt from the Python Data Science Handbook by Jake VanderPlas; the
content is available on GitHub.

The text is released under the CC-BY-NC-ND license, and code is released under the MIT license. If
you find this content useful, please consider supporting the work by buying the book!

< Fancy Indexing | Contents | Structured Data: NumPy’s Structured Arrays >

1 Sorting Arrays

Up to this point we have been concerned mainly with tools to access and operate on array data
with NumPy. This section covers algorithms related to sorting values in NumPy arrays. These
algorithms are a favorite topic in introductory computer science courses: if you’ve ever taken one,
you probably have had dreams (or, depending on your temperament, nightmares) about insertion
sorts, selection sorts, merge sorts, quick sorts, bubble sorts, and many, many more. All are means of
accomplishing a similar task: sorting the values in a list or array.

For example, a simple selection sort repeatedly finds the minimum value from a list, and makes
swaps until the list is sorted. We can code this in just a few lines of Python:

In [1]: import numpy as np

def selection_sort(x):
for i in range(len(x)):

swap = i + np.argmin(x[i:])
(x[i], x[swap]) = (x[swap], x[i])

return x

In [2]: x = np.array([2, 1, 4, 3, 5])
selection_sort(x)

Out[2]: array([1, 2, 3, 4, 5])

As any first-year computer science major will tell you, the selection sort is useful for its sim-
plicity, but is much too slow to be useful for larger arrays. For a list of N values, it requires N
loops, each of which does on order ∼ N comparisons to find the swap value. In terms of the “big-
O” notation often used to characterize these algorithms (see Section 1.4), selection sort averages
O[N2]: if you double the number of items in the list, the execution time will go up by about a
factor of four.

Even selection sort, though, is much better than my all-time favorite sorting algorithms, the
bogosort:
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In [3]: def bogosort(x):
while np.any(x[:-1] > x[1:]):

np.random.shuffle(x)
return x

In [4]: x = np.array([2, 1, 4, 3, 5])
bogosort(x)

Out[4]: array([1, 2, 3, 4, 5])

This silly sorting method relies on pure chance: it repeatedly applies a random shuffling of the
array until the result happens to be sorted. With an average scaling of O[N × N!], (that’s N times
N factorial) this should–quite obviously–never be used for any real computation.

Fortunately, Python contains built-in sorting algorithms that are much more efficient than either
of the simplistic algorithms just shown. We’ll start by looking at the Python built-ins, and then
take a look at the routines included in NumPy and optimized for NumPy arrays.

1.1 Fast Sorting in NumPy: np.sort and np.argsort

Although Python has built-in sort and sorted functions to work with lists, we won’t discuss
them here because NumPy’s np.sort function turns out to be much more efficient and useful for
our purposes. By default np.sort uses an O[N log N], quicksort algorithm, though mergesort and
heapsort are also available. For most applications, the default quicksort is more than sufficient.

To return a sorted version of the array without modifying the input, you can use np.sort:

In [5]: x = np.array([2, 1, 4, 3, 5])
np.sort(x)

Out[5]: array([1, 2, 3, 4, 5])

If you prefer to sort the array in-place, you can instead use the sort method of arrays:

In [6]: x.sort()
print(x)

[1 2 3 4 5]

A related function is argsort, which instead returns the indices of the sorted elements:

In [7]: x = np.array([2, 1, 4, 3, 5])
i = np.argsort(x)
print(i)

[1 0 3 2 4]

The first element of this result gives the index of the smallest element, the second value gives
the index of the second smallest, and so on. These indices can then be used (via fancy indexing)
to construct the sorted array if desired:

In [8]: x[i]

Out[8]: array([1, 2, 3, 4, 5])
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1.1.1 Sorting along rows or columns

A useful feature of NumPy’s sorting algorithms is the ability to sort along specific rows or columns
of a multidimensional array using the axis argument. For example:

In [9]: rand = np.random.RandomState(42)
X = rand.randint(0, 10, (4, 6))
print(X)

[[6 3 7 4 6 9]
[2 6 7 4 3 7]
[7 2 5 4 1 7]
[5 1 4 0 9 5]]

In [10]: # sort each column of X
np.sort(X, axis=0)

Out[10]: array([[2, 1, 4, 0, 1, 5],
[5, 2, 5, 4, 3, 7],
[6, 3, 7, 4, 6, 7],
[7, 6, 7, 4, 9, 9]])

In [11]: # sort each row of X
np.sort(X, axis=1)

Out[11]: array([[3, 4, 6, 6, 7, 9],
[2, 3, 4, 6, 7, 7],
[1, 2, 4, 5, 7, 7],
[0, 1, 4, 5, 5, 9]])

Keep in mind that this treats each row or column as an independent array, and any relation-
ships between the row or column values will be lost!

1.2 Partial Sorts: Partitioning

Sometimes we’re not interested in sorting the entire array, but simply want to find the k smallest
values in the array. NumPy provides this in the np.partition function. np.partition takes
an array and a number K; the result is a new array with the smallest K values to the left of the
partition, and the remaining values to the right, in arbitrary order:

In [12]: x = np.array([7, 2, 3, 1, 6, 5, 4])
np.partition(x, 3)

Out[12]: array([2, 1, 3, 4, 6, 5, 7])

Note that the first three values in the resulting array are the three smallest in the array, and the
remaining array positions contain the remaining values. Within the two partitions, the elements
have arbitrary order.

Similarly to sorting, we can partition along an arbitrary axis of a multidimensional array:
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In [13]: np.partition(X, 2, axis=1)

Out[13]: array([[3, 4, 6, 7, 6, 9],
[2, 3, 4, 7, 6, 7],
[1, 2, 4, 5, 7, 7],
[0, 1, 4, 5, 9, 5]])

The result is an array where the first two slots in each row contain the smallest values from
that row, with the remaining values filling the remaining slots.

Finally, just as there is a np.argsort that computes indices of the sort, there is a
np.argpartition that computes indices of the partition. We’ll see this in action in the follow-
ing section.

1.3 Example: k-Nearest Neighbors

Let’s quickly see how we might use this argsort function along multiple axes to find the nearest
neighbors of each point in a set. We’ll start by creating a random set of 10 points on a two-
dimensional plane. Using the standard convention, we’ll arrange these in a 10 × 2 array:

In [14]: X = rand.rand(10, 2)

To get an idea of how these points look, let’s quickly scatter plot them:

In [15]: %matplotlib inline
import matplotlib.pyplot as plt
import seaborn; seaborn.set() # Plot styling
plt.scatter(X[:, 0], X[:, 1], s=100);

4



Now we’ll compute the distance between each pair of points. Recall that the squared-distance
between two points is the sum of the squared differences in each dimension; using the efficient
broadcasting (Computation on Arrays: Broadcasting) and aggregation (Aggregations: Min, Max,
and Everything In Between) routines provided by NumPy we can compute the matrix of square
distances in a single line of code:

In [16]: dist_sq = np.sum((X[:, np.newaxis, :] - X[np.newaxis, :, :]) ** 2, axis=-1)

This operation has a lot packed into it, and it might be a bit confusing if you’re unfamiliar with
NumPy’s broadcasting rules. When you come across code like this, it can be useful to break it
down into its component steps:

In [17]: # for each pair of points, compute differences in their coordinates
differences = X[:, np.newaxis, :] - X[np.newaxis, :, :]
differences.shape

Out[17]: (10, 10, 2)

In [18]: # square the coordinate differences
sq_differences = differences ** 2
sq_differences.shape

Out[18]: (10, 10, 2)

In [19]: # sum the coordinate differences to get the squared distance
dist_sq = sq_differences.sum(-1)
dist_sq.shape

Out[19]: (10, 10)

Just to double-check what we are doing, we should see that the diagonal of this matrix (i.e.,
the set of distances between each point and itself) is all zero:

In [20]: dist_sq.diagonal()

Out[20]: array([ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.])

It checks out! With the pairwise square-distances converted, we can now use np.argsort to
sort along each row. The leftmost columns will then give the indices of the nearest neighbors:

In [21]: nearest = np.argsort(dist_sq, axis=1)
print(nearest)

[[0 3 9 7 1 4 2 5 6 8]
[1 4 7 9 3 6 8 5 0 2]
[2 1 4 6 3 0 8 9 7 5]
[3 9 7 0 1 4 5 8 6 2]
[4 1 8 5 6 7 9 3 0 2]

5

02.05-Computation-on-arrays-broadcasting.ipynb
02.04-Computation-on-arrays-aggregates.ipynb
02.04-Computation-on-arrays-aggregates.ipynb


[5 8 6 4 1 7 9 3 2 0]
[6 8 5 4 1 7 9 3 2 0]
[7 9 3 1 4 0 5 8 6 2]
[8 5 6 4 1 7 9 3 2 0]
[9 7 3 0 1 4 5 8 6 2]]

Notice that the first column gives the numbers 0 through 9 in order: this is due to the fact that
each point’s closest neighbor is itself, as we would expect.

By using a full sort here, we’ve actually done more work than we need to in this case. If
we’re simply interested in the nearest k neighbors, all we need is to partition each row so that the
smallest k + 1 squared distances come first, with larger distances filling the remaining positions of
the array. We can do this with the np.argpartition function:

In [22]: K = 2
nearest_partition = np.argpartition(dist_sq, K + 1, axis=1)

In order to visualize this network of neighbors, let’s quickly plot the points along with lines
representing the connections from each point to its two nearest neighbors:

In [23]: plt.scatter(X[:, 0], X[:, 1], s=100)

# draw lines from each point to its two nearest neighbors
K = 2

for i in range(X.shape[0]):
for j in nearest_partition[i, :K+1]:

# plot a line from X[i] to X[j]
# use some zip magic to make it happen:
plt.plot(*zip(X[j], X[i]), color='black')
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Each point in the plot has lines drawn to its two nearest neighbors. At first glance, it might
seem strange that some of the points have more than two lines coming out of them: this is due
to the fact that if point A is one of the two nearest neighbors of point B, this does not necessarily
imply that point B is one of the two nearest neighbors of point A.

Although the broadcasting and row-wise sorting of this approach might seem less straight-
forward than writing a loop, it turns out to be a very efficient way of operating on this data in
Python. You might be tempted to do the same type of operation by manually looping through
the data and sorting each set of neighbors individually, but this would almost certainly lead to
a slower algorithm than the vectorized version we used. The beauty of this approach is that it’s
written in a way that’s agnostic to the size of the input data: we could just as easily compute the
neighbors among 100 or 1,000,000 points in any number of dimensions, and the code would look
the same.

Finally, I’ll note that when doing very large nearest neighbor searches, there are tree-based
and/or approximate algorithms that can scale as O[N log N] or better rather than the O[N2] of the
brute-force algorithm. One example of this is the KD-Tree, implemented in Scikit-learn.

1.4 Aside: Big-O Notation

Big-O notation is a means of describing how the number of operations required for an algorithm
scales as the input grows in size. To use it correctly is to dive deeply into the realm of computer
science theory, and to carefully distinguish it from the related small-o notation, big-θ notation, big-
Ω notation, and probably many mutant hybrids thereof. While these distinctions add precision to
statements about algorithmic scaling, outside computer science theory exams and the remarks of
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pedantic blog commenters, you’ll rarely see such distinctions made in practice. Far more common
in the data science world is a less rigid use of big-O notation: as a general (if imprecise) description
of the scaling of an algorithm. With apologies to theorists and pedants, this is the interpretation
we’ll use throughout this book.

Big-O notation, in this loose sense, tells you how much time your algorithm will take as you
increase the amount of data. If you have an O[N] (read “order N”) algorithm that takes 1 second
to operate on a list of length N=1,000, then you should expect it to take roughly 5 seconds for a list
of length N=5,000. If you have an O[N2] (read “order N squared”) algorithm that takes 1 second
for N=1000, then you should expect it to take about 25 seconds for N=5000.

For our purposes, the N will usually indicate some aspect of the size of the dataset (the number
of points, the number of dimensions, etc.). When trying to analyze billions or trillions of samples,
the difference between O[N] and O[N2] can be far from trivial!

Notice that the big-O notation by itself tells you nothing about the actual wall-clock time of a
computation, but only about its scaling as you change N. Generally, for example, an O[N] algo-
rithm is considered to have better scaling than an O[N2] algorithm, and for good reason. But for
small datasets in particular, the algorithm with better scaling might not be faster. For example, in
a given problem an O[N2] algorithm might take 0.01 seconds, while a “better” O[N] algorithm
might take 1 second. Scale up N by a factor of 1,000, though, and the O[N] algorithm will win out.

Even this loose version of Big-O notation can be very useful when comparing the performance
of algorithms, and we’ll use this notation throughout the book when talking about how algorithms
scale.

< Fancy Indexing | Contents | Structured Data: NumPy’s Structured Arrays >

8

02.07-Fancy-Indexing.ipynb
Index.ipynb
02.09-Structured-Data-NumPy.ipynb


02.09-Structured-Data-NumPy

October 29, 2018

This notebook contains an excerpt from the Python Data Science Handbook by Jake VanderPlas; the
content is available on GitHub.

The text is released under the CC-BY-NC-ND license, and code is released under the MIT license. If
you find this content useful, please consider supporting the work by buying the book!

< Sorting Arrays | Contents | Data Manipulation with Pandas >

1 Structured Data: NumPy’s Structured Arrays

While often our data can be well represented by a homogeneous array of values, sometimes this
is not the case. This section demonstrates the use of NumPy’s structured arrays and record arrays,
which provide efficient storage for compound, heterogeneous data. While the patterns shown
here are useful for simple operations, scenarios like this often lend themselves to the use of Pandas
Dataframes, which we’ll explore in Chapter 3.

In [1]: import numpy as np

Imagine that we have several categories of data on a number of people (say, name, age, and
weight), and we’d like to store these values for use in a Python program. It would be possible to
store these in three separate arrays:

In [2]: name = ['Alice', 'Bob', 'Cathy', 'Doug']
age = [25, 45, 37, 19]
weight = [55.0, 85.5, 68.0, 61.5]

But this is a bit clumsy. There’s nothing here that tells us that the three arrays are related; it
would be more natural if we could use a single structure to store all of this data. NumPy can
handle this through structured arrays, which are arrays with compound data types.

Recall that previously we created a simple array using an expression like this:

In [3]: x = np.zeros(4, dtype=int)

We can similarly create a structured array using a compound data type specification:

In [4]: # Use a compound data type for structured arrays
data = np.zeros(4, dtype={'names':('name', 'age', 'weight'),

'formats':('U10', 'i4', 'f8')})
print(data.dtype)
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[('name', '<U10'), ('age', '<i4'), ('weight', '<f8')]

Here 'U10' translates to “Unicode string of maximum length 10,” 'i4' translates to “4-byte
(i.e., 32 bit) integer,” and 'f8' translates to “8-byte (i.e., 64 bit) float.” We’ll discuss other options
for these type codes in the following section.

Now that we’ve created an empty container array, we can fill the array with our lists of values:

In [5]: data['name'] = name
data['age'] = age
data['weight'] = weight
print(data)

[('Alice', 25, 55.0) ('Bob', 45, 85.5) ('Cathy', 37, 68.0)
('Doug', 19, 61.5)]

As we had hoped, the data is now arranged together in one convenient block of memory.
The handy thing with structured arrays is that you can now refer to values either by index or

by name:

In [6]: # Get all names
data['name']

Out[6]: array(['Alice', 'Bob', 'Cathy', 'Doug'],
dtype='<U10')

In [7]: # Get first row of data
data[0]

Out[7]: ('Alice', 25, 55.0)

In [8]: # Get the name from the last row
data[-1]['name']

Out[8]: 'Doug'

Using Boolean masking, this even allows you to do some more sophisticated operations such
as filtering on age:

In [9]: # Get names where age is under 30
data[data['age'] < 30]['name']

Out[9]: array(['Alice', 'Doug'],
dtype='<U10')

Note that if you’d like to do any operations that are any more complicated than these, you
should probably consider the Pandas package, covered in the next chapter. As we’ll see, Pandas
provides a Dataframe object, which is a structure built on NumPy arrays that offers a variety of
useful data manipulation functionality similar to what we’ve shown here, as well as much, much
more.
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1.1 Creating Structured Arrays

Structured array data types can be specified in a number of ways. Earlier, we saw the dictionary
method:

In [10]: np.dtype({'names':('name', 'age', 'weight'),
'formats':('U10', 'i4', 'f8')})

Out[10]: dtype([('name', '<U10'), ('age', '<i4'), ('weight', '<f8')])

For clarity, numerical types can be specified using Python types or NumPy dtypes instead:

In [11]: np.dtype({'names':('name', 'age', 'weight'),
'formats':((np.str_, 10), int, np.float32)})

Out[11]: dtype([('name', '<U10'), ('age', '<i8'), ('weight', '<f4')])

A compound type can also be specified as a list of tuples:

In [12]: np.dtype([('name', 'S10'), ('age', 'i4'), ('weight', 'f8')])

Out[12]: dtype([('name', 'S10'), ('age', '<i4'), ('weight', '<f8')])

If the names of the types do not matter to you, you can specify the types alone in a comma-
separated string:

In [13]: np.dtype('S10,i4,f8')

Out[13]: dtype([('f0', 'S10'), ('f1', '<i4'), ('f2', '<f8')])

The shortened string format codes may seem confusing, but they are built on simple principles.
The first (optional) character is < or >, which means “little endian” or “big endian,” respectively,
and specifies the ordering convention for significant bits. The next character specifies the type of
data: characters, bytes, ints, floating points, and so on (see the table below). The last character or
characters represents the size of the object in bytes.

Character Description Example

'b' Byte np.dtype('b')
'i' Signed integer np.dtype('i4') == np.int32
'u' Unsigned integer np.dtype('u1') == np.uint8
'f' Floating point np.dtype('f8') == np.int64
'c' Complex floating point np.dtype('c16') == np.complex128
'S', 'a' String np.dtype('S5')
'U' Unicode string np.dtype('U') == np.str_
'V' Raw data (void) np.dtype('V') == np.void
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1.2 More Advanced Compound Types

It is possible to define even more advanced compound types. For example, you can create a type
where each element contains an array or matrix of values. Here, we’ll create a data type with a
mat component consisting of a 3 × 3 floating-point matrix:

In [14]: tp = np.dtype([('id', 'i8'), ('mat', 'f8', (3, 3))])
X = np.zeros(1, dtype=tp)
print(X[0])
print(X['mat'][0])

(0, [[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]])
[[ 0. 0. 0.]
[ 0. 0. 0.]
[ 0. 0. 0.]]

Now each element in the X array consists of an id and a 3 × 3 matrix. Why would you use this
rather than a simple multidimensional array, or perhaps a Python dictionary? The reason is that
this NumPy dtype directly maps onto a C structure definition, so the buffer containing the array
content can be accessed directly within an appropriately written C program. If you find yourself
writing a Python interface to a legacy C or Fortran library that manipulates structured data, you’ll
probably find structured arrays quite useful!

1.3 RecordArrays: Structured Arrays with a Twist

NumPy also provides the np.recarray class, which is almost identical to the structured arrays
just described, but with one additional feature: fields can be accessed as attributes rather than as
dictionary keys. Recall that we previously accessed the ages by writing:

In [15]: data['age']

Out[15]: array([25, 45, 37, 19], dtype=int32)

If we view our data as a record array instead, we can access this with slightly fewer keystrokes:

In [16]: data_rec = data.view(np.recarray)
data_rec.age

Out[16]: array([25, 45, 37, 19], dtype=int32)

The downside is that for record arrays, there is some extra overhead involved in accessing the
fields, even when using the same syntax. We can see this here:

In [17]: %timeit data['age']
%timeit data_rec['age']
%timeit data_rec.age

1000000 loops, best of 3: 241 ns per loop
100000 loops, best of 3: 4.61 ţs per loop
100000 loops, best of 3: 7.27 ţs per loop

Whether the more convenient notation is worth the additional overhead will depend on your
own application.
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1.4 On to Pandas

This section on structured and record arrays is purposely at the end of this chapter, because it leads
so well into the next package we will cover: Pandas. Structured arrays like the ones discussed here
are good to know about for certain situations, especially in case you’re using NumPy arrays to
map onto binary data formats in C, Fortran, or another language. For day-to-day use of structured
data, the Pandas package is a much better choice, and we’ll dive into a full discussion of it in the
chapter that follows.

< Sorting Arrays | Contents | Data Manipulation with Pandas >

5

02.08-Sorting.ipynb
Index.ipynb
03.00-Introduction-to-Pandas.ipynb


03.00-Introduction-to-Pandas

October 29, 2018

This notebook contains an excerpt from the Python Data Science Handbook by Jake VanderPlas; the
content is available on GitHub.

The text is released under the CC-BY-NC-ND license, and code is released under the MIT license. If
you find this content useful, please consider supporting the work by buying the book!

< Structured Data: NumPy’s Structured Arrays | Contents | Introducing Pandas Objects >

1 Data Manipulation with Pandas

In the previous chapter, we dove into detail on NumPy and its ndarray object, which provides
efficient storage and manipulation of dense typed arrays in Python. Here we’ll build on this
knowledge by looking in detail at the data structures provided by the Pandas library. Pandas is a
newer package built on top of NumPy, and provides an efficient implementation of a DataFrame.
DataFrames are essentially multidimensional arrays with attached row and column labels, and
often with heterogeneous types and/or missing data. As well as offering a convenient storage
interface for labeled data, Pandas implements a number of powerful data operations familiar to
users of both database frameworks and spreadsheet programs.

As we saw, NumPy’s ndarray data structure provides essential features for the type of clean,
well-organized data typically seen in numerical computing tasks. While it serves this purpose
very well, its limitations become clear when we need more flexibility (e.g., attaching labels to
data, working with missing data, etc.) and when attempting operations that do not map well to
element-wise broadcasting (e.g., groupings, pivots, etc.), each of which is an important piece of
analyzing the less structured data available in many forms in the world around us. Pandas, and
in particular its Series and DataFrame objects, builds on the NumPy array structure and provides
efficient access to these sorts of “data munging” tasks that occupy much of a data scientist’s time.

In this chapter, we will focus on the mechanics of using Series, DataFrame, and related struc-
tures effectively. We will use examples drawn from real datasets where appropriate, but these
examples are not necessarily the focus.

1.1 Installing and Using Pandas

Installation of Pandas on your system requires NumPy to be installed, and if building the library
from source, requires the appropriate tools to compile the C and Cython sources on which Pandas
is built. Details on this installation can be found in the Pandas documentation. If you followed the
advice outlined in the Preface and used the Anaconda stack, you already have Pandas installed.

Once Pandas is installed, you can import it and check the version:

In [1]: import pandas
pandas.__version__
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Out[1]: '0.18.1'

Just as we generally import NumPy under the alias np, we will import Pandas under the alias
pd:

In [2]: import pandas as pd

This import convention will be used throughout the remainder of this book.

1.2 Reminder about Built-In Documentation

As you read through this chapter, don’t forget that IPython gives you the ability to quickly explore
the contents of a package (by using the tab-completion feature) as well as the documentation of
various functions (using the ? character). (Refer back to Help and Documentation in IPython if
you need a refresher on this.)

For example, to display all the contents of the pandas namespace, you can type

In [3]: pd.<TAB>

And to display Pandas’s built-in documentation, you can use this:

In [4]: pd?

More detailed documentation, along with tutorials and other resources, can be found at
http://pandas.pydata.org/.

< Structured Data: NumPy’s Structured Arrays | Contents | Introducing Pandas Objects >
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This notebook contains an excerpt from the Python Data Science Handbook by Jake VanderPlas; the
content is available on GitHub.

The text is released under the CC-BY-NC-ND license, and code is released under the MIT license. If
you find this content useful, please consider supporting the work by buying the book!

< Data Manipulation with Pandas | Contents | Data Indexing and Selection >

1 Introducing Pandas Objects

At the very basic level, Pandas objects can be thought of as enhanced versions of NumPy struc-
tured arrays in which the rows and columns are identified with labels rather than simple integer
indices. As we will see during the course of this chapter, Pandas provides a host of useful tools,
methods, and functionality on top of the basic data structures, but nearly everything that follows
will require an understanding of what these structures are. Thus, before we go any further, let’s
introduce these three fundamental Pandas data structures: the Series, DataFrame, and Index.

We will start our code sessions with the standard NumPy and Pandas imports:

In [1]: import numpy as np
import pandas as pd

1.1 The Pandas Series Object

A Pandas Series is a one-dimensional array of indexed data. It can be created from a list or array
as follows:

In [2]: data = pd.Series([0.25, 0.5, 0.75, 1.0])
data

Out[2]: 0 0.25
1 0.50
2 0.75
3 1.00
dtype: float64

As we see in the output, the Series wraps both a sequence of values and a sequence of indices,
which we can access with the values and index attributes. The values are simply a familiar
NumPy array:

In [3]: data.values

1

http://shop.oreilly.com/product/0636920034919.do
https://github.com/jakevdp/PythonDataScienceHandbook
https://creativecommons.org/licenses/by-nc-nd/3.0/us/legalcode
https://opensource.org/licenses/MIT
http://shop.oreilly.com/product/0636920034919.do
03.00-Introduction-to-Pandas.ipynb
Index.ipynb
03.02-Data-Indexing-and-Selection.ipynb


Out[3]: array([ 0.25, 0.5 , 0.75, 1. ])

The index is an array-like object of type pd.Index, which we’ll discuss in more detail momen-
tarily.

In [4]: data.index

Out[4]: RangeIndex(start=0, stop=4, step=1)

Like with a NumPy array, data can be accessed by the associated index via the familiar Python
square-bracket notation:

In [5]: data[1]

Out[5]: 0.5

In [6]: data[1:3]

Out[6]: 1 0.50
2 0.75
dtype: float64

As we will see, though, the Pandas Series is much more general and flexible than the one-
dimensional NumPy array that it emulates.

1.1.1 Series as generalized NumPy array

From what we’ve seen so far, it may look like the Series object is basically interchangeable with
a one-dimensional NumPy array. The essential difference is the presence of the index: while the
Numpy Array has an implicitly defined integer index used to access the values, the Pandas Series
has an explicitly defined index associated with the values.

This explicit index definition gives the Series object additional capabilities. For example, the
index need not be an integer, but can consist of values of any desired type. For example, if we
wish, we can use strings as an index:

In [7]: data = pd.Series([0.25, 0.5, 0.75, 1.0],
index=['a', 'b', 'c', 'd'])

data

Out[7]: a 0.25
b 0.50
c 0.75
d 1.00
dtype: float64

And the item access works as expected:

In [8]: data['b']

Out[8]: 0.5
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We can even use non-contiguous or non-sequential indices:

In [9]: data = pd.Series([0.25, 0.5, 0.75, 1.0],
index=[2, 5, 3, 7])

data

Out[9]: 2 0.25
5 0.50
3 0.75
7 1.00
dtype: float64

In [10]: data[5]

Out[10]: 0.5

1.1.2 Series as specialized dictionary

In this way, you can think of a Pandas Series a bit like a specialization of a Python dictionary.
A dictionary is a structure that maps arbitrary keys to a set of arbitrary values, and a Series is
a structure which maps typed keys to a set of typed values. This typing is important: just as the
type-specific compiled code behind a NumPy array makes it more efficient than a Python list for
certain operations, the type information of a Pandas Series makes it much more efficient than
Python dictionaries for certain operations.

The Series-as-dictionary analogy can be made even more clear by constructing a Series object
directly from a Python dictionary:

In [11]: population_dict = {'California': 38332521,
'Texas': 26448193,
'New York': 19651127,
'Florida': 19552860,
'Illinois': 12882135}

population = pd.Series(population_dict)
population

Out[11]: California 38332521
Florida 19552860
Illinois 12882135
New York 19651127
Texas 26448193
dtype: int64

By default, a Series will be created where the index is drawn from the sorted keys. From here,
typical dictionary-style item access can be performed:

In [12]: population['California']

Out[12]: 38332521

Unlike a dictionary, though, the Series also supports array-style operations such as slicing:
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In [13]: population['California':'Illinois']

Out[13]: California 38332521
Florida 19552860
Illinois 12882135
dtype: int64

We’ll discuss some of the quirks of Pandas indexing and slicing in Data Indexing and Selection.

1.1.3 Constructing Series objects

We’ve already seen a few ways of constructing a Pandas Series from scratch; all of them are some
version of the following:

>>> pd.Series(data, index=index)

where index is an optional argument, and data can be one of many entities.
For example, data can be a list or NumPy array, in which case index defaults to an integer

sequence:

In [14]: pd.Series([2, 4, 6])

Out[14]: 0 2
1 4
2 6
dtype: int64

data can be a scalar, which is repeated to fill the specified index:

In [15]: pd.Series(5, index=[100, 200, 300])

Out[15]: 100 5
200 5
300 5
dtype: int64

data can be a dictionary, in which index defaults to the sorted dictionary keys:

In [16]: pd.Series({2:'a', 1:'b', 3:'c'})

Out[16]: 1 b
2 a
3 c
dtype: object

In each case, the index can be explicitly set if a different result is preferred:

In [17]: pd.Series({2:'a', 1:'b', 3:'c'}, index=[3, 2])

Out[17]: 3 c
2 a
dtype: object

Notice that in this case, the Series is populated only with the explicitly identified keys.
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1.2 The Pandas DataFrame Object

The next fundamental structure in Pandas is the DataFrame. Like the Series object discussed in
the previous section, the DataFrame can be thought of either as a generalization of a NumPy array,
or as a specialization of a Python dictionary. We’ll now take a look at each of these perspectives.

1.2.1 DataFrame as a generalized NumPy array

If a Series is an analog of a one-dimensional array with flexible indices, a DataFrame is an analog
of a two-dimensional array with both flexible row indices and flexible column names. Just as
you might think of a two-dimensional array as an ordered sequence of aligned one-dimensional
columns, you can think of a DataFrame as a sequence of aligned Series objects. Here, by “aligned”
we mean that they share the same index.

To demonstrate this, let’s first construct a new Series listing the area of each of the five states
discussed in the previous section:

In [18]: area_dict = {'California': 423967, 'Texas': 695662, 'New York': 141297,
'Florida': 170312, 'Illinois': 149995}

area = pd.Series(area_dict)
area

Out[18]: California 423967
Florida 170312
Illinois 149995
New York 141297
Texas 695662
dtype: int64

Now that we have this along with the population Series from before, we can use a dictionary
to construct a single two-dimensional object containing this information:

In [19]: states = pd.DataFrame({'population': population,
'area': area})

states

Out[19]: area population
California 423967 38332521
Florida 170312 19552860
Illinois 149995 12882135
New York 141297 19651127
Texas 695662 26448193

Like the Series object, the DataFrame has an index attribute that gives access to the index
labels:

In [20]: states.index

Out[20]: Index(['California', 'Florida', 'Illinois', 'New York', 'Texas'], dtype='object')

Additionally, the DataFrame has a columns attribute, which is an Index object holding the
column labels:
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In [21]: states.columns

Out[21]: Index(['area', 'population'], dtype='object')

Thus the DataFrame can be thought of as a generalization of a two-dimensional NumPy array,
where both the rows and columns have a generalized index for accessing the data.

1.2.2 DataFrame as specialized dictionary

Similarly, we can also think of a DataFrame as a specialization of a dictionary. Where a dictionary
maps a key to a value, a DataFrame maps a column name to a Series of column data. For example,
asking for the 'area' attribute returns the Series object containing the areas we saw earlier:

In [22]: states['area']

Out[22]: California 423967
Florida 170312
Illinois 149995
New York 141297
Texas 695662
Name: area, dtype: int64

Notice the potential point of confusion here: in a two-dimesnional NumPy array, data[0] will
return the first row. For a DataFrame, data['col0'] will return the first column. Because of this,
it is probably better to think about DataFrames as generalized dictionaries rather than generalized
arrays, though both ways of looking at the situation can be useful. We’ll explore more flexible
means of indexing DataFrames in Data Indexing and Selection.

1.2.3 Constructing DataFrame objects

A Pandas DataFrame can be constructed in a variety of ways. Here we’ll give several examples.

From a single Series object A DataFrame is a collection of Series objects, and a single-column
DataFrame can be constructed from a single Series:

In [23]: pd.DataFrame(population, columns=['population'])

Out[23]: population
California 38332521
Florida 19552860
Illinois 12882135
New York 19651127
Texas 26448193

From a list of dicts Any list of dictionaries can be made into a DataFrame. We’ll use a simple list
comprehension to create some data:

In [24]: data = [{'a': i, 'b': 2 * i}
for i in range(3)]

pd.DataFrame(data)
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Out[24]: a b
0 0 0
1 1 2
2 2 4

Even if some keys in the dictionary are missing, Pandas will fill them in with NaN (i.e., “not a
number”) values:

In [25]: pd.DataFrame([{'a': 1, 'b': 2}, {'b': 3, 'c': 4}])

Out[25]: a b c
0 1.0 2 NaN
1 NaN 3 4.0

From a dictionary of Series objects As we saw before, a DataFrame can be constructed from a
dictionary of Series objects as well:

In [26]: pd.DataFrame({'population': population,
'area': area})

Out[26]: area population
California 423967 38332521
Florida 170312 19552860
Illinois 149995 12882135
New York 141297 19651127
Texas 695662 26448193

From a two-dimensional NumPy array Given a two-dimensional array of data, we can create a
DataFrame with any specified column and index names. If omitted, an integer index will be used
for each:

In [27]: pd.DataFrame(np.random.rand(3, 2),
columns=['foo', 'bar'],
index=['a', 'b', 'c'])

Out[27]: foo bar
a 0.865257 0.213169
b 0.442759 0.108267
c 0.047110 0.905718

From a NumPy structured array We covered structured arrays in Structured Data: NumPy’s
Structured Arrays. A Pandas DataFrame operates much like a structured array, and can be created
directly from one:

In [28]: A = np.zeros(3, dtype=[('A', 'i8'), ('B', 'f8')])
A

Out[28]: array([(0, 0.0), (0, 0.0), (0, 0.0)],
dtype=[('A', '<i8'), ('B', '<f8')])
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In [29]: pd.DataFrame(A)

Out[29]: A B
0 0 0.0
1 0 0.0
2 0 0.0

1.3 The Pandas Index Object

We have seen here that both the Series and DataFrame objects contain an explicit index that lets
you reference and modify data. This Index object is an interesting structure in itself, and it can be
thought of either as an immutable array or as an ordered set (technically a multi-set, as Index objects
may contain repeated values). Those views have some interesting consequences in the operations
available on Index objects. As a simple example, let’s construct an Index from a list of integers:

In [30]: ind = pd.Index([2, 3, 5, 7, 11])
ind

Out[30]: Int64Index([2, 3, 5, 7, 11], dtype='int64')

1.3.1 Index as immutable array

The Index in many ways operates like an array. For example, we can use standard Python index-
ing notation to retrieve values or slices:

In [31]: ind[1]

Out[31]: 3

In [32]: ind[::2]

Out[32]: Int64Index([2, 5, 11], dtype='int64')

Index objects also have many of the attributes familiar from NumPy arrays:

In [33]: print(ind.size, ind.shape, ind.ndim, ind.dtype)

5 (5,) 1 int64

One difference between Index objects and NumPy arrays is that indices are immutable–that
is, they cannot be modified via the normal means:

In [34]: ind[1] = 0

---------------------------------------------------------------------------

TypeError Traceback (most recent call last)
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<ipython-input-34-40e631c82e8a> in <module>()
----> 1 ind[1] = 0

/Users/jakevdp/anaconda/lib/python3.5/site-packages/pandas/indexes/base.py in __setitem__(self, key, value)
1243
1244 def __setitem__(self, key, value):

-> 1245 raise TypeError("Index does not support mutable operations")
1246
1247 def __getitem__(self, key):

TypeError: Index does not support mutable operations

This immutability makes it safer to share indices between multiple DataFrames and arrays,
without the potential for side effects from inadvertent index modification.

1.3.2 Index as ordered set

Pandas objects are designed to facilitate operations such as joins across datasets, which depend
on many aspects of set arithmetic. The Index object follows many of the conventions used by
Python’s built-in set data structure, so that unions, intersections, differences, and other combina-
tions can be computed in a familiar way:

In [35]: indA = pd.Index([1, 3, 5, 7, 9])
indB = pd.Index([2, 3, 5, 7, 11])

In [36]: indA & indB # intersection

Out[36]: Int64Index([3, 5, 7], dtype='int64')

In [37]: indA | indB # union

Out[37]: Int64Index([1, 2, 3, 5, 7, 9, 11], dtype='int64')

In [38]: indA ^ indB # symmetric difference

Out[38]: Int64Index([1, 2, 9, 11], dtype='int64')

These operations may also be accessed via object methods, for example
indA.intersection(indB).

< Data Manipulation with Pandas | Contents | Data Indexing and Selection >
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< Introducing Pandas Objects | Contents | Operating on Data in Pandas >

1 Data Indexing and Selection

In Chapter 2, we looked in detail at methods and tools to access, set, and modify values in NumPy
arrays. These included indexing (e.g., arr[2, 1]), slicing (e.g., arr[:, 1:5]), masking (e.g.,
arr[arr > 0]), fancy indexing (e.g., arr[0, [1, 5]]), and combinations thereof (e.g., arr[:,
[1, 5]]). Here we’ll look at similar means of accessing and modifying values in Pandas Series
and DataFrame objects. If you have used the NumPy patterns, the corresponding patterns in Pan-
das will feel very familiar, though there are a few quirks to be aware of.

We’ll start with the simple case of the one-dimensional Series object, and then move on to the
more complicated two-dimesnional DataFrame object.

1.1 Data Selection in Series

As we saw in the previous section, a Series object acts in many ways like a one-dimensional
NumPy array, and in many ways like a standard Python dictionary. If we keep these two overlap-
ping analogies in mind, it will help us to understand the patterns of data indexing and selection
in these arrays.

1.1.1 Series as dictionary

Like a dictionary, the Series object provides a mapping from a collection of keys to a collection of
values:

In [1]: import pandas as pd
data = pd.Series([0.25, 0.5, 0.75, 1.0],

index=['a', 'b', 'c', 'd'])
data

Out[1]: a 0.25
b 0.50
c 0.75
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d 1.00
dtype: float64

In [2]: data['b']

Out[2]: 0.5

We can also use dictionary-like Python expressions and methods to examine the keys/indices
and values:

In [3]: 'a' in data

Out[3]: True

In [4]: data.keys()

Out[4]: Index(['a', 'b', 'c', 'd'], dtype='object')

In [5]: list(data.items())

Out[5]: [('a', 0.25), ('b', 0.5), ('c', 0.75), ('d', 1.0)]

Series objects can even be modified with a dictionary-like syntax. Just as you can extend a
dictionary by assigning to a new key, you can extend a Series by assigning to a new index value:

In [6]: data['e'] = 1.25
data

Out[6]: a 0.25
b 0.50
c 0.75
d 1.00
e 1.25
dtype: float64

This easy mutability of the objects is a convenient feature: under the hood, Pandas is making
decisions about memory layout and data copying that might need to take place; the user generally
does not need to worry about these issues.

1.1.2 Series as one-dimensional array

A Series builds on this dictionary-like interface and provides array-style item selection via the
same basic mechanisms as NumPy arrays – that is, slices, masking, and fancy indexing. Examples of
these are as follows:

In [7]: # slicing by explicit index
data['a':'c']

Out[7]: a 0.25
b 0.50
c 0.75
dtype: float64
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In [8]: # slicing by implicit integer index
data[0:2]

Out[8]: a 0.25
b 0.50
dtype: float64

In [9]: # masking
data[(data > 0.3) & (data < 0.8)]

Out[9]: b 0.50
c 0.75
dtype: float64

In [10]: # fancy indexing
data[['a', 'e']]

Out[10]: a 0.25
e 1.25
dtype: float64

Among these, slicing may be the source of the most confusion. Notice that when slicing with
an explicit index (i.e., data['a':'c']), the final index is included in the slice, while when slicing
with an implicit index (i.e., data[0:2]), the final index is excluded from the slice.

1.1.3 Indexers: loc, iloc, and ix

These slicing and indexing conventions can be a source of confusion. For example, if your Series
has an explicit integer index, an indexing operation such as data[1] will use the explicit indices,
while a slicing operation like data[1:3] will use the implicit Python-style index.

In [11]: data = pd.Series(['a', 'b', 'c'], index=[1, 3, 5])
data

Out[11]: 1 a
3 b
5 c
dtype: object

In [12]: # explicit index when indexing
data[1]

Out[12]: 'a'

In [13]: # implicit index when slicing
data[1:3]

Out[13]: 3 b
5 c
dtype: object
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Because of this potential confusion in the case of integer indexes, Pandas provides some spe-
cial indexer attributes that explicitly expose certain indexing schemes. These are not functional
methods, but attributes that expose a particular slicing interface to the data in the Series.

First, the loc attribute allows indexing and slicing that always references the explicit index:

In [14]: data.loc[1]

Out[14]: 'a'

In [15]: data.loc[1:3]

Out[15]: 1 a
3 b
dtype: object

The iloc attribute allows indexing and slicing that always references the implicit Python-style
index:

In [16]: data.iloc[1]

Out[16]: 'b'

In [17]: data.iloc[1:3]

Out[17]: 3 b
5 c
dtype: object

A third indexing attribute, ix, is a hybrid of the two, and for Series objects is equivalent to
standard []-based indexing. The purpose of the ix indexer will become more apparent in the
context of DataFrame objects, which we will discuss in a moment.

One guiding principle of Python code is that “explicit is better than implicit.” The explicit
nature of loc and iloc make them very useful in maintaining clean and readable code; especially
in the case of integer indexes, I recommend using these both to make code easier to read and
understand, and to prevent subtle bugs due to the mixed indexing/slicing convention.

1.2 Data Selection in DataFrame

Recall that a DataFrame acts in many ways like a two-dimensional or structured array, and in other
ways like a dictionary of Series structures sharing the same index. These analogies can be helpful
to keep in mind as we explore data selection within this structure.

1.2.1 DataFrame as a dictionary

The first analogy we will consider is the DataFrame as a dictionary of related Series objects. Let’s
return to our example of areas and populations of states:
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In [18]: area = pd.Series({'California': 423967, 'Texas': 695662,
'New York': 141297, 'Florida': 170312,
'Illinois': 149995})

pop = pd.Series({'California': 38332521, 'Texas': 26448193,
'New York': 19651127, 'Florida': 19552860,
'Illinois': 12882135})

data = pd.DataFrame({'area':area, 'pop':pop})
data

Out[18]: area pop
California 423967 38332521
Florida 170312 19552860
Illinois 149995 12882135
New York 141297 19651127
Texas 695662 26448193

The individual Series that make up the columns of the DataFrame can be accessed via
dictionary-style indexing of the column name:

In [19]: data['area']

Out[19]: California 423967
Florida 170312
Illinois 149995
New York 141297
Texas 695662
Name: area, dtype: int64

Equivalently, we can use attribute-style access with column names that are strings:

In [20]: data.area

Out[20]: California 423967
Florida 170312
Illinois 149995
New York 141297
Texas 695662
Name: area, dtype: int64

This attribute-style column access actually accesses the exact same object as the dictionary-
style access:

In [21]: data.area is data['area']

Out[21]: True

Though this is a useful shorthand, keep in mind that it does not work for all cases! For ex-
ample, if the column names are not strings, or if the column names conflict with methods of the
DataFrame, this attribute-style access is not possible. For example, the DataFrame has a pop()
method, so data.pop will point to this rather than the "pop" column:
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In [22]: data.pop is data['pop']

Out[22]: False

In particular, you should avoid the temptation to try column assignment via attribute (i.e., use
data['pop'] = z rather than data.pop = z).

Like with the Series objects discussed earlier, this dictionary-style syntax can also be used to
modify the object, in this case adding a new column:

In [23]: data['density'] = data['pop'] / data['area']
data

Out[23]: area pop density
California 423967 38332521 90.413926
Florida 170312 19552860 114.806121
Illinois 149995 12882135 85.883763
New York 141297 19651127 139.076746
Texas 695662 26448193 38.018740

This shows a preview of the straightforward syntax of element-by-element arithmetic between
Series objects; we’ll dig into this further in Operating on Data in Pandas.

1.2.2 DataFrame as two-dimensional array

As mentioned previously, we can also view the DataFrame as an enhanced two-dimensional array.
We can examine the raw underlying data array using the values attribute:

In [24]: data.values

Out[24]: array([[ 4.23967000e+05, 3.83325210e+07, 9.04139261e+01],
[ 1.70312000e+05, 1.95528600e+07, 1.14806121e+02],
[ 1.49995000e+05, 1.28821350e+07, 8.58837628e+01],
[ 1.41297000e+05, 1.96511270e+07, 1.39076746e+02],
[ 6.95662000e+05, 2.64481930e+07, 3.80187404e+01]])

With this picture in mind, many familiar array-like observations can be done on the DataFrame
itself. For example, we can transpose the full DataFrame to swap rows and columns:

In [25]: data.T

Out[25]: California Florida Illinois New York Texas
area 4.239670e+05 1.703120e+05 1.499950e+05 1.412970e+05 6.956620e+05
pop 3.833252e+07 1.955286e+07 1.288214e+07 1.965113e+07 2.644819e+07
density 9.041393e+01 1.148061e+02 8.588376e+01 1.390767e+02 3.801874e+01

When it comes to indexing of DataFrame objects, however, it is clear that the dictionary-style
indexing of columns precludes our ability to simply treat it as a NumPy array. In particular,
passing a single index to an array accesses a row:

In [26]: data.values[0]
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Out[26]: array([ 4.23967000e+05, 3.83325210e+07, 9.04139261e+01])

and passing a single “index” to a DataFrame accesses a column:

In [27]: data['area']

Out[27]: California 423967
Florida 170312
Illinois 149995
New York 141297
Texas 695662
Name: area, dtype: int64

Thus for array-style indexing, we need another convention. Here Pandas again uses the loc,
iloc, and ix indexers mentioned earlier. Using the iloc indexer, we can index the underlying
array as if it is a simple NumPy array (using the implicit Python-style index), but the DataFrame
index and column labels are maintained in the result:

In [28]: data.iloc[:3, :2]

Out[28]: area pop
California 423967 38332521
Florida 170312 19552860
Illinois 149995 12882135

Similarly, using the loc indexer we can index the underlying data in an array-like style but
using the explicit index and column names:

In [29]: data.loc[:'Illinois', :'pop']

Out[29]: area pop
California 423967 38332521
Florida 170312 19552860
Illinois 149995 12882135

The ix indexer allows a hybrid of these two approaches:

In [30]: data.ix[:3, :'pop']

Out[30]: area pop
California 423967 38332521
Florida 170312 19552860
Illinois 149995 12882135

Keep in mind that for integer indices, the ix indexer is subject to the same potential sources of
confusion as discussed for integer-indexed Series objects.

Any of the familiar NumPy-style data access patterns can be used within these indexers. For
example, in the loc indexer we can combine masking and fancy indexing as in the following:

In [31]: data.loc[data.density > 100, ['pop', 'density']]
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Out[31]: pop density
Florida 19552860 114.806121
New York 19651127 139.076746

Any of these indexing conventions may also be used to set or modify values; this is done in
the standard way that you might be accustomed to from working with NumPy:

In [32]: data.iloc[0, 2] = 90
data

Out[32]: area pop density
California 423967 38332521 90.000000
Florida 170312 19552860 114.806121
Illinois 149995 12882135 85.883763
New York 141297 19651127 139.076746
Texas 695662 26448193 38.018740

To build up your fluency in Pandas data manipulation, I suggest spending some time with a
simple DataFrame and exploring the types of indexing, slicing, masking, and fancy indexing that
are allowed by these various indexing approaches.

1.2.3 Additional indexing conventions

There are a couple extra indexing conventions that might seem at odds with the preceding discus-
sion, but nevertheless can be very useful in practice. First, while indexing refers to columns, slicing
refers to rows:

In [33]: data['Florida':'Illinois']

Out[33]: area pop density
Florida 170312 19552860 114.806121
Illinois 149995 12882135 85.883763

Such slices can also refer to rows by number rather than by index:

In [34]: data[1:3]

Out[34]: area pop density
Florida 170312 19552860 114.806121
Illinois 149995 12882135 85.883763

Similarly, direct masking operations are also interpreted row-wise rather than column-wise:

In [35]: data[data.density > 100]

Out[35]: area pop density
Florida 170312 19552860 114.806121
New York 141297 19651127 139.076746

These two conventions are syntactically similar to those on a NumPy array, and while these
may not precisely fit the mold of the Pandas conventions, they are nevertheless quite useful in
practice.

< Introducing Pandas Objects | Contents | Operating on Data in Pandas >
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< Data Indexing and Selection | Contents | Handling Missing Data >

1 Operating on Data in Pandas

One of the essential pieces of NumPy is the ability to perform quick element-wise operations,
both with basic arithmetic (addition, subtraction, multiplication, etc.) and with more sophisticated
operations (trigonometric functions, exponential and logarithmic functions, etc.). Pandas inherits
much of this functionality from NumPy, and the ufuncs that we introduced in Computation on
NumPy Arrays: Universal Functions are key to this.

Pandas includes a couple useful twists, however: for unary operations like negation and
trigonometric functions, these ufuncs will preserve index and column labels in the output, and for bi-
nary operations such as addition and multiplication, Pandas will automatically align indices when
passing the objects to the ufunc. This means that keeping the context of data and combining data
from different sources–both potentially error-prone tasks with raw NumPy arrays–become essen-
tially foolproof ones with Pandas. We will additionally see that there are well-defined operations
between one-dimensional Series structures and two-dimensional DataFrame structures.

1.1 Ufuncs: Index Preservation

Because Pandas is designed to work with NumPy, any NumPy ufunc will work on Pandas Series
and DataFrame objects. Let’s start by defining a simple Series and DataFrame on which to demon-
strate this:

In [1]: import pandas as pd
import numpy as np

In [2]: rng = np.random.RandomState(42)
ser = pd.Series(rng.randint(0, 10, 4))
ser

Out[2]: 0 6
1 3
2 7
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3 4
dtype: int64

In [3]: df = pd.DataFrame(rng.randint(0, 10, (3, 4)),
columns=['A', 'B', 'C', 'D'])

df

Out[3]: A B C D
0 6 9 2 6
1 7 4 3 7
2 7 2 5 4

If we apply a NumPy ufunc on either of these objects, the result will be another Pandas object
with the indices preserved:

In [4]: np.exp(ser)

Out[4]: 0 403.428793
1 20.085537
2 1096.633158
3 54.598150
dtype: float64

Or, for a slightly more complex calculation:

In [5]: np.sin(df * np.pi / 4)

Out[5]: A B C D
0 -1.000000 7.071068e-01 1.000000 -1.000000e+00
1 -0.707107 1.224647e-16 0.707107 -7.071068e-01
2 -0.707107 1.000000e+00 -0.707107 1.224647e-16

Any of the ufuncs discussed in Computation on NumPy Arrays: Universal Functions can be
used in a similar manner.

1.2 UFuncs: Index Alignment

For binary operations on two Series or DataFrame objects, Pandas will align indices in the process
of performing the operation. This is very convenient when working with incomplete data, as we’ll
see in some of the examples that follow.

1.2.1 Index alignment in Series

As an example, suppose we are combining two different data sources, and find only the top three
US states by area and the top three US states by population:

In [6]: area = pd.Series({'Alaska': 1723337, 'Texas': 695662,
'California': 423967}, name='area')

population = pd.Series({'California': 38332521, 'Texas': 26448193,
'New York': 19651127}, name='population')
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Let’s see what happens when we divide these to compute the population density:

In [7]: population / area

Out[7]: Alaska NaN
California 90.413926
New York NaN
Texas 38.018740
dtype: float64

The resulting array contains the union of indices of the two input arrays, which could be deter-
mined using standard Python set arithmetic on these indices:

In [8]: area.index | population.index

Out[8]: Index(['Alaska', 'California', 'New York', 'Texas'], dtype='object')

Any item for which one or the other does not have an entry is marked with NaN, or “Not a
Number,” which is how Pandas marks missing data (see further discussion of missing data in
Handling Missing Data). This index matching is implemented this way for any of Python’s built-
in arithmetic expressions; any missing values are filled in with NaN by default:

In [9]: A = pd.Series([2, 4, 6], index=[0, 1, 2])
B = pd.Series([1, 3, 5], index=[1, 2, 3])
A + B

Out[9]: 0 NaN
1 5.0
2 9.0
3 NaN
dtype: float64

If using NaN values is not the desired behavior, the fill value can be modified using appro-
priate object methods in place of the operators. For example, calling A.add(B) is equivalent to
calling A + B, but allows optional explicit specification of the fill value for any elements in A or B
that might be missing:

In [10]: A.add(B, fill_value=0)

Out[10]: 0 2.0
1 5.0
2 9.0
3 5.0
dtype: float64

1.2.2 Index alignment in DataFrame

A similar type of alignment takes place for both columns and indices when performing operations
on DataFrames:
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In [11]: A = pd.DataFrame(rng.randint(0, 20, (2, 2)),
columns=list('AB'))

A

Out[11]: A B
0 1 11
1 5 1

In [12]: B = pd.DataFrame(rng.randint(0, 10, (3, 3)),
columns=list('BAC'))

B

Out[12]: B A C
0 4 0 9
1 5 8 0
2 9 2 6

In [13]: A + B

Out[13]: A B C
0 1.0 15.0 NaN
1 13.0 6.0 NaN
2 NaN NaN NaN

Notice that indices are aligned correctly irrespective of their order in the two objects, and
indices in the result are sorted. As was the case with Series, we can use the associated object’s
arithmetic method and pass any desired fill_value to be used in place of missing entries. Here
we’ll fill with the mean of all values in A (computed by first stacking the rows of A):

In [14]: fill = A.stack().mean()
A.add(B, fill_value=fill)

Out[14]: A B C
0 1.0 15.0 13.5
1 13.0 6.0 4.5
2 6.5 13.5 10.5

The following table lists Python operators and their equivalent Pandas object methods:

Python Operator Pandas Method(s)

+ add()
- sub(), subtract()
* mul(), multiply()
/ truediv(), div(), divide()
// floordiv()
% mod()
** pow()
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1.3 Ufuncs: Operations Between DataFrame and Series

When performing operations between a DataFrame and a Series, the index and column alignment
is similarly maintained. Operations between a DataFrame and a Series are similar to operations
between a two-dimensional and one-dimensional NumPy array. Consider one common operation,
where we find the difference of a two-dimensional array and one of its rows:

In [15]: A = rng.randint(10, size=(3, 4))
A

Out[15]: array([[3, 8, 2, 4],
[2, 6, 4, 8],
[6, 1, 3, 8]])

In [16]: A - A[0]

Out[16]: array([[ 0, 0, 0, 0],
[-1, -2, 2, 4],
[ 3, -7, 1, 4]])

According to NumPy’s broadcasting rules (see Computation on Arrays: Broadcasting), sub-
traction between a two-dimensional array and one of its rows is applied row-wise.

In Pandas, the convention similarly operates row-wise by default:

In [17]: df = pd.DataFrame(A, columns=list('QRST'))
df - df.iloc[0]

Out[17]: Q R S T
0 0 0 0 0
1 -1 -2 2 4
2 3 -7 1 4

If you would instead like to operate column-wise, you can use the object methods mentioned
earlier, while specifying the axis keyword:

In [18]: df.subtract(df['R'], axis=0)

Out[18]: Q R S T
0 -5 0 -6 -4
1 -4 0 -2 2
2 5 0 2 7

Note that these DataFrame/Series operations, like the operations discussed above, will auto-
matically align indices between the two elements:

In [19]: halfrow = df.iloc[0, ::2]
halfrow

Out[19]: Q 3
S 2
Name: 0, dtype: int64
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In [20]: df - halfrow

Out[20]: Q R S T
0 0.0 NaN 0.0 NaN
1 -1.0 NaN 2.0 NaN
2 3.0 NaN 1.0 NaN

This preservation and alignment of indices and columns means that operations on data in
Pandas will always maintain the data context, which prevents the types of silly errors that might
come up when working with heterogeneous and/or misaligned data in raw NumPy arrays.

< Data Indexing and Selection | Contents | Handling Missing Data >
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This notebook contains an excerpt from the Python Data Science Handbook by Jake VanderPlas; the
content is available on GitHub.

The text is released under the CC-BY-NC-ND license, and code is released under the MIT license. If
you find this content useful, please consider supporting the work by buying the book!

< Operating on Data in Pandas | Contents | Hierarchical Indexing >

1 Handling Missing Data

The difference between data found in many tutorials and data in the real world is that real-world
data is rarely clean and homogeneous. In particular, many interesting datasets will have some
amount of data missing. To make matters even more complicated, different data sources may
indicate missing data in different ways.

In this section, we will discuss some general considerations for missing data, discuss how
Pandas chooses to represent it, and demonstrate some built-in Pandas tools for handling missing
data in Python. Here and throughout the book, we’ll refer to missing data in general as null, NaN,
or NA values.

1.1 Trade-Offs in Missing Data Conventions

There are a number of schemes that have been developed to indicate the presence of missing data
in a table or DataFrame. Generally, they revolve around one of two strategies: using a mask that
globally indicates missing values, or choosing a sentinel value that indicates a missing entry.

In the masking approach, the mask might be an entirely separate Boolean array, or it may
involve appropriation of one bit in the data representation to locally indicate the null status of a
value.

In the sentinel approach, the sentinel value could be some data-specific convention, such as
indicating a missing integer value with -9999 or some rare bit pattern, or it could be a more global
convention, such as indicating a missing floating-point value with NaN (Not a Number), a special
value which is part of the IEEE floating-point specification.

None of these approaches is without trade-offs: use of a separate mask array requires alloca-
tion of an additional Boolean array, which adds overhead in both storage and computation. A
sentinel value reduces the range of valid values that can be represented, and may require extra
(often non-optimized) logic in CPU and GPU arithmetic. Common special values like NaN are
not available for all data types.

As in most cases where no universally optimal choice exists, different languages and systems
use different conventions. For example, the R language uses reserved bit patterns within each

1

http://shop.oreilly.com/product/0636920034919.do
https://github.com/jakevdp/PythonDataScienceHandbook
https://creativecommons.org/licenses/by-nc-nd/3.0/us/legalcode
https://opensource.org/licenses/MIT
http://shop.oreilly.com/product/0636920034919.do
03.03-Operations-in-Pandas.ipynb
Index.ipynb
03.05-Hierarchical-Indexing.ipynb


data type as sentinel values indicating missing data, while the SciDB system uses an extra byte
attached to every cell which indicates a NA state.

1.2 Missing Data in Pandas

The way in which Pandas handles missing values is constrained by its reliance on the NumPy
package, which does not have a built-in notion of NA values for non-floating-point data types.

Pandas could have followed R’s lead in specifying bit patterns for each individual data type to
indicate nullness, but this approach turns out to be rather unwieldy. While R contains four basic
data types, NumPy supports far more than this: for example, while R has a single integer type,
NumPy supports fourteen basic integer types once you account for available precisions, signed-
ness, and endianness of the encoding. Reserving a specific bit pattern in all available NumPy
types would lead to an unwieldy amount of overhead in special-casing various operations for
various types, likely even requiring a new fork of the NumPy package. Further, for the smaller
data types (such as 8-bit integers), sacrificing a bit to use as a mask will significantly reduce the
range of values it can represent.

NumPy does have support for masked arrays – that is, arrays that have a separate Boolean
mask array attached for marking data as “good” or “bad.” Pandas could have derived from this,
but the overhead in both storage, computation, and code maintenance makes that an unattractive
choice.

With these constraints in mind, Pandas chose to use sentinels for missing data, and further
chose to use two already-existing Python null values: the special floating-point NaN value, and the
Python None object. This choice has some side effects, as we will see, but in practice ends up being
a good compromise in most cases of interest.

1.2.1 None: Pythonic missing data

The first sentinel value used by Pandas is None, a Python singleton object that is often used for
missing data in Python code. Because it is a Python object, None cannot be used in any arbitrary
NumPy/Pandas array, but only in arrays with data type 'object' (i.e., arrays of Python objects):

In [1]: import numpy as np
import pandas as pd

In [2]: vals1 = np.array([1, None, 3, 4])
vals1

Out[2]: array([1, None, 3, 4], dtype=object)

This dtype=object means that the best common type representation NumPy could infer for
the contents of the array is that they are Python objects. While this kind of object array is useful
for some purposes, any operations on the data will be done at the Python level, with much more
overhead than the typically fast operations seen for arrays with native types:

In [3]: for dtype in ['object', 'int']:
print("dtype =", dtype)
%timeit np.arange(1E6, dtype=dtype).sum()
print()
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dtype = object
10 loops, best of 3: 78.2 ms per loop

dtype = int
100 loops, best of 3: 3.06 ms per loop

The use of Python objects in an array also means that if you perform aggregations like sum()
or min() across an array with a None value, you will generally get an error:

In [4]: vals1.sum()

---------------------------------------------------------------------------

TypeError Traceback (most recent call last)

<ipython-input-4-749fd8ae6030> in <module>()
----> 1 vals1.sum()

/Users/jakevdp/anaconda/lib/python3.5/site-packages/numpy/core/_methods.py in _sum(a, axis, dtype, out, keepdims)
30
31 def _sum(a, axis=None, dtype=None, out=None, keepdims=False):

---> 32 return umr_sum(a, axis, dtype, out, keepdims)
33
34 def _prod(a, axis=None, dtype=None, out=None, keepdims=False):

TypeError: unsupported operand type(s) for +: 'int' and 'NoneType'

This reflects the fact that addition between an integer and None is undefined.

1.2.2 NaN: Missing numerical data

The other missing data representation, NaN (acronym for Not a Number), is different; it is a special
floating-point value recognized by all systems that use the standard IEEE floating-point represen-
tation:

In [5]: vals2 = np.array([1, np.nan, 3, 4])
vals2.dtype

Out[5]: dtype('float64')

Notice that NumPy chose a native floating-point type for this array: this means that unlike
the object array from before, this array supports fast operations pushed into compiled code. You
should be aware that NaN is a bit like a data virus–it infects any other object it touches. Regardless
of the operation, the result of arithmetic with NaN will be another NaN:

3



In [6]: 1 + np.nan

Out[6]: nan

In [7]: 0 * np.nan

Out[7]: nan

Note that this means that aggregates over the values are well defined (i.e., they don’t result in
an error) but not always useful:

In [8]: vals2.sum(), vals2.min(), vals2.max()

Out[8]: (nan, nan, nan)

NumPy does provide some special aggregations that will ignore these missing values:

In [9]: np.nansum(vals2), np.nanmin(vals2), np.nanmax(vals2)

Out[9]: (8.0, 1.0, 4.0)

Keep in mind that NaN is specifically a floating-point value; there is no equivalent NaN value
for integers, strings, or other types.

1.2.3 NaN and None in Pandas

NaN and None both have their place, and Pandas is built to handle the two of them nearly inter-
changeably, converting between them where appropriate:

In [10]: pd.Series([1, np.nan, 2, None])

Out[10]: 0 1.0
1 NaN
2 2.0
3 NaN
dtype: float64

For types that don’t have an available sentinel value, Pandas automatically type-casts when
NA values are present. For example, if we set a value in an integer array to np.nan, it will auto-
matically be upcast to a floating-point type to accommodate the NA:

In [11]: x = pd.Series(range(2), dtype=int)
x

Out[11]: 0 0
1 1
dtype: int64

In [12]: x[0] = None
x
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Out[12]: 0 NaN
1 1.0
dtype: float64

Notice that in addition to casting the integer array to floating point, Pandas automatically
converts the None to a NaN value. (Be aware that there is a proposal to add a native integer NA to
Pandas in the future; as of this writing, it has not been included).

While this type of magic may feel a bit hackish compared to the more unified approach to NA
values in domain-specific languages like R, the Pandas sentinel/casting approach works quite
well in practice and in my experience only rarely causes issues.

The following table lists the upcasting conventions in Pandas when NA values are introduced:

Typeclass Conversion When Storing NAs NA Sentinel Value

floating No change np.nan
object No change None or np.nan
integer Cast to float64 np.nan
boolean Cast to object None or np.nan

Keep in mind that in Pandas, string data is always stored with an object dtype.

1.3 Operating on Null Values

As we have seen, Pandas treats None and NaN as essentially interchangeable for indicating miss-
ing or null values. To facilitate this convention, there are several useful methods for detecting,
removing, and replacing null values in Pandas data structures. They are:

• isnull(): Generate a boolean mask indicating missing values
• notnull(): Opposite of isnull()
• dropna(): Return a filtered version of the data
• fillna(): Return a copy of the data with missing values filled or imputed

We will conclude this section with a brief exploration and demonstration of these routines.

1.3.1 Detecting null values

Pandas data structures have two useful methods for detecting null data: isnull() and notnull().
Either one will return a Boolean mask over the data. For example:

In [13]: data = pd.Series([1, np.nan, 'hello', None])

In [14]: data.isnull()

Out[14]: 0 False
1 True
2 False
3 True
dtype: bool
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As mentioned in Data Indexing and Selection, Boolean masks can be used directly as a Series
or DataFrame index:

In [15]: data[data.notnull()]

Out[15]: 0 1
2 hello
dtype: object

The isnull() and notnull() methods produce similar Boolean results for DataFrames.

1.3.2 Dropping null values

In addition to the masking used before, there are the convenience methods, dropna() (which
removes NA values) and fillna() (which fills in NA values). For a Series, the result is straight-
forward:

In [16]: data.dropna()

Out[16]: 0 1
2 hello
dtype: object

For a DataFrame, there are more options. Consider the following DataFrame:

In [17]: df = pd.DataFrame([[1, np.nan, 2],
[2, 3, 5],
[np.nan, 4, 6]])

df

Out[17]: 0 1 2
0 1.0 NaN 2
1 2.0 3.0 5
2 NaN 4.0 6

We cannot drop single values from a DataFrame; we can only drop full rows or full columns.
Depending on the application, you might want one or the other, so dropna() gives a number of
options for a DataFrame.

By default, dropna() will drop all rows in which any null value is present:

In [18]: df.dropna()

Out[18]: 0 1 2
1 2.0 3.0 5

Alternatively, you can drop NA values along a different axis; axis=1 drops all columns con-
taining a null value:

In [19]: df.dropna(axis='columns')
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Out[19]: 2
0 2
1 5
2 6

But this drops some good data as well; you might rather be interested in dropping rows or
columns with all NA values, or a majority of NA values. This can be specified through the how or
thresh parameters, which allow fine control of the number of nulls to allow through.

The default is how='any', such that any row or column (depending on the axis keyword)
containing a null value will be dropped. You can also specify how='all', which will only drop
rows/columns that are all null values:

In [20]: df[3] = np.nan
df

Out[20]: 0 1 2 3
0 1.0 NaN 2 NaN
1 2.0 3.0 5 NaN
2 NaN 4.0 6 NaN

In [21]: df.dropna(axis='columns', how='all')

Out[21]: 0 1 2
0 1.0 NaN 2
1 2.0 3.0 5
2 NaN 4.0 6

For finer-grained control, the thresh parameter lets you specify a minimum number of non-
null values for the row/column to be kept:

In [22]: df.dropna(axis='rows', thresh=3)

Out[22]: 0 1 2 3
1 2.0 3.0 5 NaN

Here the first and last row have been dropped, because they contain only two non-null values.

1.3.3 Filling null values

Sometimes rather than dropping NA values, you’d rather replace them with a valid value. This
value might be a single number like zero, or it might be some sort of imputation or interpolation
from the good values. You could do this in-place using the isnull() method as a mask, but
because it is such a common operation Pandas provides the fillna() method, which returns a
copy of the array with the null values replaced.

Consider the following Series:

In [23]: data = pd.Series([1, np.nan, 2, None, 3], index=list('abcde'))
data
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Out[23]: a 1.0
b NaN
c 2.0
d NaN
e 3.0
dtype: float64

We can fill NA entries with a single value, such as zero:

In [24]: data.fillna(0)

Out[24]: a 1.0
b 0.0
c 2.0
d 0.0
e 3.0
dtype: float64

We can specify a forward-fill to propagate the previous value forward:

In [25]: # forward-fill
data.fillna(method='ffill')

Out[25]: a 1.0
b 1.0
c 2.0
d 2.0
e 3.0
dtype: float64

Or we can specify a back-fill to propagate the next values backward:

In [26]: # back-fill
data.fillna(method='bfill')

Out[26]: a 1.0
b 2.0
c 2.0
d 3.0
e 3.0
dtype: float64

For DataFrames, the options are similar, but we can also specify an axis along which the fills
take place:

In [27]: df

Out[27]: 0 1 2 3
0 1.0 NaN 2 NaN
1 2.0 3.0 5 NaN
2 NaN 4.0 6 NaN
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In [28]: df.fillna(method='ffill', axis=1)

Out[28]: 0 1 2 3
0 1.0 1.0 2.0 2.0
1 2.0 3.0 5.0 5.0
2 NaN 4.0 6.0 6.0

Notice that if a previous value is not available during a forward fill, the NA value remains.
< Operating on Data in Pandas | Contents | Hierarchical Indexing >
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1 Hierarchical Indexing

Up to this point we’ve been focused primarily on one-dimensional and two-dimensional data,
stored in Pandas Series and DataFrame objects, respectively. Often it is useful to go beyond this
and store higher-dimensional data–that is, data indexed by more than one or two keys. While
Pandas does provide Panel and Panel4D objects that natively handle three-dimensional and four-
dimensional data (see Section 1.6), a far more common pattern in practice is to make use of hier-
archical indexing (also known as multi-indexing) to incorporate multiple index levels within a single
index. In this way, higher-dimensional data can be compactly represented within the familiar
one-dimensional Series and two-dimensional DataFrame objects.

In this section, we’ll explore the direct creation of MultiIndex objects, considerations when
indexing, slicing, and computing statistics across multiply indexed data, and useful routines for
converting between simple and hierarchically indexed representations of your data.

We begin with the standard imports:

In [1]: import pandas as pd
import numpy as np

1.1 A Multiply Indexed Series

Let’s start by considering how we might represent two-dimensional data within a one-
dimensional Series. For concreteness, we will consider a series of data where each point has
a character and numerical key.

1.1.1 The bad way

Suppose you would like to track data about states from two different years. Using the Pandas
tools we’ve already covered, you might be tempted to simply use Python tuples as keys:

In [2]: index = [('California', 2000), ('California', 2010),
('New York', 2000), ('New York', 2010),

1

http://shop.oreilly.com/product/0636920034919.do
https://github.com/jakevdp/PythonDataScienceHandbook
https://creativecommons.org/licenses/by-nc-nd/3.0/us/legalcode
https://opensource.org/licenses/MIT
http://shop.oreilly.com/product/0636920034919.do
03.04-Missing-Values.ipynb
Index.ipynb
03.06-Concat-And-Append.ipynb


('Texas', 2000), ('Texas', 2010)]
populations = [33871648, 37253956,

18976457, 19378102,
20851820, 25145561]

pop = pd.Series(populations, index=index)
pop

Out[2]: (California, 2000) 33871648
(California, 2010) 37253956
(New York, 2000) 18976457
(New York, 2010) 19378102
(Texas, 2000) 20851820
(Texas, 2010) 25145561
dtype: int64

With this indexing scheme, you can straightforwardly index or slice the series based on this
multiple index:

In [3]: pop[('California', 2010):('Texas', 2000)]

Out[3]: (California, 2010) 37253956
(New York, 2000) 18976457
(New York, 2010) 19378102
(Texas, 2000) 20851820
dtype: int64

But the convenience ends there. For example, if you need to select all values from 2010, you’ll
need to do some messy (and potentially slow) munging to make it happen:

In [4]: pop[[i for i in pop.index if i[1] == 2010]]

Out[4]: (California, 2010) 37253956
(New York, 2010) 19378102
(Texas, 2010) 25145561
dtype: int64

This produces the desired result, but is not as clean (or as efficient for large datasets) as the
slicing syntax we’ve grown to love in Pandas.

1.1.2 The Better Way: Pandas MultiIndex

Fortunately, Pandas provides a better way. Our tuple-based indexing is essentially a rudimentary
multi-index, and the Pandas MultiIndex type gives us the type of operations we wish to have. We
can create a multi-index from the tuples as follows:

In [5]: index = pd.MultiIndex.from_tuples(index)
index

Out[5]: MultiIndex(levels=[['California', 'New York', 'Texas'], [2000, 2010]],
labels=[[0, 0, 1, 1, 2, 2], [0, 1, 0, 1, 0, 1]])
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Notice that the MultiIndex contains multiple levels of indexing–in this case, the state names
and the years, as well as multiple labels for each data point which encode these levels.

If we re-index our series with this MultiIndex, we see the hierarchical representation of the
data:

In [6]: pop = pop.reindex(index)
pop

Out[6]: California 2000 33871648
2010 37253956

New York 2000 18976457
2010 19378102

Texas 2000 20851820
2010 25145561

dtype: int64

Here the first two columns of the Series representation show the multiple index values, while
the third column shows the data. Notice that some entries are missing in the first column: in this
multi-index representation, any blank entry indicates the same value as the line above it.

Now to access all data for which the second index is 2010, we can simply use the Pandas slicing
notation:

In [7]: pop[:, 2010]

Out[7]: California 37253956
New York 19378102
Texas 25145561
dtype: int64

The result is a singly indexed array with just the keys we’re interested in. This syntax is much
more convenient (and the operation is much more efficient!) than the home-spun tuple-based
multi-indexing solution that we started with. We’ll now further discuss this sort of indexing op-
eration on hieararchically indexed data.

1.1.3 MultiIndex as extra dimension

You might notice something else here: we could easily have stored the same data using a simple
DataFrame with index and column labels. In fact, Pandas is built with this equivalence in mind.
The unstack() method will quickly convert a multiply indexed Series into a conventionally in-
dexed DataFrame:

In [8]: pop_df = pop.unstack()
pop_df

Out[8]: 2000 2010
California 33871648 37253956
New York 18976457 19378102
Texas 20851820 25145561

Naturally, the stack() method provides the opposite operation:
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In [9]: pop_df.stack()

Out[9]: California 2000 33871648
2010 37253956

New York 2000 18976457
2010 19378102

Texas 2000 20851820
2010 25145561

dtype: int64

Seeing this, you might wonder why would we would bother with hierarchical indexing at all.
The reason is simple: just as we were able to use multi-indexing to represent two-dimensional data
within a one-dimensional Series, we can also use it to represent data of three or more dimensions
in a Series or DataFrame. Each extra level in a multi-index represents an extra dimension of
data; taking advantage of this property gives us much more flexibility in the types of data we
can represent. Concretely, we might want to add another column of demographic data for each
state at each year (say, population under 18) ; with a MultiIndex this is as easy as adding another
column to the DataFrame:

In [10]: pop_df = pd.DataFrame({'total': pop,
'under18': [9267089, 9284094,

4687374, 4318033,
5906301, 6879014]})

pop_df

Out[10]: total under18
California 2000 33871648 9267089

2010 37253956 9284094
New York 2000 18976457 4687374

2010 19378102 4318033
Texas 2000 20851820 5906301

2010 25145561 6879014

In addition, all the ufuncs and other functionality discussed in Operating on Data in Pandas
work with hierarchical indices as well. Here we compute the fraction of people under 18 by year,
given the above data:

In [11]: f_u18 = pop_df['under18'] / pop_df['total']
f_u18.unstack()

Out[11]: 2000 2010
California 0.273594 0.249211
New York 0.247010 0.222831
Texas 0.283251 0.273568

This allows us to easily and quickly manipulate and explore even high-dimensional data.
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1.2 Methods of MultiIndex Creation

The most straightforward way to construct a multiply indexed Series or DataFrame is to simply
pass a list of two or more index arrays to the constructor. For example:

In [12]: df = pd.DataFrame(np.random.rand(4, 2),
index=[['a', 'a', 'b', 'b'], [1, 2, 1, 2]],
columns=['data1', 'data2'])

df

Out[12]: data1 data2
a 1 0.554233 0.356072

2 0.925244 0.219474
b 1 0.441759 0.610054

2 0.171495 0.886688

The work of creating the MultiIndex is done in the background.
Similarly, if you pass a dictionary with appropriate tuples as keys, Pandas will automatically

recognize this and use a MultiIndex by default:

In [13]: data = {('California', 2000): 33871648,
('California', 2010): 37253956,
('Texas', 2000): 20851820,
('Texas', 2010): 25145561,
('New York', 2000): 18976457,
('New York', 2010): 19378102}

pd.Series(data)

Out[13]: California 2000 33871648
2010 37253956

New York 2000 18976457
2010 19378102

Texas 2000 20851820
2010 25145561

dtype: int64

Nevertheless, it is sometimes useful to explicitly create a MultiIndex; we’ll see a couple of
these methods here.

1.2.1 Explicit MultiIndex constructors

For more flexibility in how the index is constructed, you can instead use the class method con-
structors available in the pd.MultiIndex. For example, as we did before, you can construct the
MultiIndex from a simple list of arrays giving the index values within each level:

In [14]: pd.MultiIndex.from_arrays([['a', 'a', 'b', 'b'], [1, 2, 1, 2]])

Out[14]: MultiIndex(levels=[['a', 'b'], [1, 2]],
labels=[[0, 0, 1, 1], [0, 1, 0, 1]])
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You can construct it from a list of tuples giving the multiple index values of each point:

In [15]: pd.MultiIndex.from_tuples([('a', 1), ('a', 2), ('b', 1), ('b', 2)])

Out[15]: MultiIndex(levels=[['a', 'b'], [1, 2]],
labels=[[0, 0, 1, 1], [0, 1, 0, 1]])

You can even construct it from a Cartesian product of single indices:

In [16]: pd.MultiIndex.from_product([['a', 'b'], [1, 2]])

Out[16]: MultiIndex(levels=[['a', 'b'], [1, 2]],
labels=[[0, 0, 1, 1], [0, 1, 0, 1]])

Similarly, you can construct the MultiIndex directly using its internal encoding by passing
levels (a list of lists containing available index values for each level) and labels (a list of lists
that reference these labels):

In [17]: pd.MultiIndex(levels=[['a', 'b'], [1, 2]],
labels=[[0, 0, 1, 1], [0, 1, 0, 1]])

Out[17]: MultiIndex(levels=[['a', 'b'], [1, 2]],
labels=[[0, 0, 1, 1], [0, 1, 0, 1]])

Any of these objects can be passed as the index argument when creating a Series or
Dataframe, or be passed to the reindex method of an existing Series or DataFrame.

1.2.2 MultiIndex level names

Sometimes it is convenient to name the levels of the MultiIndex. This can be accomplished by
passing the names argument to any of the above MultiIndex constructors, or by setting the names
attribute of the index after the fact:

In [18]: pop.index.names = ['state', 'year']
pop

Out[18]: state year
California 2000 33871648

2010 37253956
New York 2000 18976457

2010 19378102
Texas 2000 20851820

2010 25145561
dtype: int64

With more involved datasets, this can be a useful way to keep track of the meaning of various
index values.
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1.2.3 MultiIndex for columns

In a DataFrame, the rows and columns are completely symmetric, and just as the rows can have
multiple levels of indices, the columns can have multiple levels as well. Consider the following,
which is a mock-up of some (somewhat realistic) medical data:

In [19]: # hierarchical indices and columns
index = pd.MultiIndex.from_product([[2013, 2014], [1, 2]],

names=['year', 'visit'])
columns = pd.MultiIndex.from_product([['Bob', 'Guido', 'Sue'], ['HR', 'Temp']],

names=['subject', 'type'])

# mock some data
data = np.round(np.random.randn(4, 6), 1)
data[:, ::2] *= 10
data += 37

# create the DataFrame
health_data = pd.DataFrame(data, index=index, columns=columns)
health_data

Out[19]: subject Bob Guido Sue
type HR Temp HR Temp HR Temp
year visit
2013 1 31.0 38.7 32.0 36.7 35.0 37.2

2 44.0 37.7 50.0 35.0 29.0 36.7
2014 1 30.0 37.4 39.0 37.8 61.0 36.9

2 47.0 37.8 48.0 37.3 51.0 36.5

Here we see where the multi-indexing for both rows and columns can come in very handy. This
is fundamentally four-dimensional data, where the dimensions are the subject, the measurement
type, the year, and the visit number. With this in place we can, for example, index the top-level
column by the person’s name and get a full DataFrame containing just that person’s information:

In [20]: health_data['Guido']

Out[20]: type HR Temp
year visit
2013 1 32.0 36.7

2 50.0 35.0
2014 1 39.0 37.8

2 48.0 37.3

For complicated records containing multiple labeled measurements across multiple times for
many subjects (people, countries, cities, etc.) use of hierarchical rows and columns can be ex-
tremely convenient!

1.3 Indexing and Slicing a MultiIndex

Indexing and slicing on a MultiIndex is designed to be intuitive, and it helps if you think about
the indices as added dimensions. We’ll first look at indexing multiply indexed Series, and then
multiply-indexed DataFrames.
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1.3.1 Multiply indexed Series

Consider the multiply indexed Series of state populations we saw earlier:

In [21]: pop

Out[21]: state year
California 2000 33871648

2010 37253956
New York 2000 18976457

2010 19378102
Texas 2000 20851820

2010 25145561
dtype: int64

We can access single elements by indexing with multiple terms:

In [22]: pop['California', 2000]

Out[22]: 33871648

The MultiIndex also supports partial indexing, or indexing just one of the levels in the index.
The result is another Series, with the lower-level indices maintained:

In [23]: pop['California']

Out[23]: year
2000 33871648
2010 37253956
dtype: int64

Partial slicing is available as well, as long as the MultiIndex is sorted (see discussion in Section
1.4.1):

In [24]: pop.loc['California':'New York']

Out[24]: state year
California 2000 33871648

2010 37253956
New York 2000 18976457

2010 19378102
dtype: int64

With sorted indices, partial indexing can be performed on lower levels by passing an empty
slice in the first index:

In [25]: pop[:, 2000]

Out[25]: state
California 33871648
New York 18976457
Texas 20851820
dtype: int64
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Other types of indexing and selection (discussed in Data Indexing and Selection) work as well;
for example, selection based on Boolean masks:

In [26]: pop[pop > 22000000]

Out[26]: state year
California 2000 33871648

2010 37253956
Texas 2010 25145561
dtype: int64

Selection based on fancy indexing also works:

In [27]: pop[['California', 'Texas']]

Out[27]: state year
California 2000 33871648

2010 37253956
Texas 2000 20851820

2010 25145561
dtype: int64

1.3.2 Multiply indexed DataFrames

A multiply indexed DataFrame behaves in a similar manner. Consider our toy medical DataFrame
from before:

In [28]: health_data

Out[28]: subject Bob Guido Sue
type HR Temp HR Temp HR Temp
year visit
2013 1 31.0 38.7 32.0 36.7 35.0 37.2

2 44.0 37.7 50.0 35.0 29.0 36.7
2014 1 30.0 37.4 39.0 37.8 61.0 36.9

2 47.0 37.8 48.0 37.3 51.0 36.5

Remember that columns are primary in a DataFrame, and the syntax used for multiply indexed
Series applies to the columns. For example, we can recover Guido’s heart rate data with a simple
operation:

In [29]: health_data['Guido', 'HR']

Out[29]: year visit
2013 1 32.0

2 50.0
2014 1 39.0

2 48.0
Name: (Guido, HR), dtype: float64

9

03.02-Data-Indexing-and-Selection.ipynb


Also, as with the single-index case, we can use the loc, iloc, and ix indexers introduced in
Data Indexing and Selection. For example:

In [30]: health_data.iloc[:2, :2]

Out[30]: subject Bob
type HR Temp
year visit
2013 1 31.0 38.7

2 44.0 37.7

These indexers provide an array-like view of the underlying two-dimensional data, but each
individual index in loc or iloc can be passed a tuple of multiple indices. For example:

In [31]: health_data.loc[:, ('Bob', 'HR')]

Out[31]: year visit
2013 1 31.0

2 44.0
2014 1 30.0

2 47.0
Name: (Bob, HR), dtype: float64

Working with slices within these index tuples is not especially convenient; trying to create a
slice within a tuple will lead to a syntax error:

In [32]: health_data.loc[(:, 1), (:, 'HR')]

File "<ipython-input-32-8e3cc151e316>", line 1
health_data.loc[(:, 1), (:, 'HR')]

ˆ
SyntaxError: invalid syntax

You could get around this by building the desired slice explicitly using Python’s built-in
slice() function, but a better way in this context is to use an IndexSlice object, which Pandas
provides for precisely this situation. For example:

In [33]: idx = pd.IndexSlice
health_data.loc[idx[:, 1], idx[:, 'HR']]

Out[33]: subject Bob Guido Sue
type HR HR HR
year visit
2013 1 31.0 32.0 35.0
2014 1 30.0 39.0 61.0

There are so many ways to interact with data in multiply indexed Series and DataFrames, and
as with many tools in this book the best way to become familiar with them is to try them out!
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1.4 Rearranging Multi-Indices

One of the keys to working with multiply indexed data is knowing how to effectively transform
the data. There are a number of operations that will preserve all the information in the dataset,
but rearrange it for the purposes of various computations. We saw a brief example of this in the
stack() and unstack() methods, but there are many more ways to finely control the rearrange-
ment of data between hierarchical indices and columns, and we’ll explore them here.

1.4.1 Sorted and unsorted indices

Earlier, we briefly mentioned a caveat, but we should emphasize it more here. Many of the
MultiIndex slicing operations will fail if the index is not sorted. Let’s take a look at this here.

We’ll start by creating some simple multiply indexed data where the indices are not lexograph-
ically sorted:

In [34]: index = pd.MultiIndex.from_product([['a', 'c', 'b'], [1, 2]])
data = pd.Series(np.random.rand(6), index=index)
data.index.names = ['char', 'int']
data

Out[34]: char int
a 1 0.003001

2 0.164974
c 1 0.741650

2 0.569264
b 1 0.001693

2 0.526226
dtype: float64

If we try to take a partial slice of this index, it will result in an error:

In [35]: try:
data['a':'b']

except KeyError as e:
print(type(e))
print(e)

<class 'KeyError'>
'Key length (1) was greater than MultiIndex lexsort depth (0)'

Although it is not entirely clear from the error message, this is the result of the MultiIndex not
being sorted. For various reasons, partial slices and other similar operations require the levels in
the MultiIndex to be in sorted (i.e., lexographical) order. Pandas provides a number of conve-
nience routines to perform this type of sorting; examples are the sort_index() and sortlevel()
methods of the DataFrame. We’ll use the simplest, sort_index(), here:

In [36]: data = data.sort_index()
data
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Out[36]: char int
a 1 0.003001

2 0.164974
b 1 0.001693

2 0.526226
c 1 0.741650

2 0.569264
dtype: float64

With the index sorted in this way, partial slicing will work as expected:

In [37]: data['a':'b']

Out[37]: char int
a 1 0.003001

2 0.164974
b 1 0.001693

2 0.526226
dtype: float64

1.4.2 Stacking and unstacking indices

As we saw briefly before, it is possible to convert a dataset from a stacked multi-index to a simple
two-dimensional representation, optionally specifying the level to use:

In [38]: pop.unstack(level=0)

Out[38]: state California New York Texas
year
2000 33871648 18976457 20851820
2010 37253956 19378102 25145561

In [39]: pop.unstack(level=1)

Out[39]: year 2000 2010
state
California 33871648 37253956
New York 18976457 19378102
Texas 20851820 25145561

The opposite of unstack() is stack(), which here can be used to recover the original series:

In [40]: pop.unstack().stack()

Out[40]: state year
California 2000 33871648

2010 37253956
New York 2000 18976457

2010 19378102
Texas 2000 20851820

2010 25145561
dtype: int64
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1.4.3 Index setting and resetting

Another way to rearrange hierarchical data is to turn the index labels into columns; this can be
accomplished with the reset_index method. Calling this on the population dictionary will result
in a DataFrame with a state and year column holding the information that was formerly in the
index. For clarity, we can optionally specify the name of the data for the column representation:

In [41]: pop_flat = pop.reset_index(name='population')
pop_flat

Out[41]: state year population
0 California 2000 33871648
1 California 2010 37253956
2 New York 2000 18976457
3 New York 2010 19378102
4 Texas 2000 20851820
5 Texas 2010 25145561

Often when working with data in the real world, the raw input data looks like this and it’s use-
ful to build a MultiIndex from the column values. This can be done with the set_index method
of the DataFrame, which returns a multiply indexed DataFrame:

In [42]: pop_flat.set_index(['state', 'year'])

Out[42]: population
state year
California 2000 33871648

2010 37253956
New York 2000 18976457

2010 19378102
Texas 2000 20851820

2010 25145561

In practice, I find this type of reindexing to be one of the more useful patterns when encoun-
tering real-world datasets.

1.5 Data Aggregations on Multi-Indices

We’ve previously seen that Pandas has built-in data aggregation methods, such as mean(), sum(),
and max(). For hierarchically indexed data, these can be passed a level parameter that controls
which subset of the data the aggregate is computed on.

For example, let’s return to our health data:

In [43]: health_data

Out[43]: subject Bob Guido Sue
type HR Temp HR Temp HR Temp
year visit
2013 1 31.0 38.7 32.0 36.7 35.0 37.2

2 44.0 37.7 50.0 35.0 29.0 36.7
2014 1 30.0 37.4 39.0 37.8 61.0 36.9

2 47.0 37.8 48.0 37.3 51.0 36.5
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Perhaps we’d like to average-out the measurements in the two visits each year. We can do this
by naming the index level we’d like to explore, in this case the year:

In [44]: data_mean = health_data.mean(level='year')
data_mean

Out[44]: subject Bob Guido Sue
type HR Temp HR Temp HR Temp
year
2013 37.5 38.2 41.0 35.85 32.0 36.95
2014 38.5 37.6 43.5 37.55 56.0 36.70

By further making use of the axis keyword, we can take the mean among levels on the
columns as well:

In [45]: data_mean.mean(axis=1, level='type')

Out[45]: type HR Temp
year
2013 36.833333 37.000000
2014 46.000000 37.283333

Thus in two lines, we’ve been able to find the average heart rate and temperature measured
among all subjects in all visits each year. This syntax is actually a short cut to the GroupBy func-
tionality, which we will discuss in Aggregation and Grouping. While this is a toy example, many
real-world datasets have similar hierarchical structure.

1.6 Aside: Panel Data

Pandas has a few other fundamental data structures that we have not yet discussed, namely the
pd.Panel and pd.Panel4D objects. These can be thought of, respectively, as three-dimensional
and four-dimensional generalizations of the (one-dimensional) Series and (two-dimensional)
DataFrame structures. Once you are familiar with indexing and manipulation of data in a Series
and DataFrame, Panel and Panel4D are relatively straightforward to use. In particular, the ix,
loc, and iloc indexers discussed in Data Indexing and Selection extend readily to these higher-
dimensional structures.

We won’t cover these panel structures further in this text, as I’ve found in the majority of
cases that multi-indexing is a more useful and conceptually simpler representation for higher-
dimensional data. Additionally, panel data is fundamentally a dense data representation, while
multi-indexing is fundamentally a sparse data representation. As the number of dimensions
increases, the dense representation can become very inefficient for the majority of real-world
datasets. For the occasional specialized application, however, these structures can be useful. If
you’d like to read more about the Panel and Panel4D structures, see the references listed in Fur-
ther Resources.

< Handling Missing Data | Contents | Combining Datasets: Concat and Append >
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03.06-Concat-And-Append

October 29, 2018

This notebook contains an excerpt from the Python Data Science Handbook by Jake VanderPlas; the
content is available on GitHub.

The text is released under the CC-BY-NC-ND license, and code is released under the MIT license. If
you find this content useful, please consider supporting the work by buying the book!

< Hierarchical Indexing | Contents | Combining Datasets: Merge and Join >

1 Combining Datasets: Concat and Append

Some of the most interesting studies of data come from combining different data sources.
These operations can involve anything from very straightforward concatenation of two different
datasets, to more complicated database-style joins and merges that correctly handle any overlaps
between the datasets. Series and DataFrames are built with this type of operation in mind, and
Pandas includes functions and methods that make this sort of data wrangling fast and straightfor-
ward.

Here we’ll take a look at simple concatenation of Series and DataFrames with the pd.concat
function; later we’ll dive into more sophisticated in-memory merges and joins implemented in
Pandas.

We begin with the standard imports:

In [1]: import pandas as pd
import numpy as np

For convenience, we’ll define this function which creates a DataFrame of a particular form that
will be useful below:

In [2]: def make_df(cols, ind):
"""Quickly make a DataFrame"""
data = {c: [str(c) + str(i) for i in ind]

for c in cols}
return pd.DataFrame(data, ind)

# example DataFrame
make_df('ABC', range(3))

Out[2]: A B C
0 A0 B0 C0
1 A1 B1 C1
2 A2 B2 C2

1
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In addition, we’ll create a quick class that allows us to display multiple DataFrames side by
side. The code makes use of the special _repr_html_ method, which IPython uses to implement
its rich object display:

In [3]: class display(object):
"""Display HTML representation of multiple objects"""
template = """<div style="float: left; padding: 10px;">
<p style='font-family:"Courier New", Courier, monospace'>{0}</p>{1}
</div>"""
def __init__(self, *args):

self.args = args

def _repr_html_(self):
return '\n'.join(self.template.format(a, eval(a)._repr_html_())

for a in self.args)

def __repr__(self):
return '\n\n'.join(a + '\n' + repr(eval(a))

for a in self.args)

The use of this will become clearer as we continue our discussion in the following section.

1.1 Recall: Concatenation of NumPy Arrays

Concatenation of Series and DataFrame objects is very similar to concatenation of Numpy arrays,
which can be done via the np.concatenate function as discussed in The Basics of NumPy Arrays.
Recall that with it, you can combine the contents of two or more arrays into a single array:

In [4]: x = [1, 2, 3]
y = [4, 5, 6]
z = [7, 8, 9]
np.concatenate([x, y, z])

Out[4]: array([1, 2, 3, 4, 5, 6, 7, 8, 9])

The first argument is a list or tuple of arrays to concatenate. Additionally, it takes an axis
keyword that allows you to specify the axis along which the result will be concatenated:

In [5]: x = [[1, 2],
[3, 4]]

np.concatenate([x, x], axis=1)

Out[5]: array([[1, 2, 1, 2],
[3, 4, 3, 4]])
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1.2 Simple Concatenation with pd.concat

Pandas has a function, pd.concat(), which has a similar syntax to np.concatenate but contains
a number of options that we’ll discuss momentarily:

# Signature in Pandas v0.18
pd.concat(objs, axis=0, join='outer', join_axes=None, ignore_index=False,

keys=None, levels=None, names=None, verify_integrity=False,
copy=True)

pd.concat() can be used for a simple concatenation of Series or DataFrame objects, just as
np.concatenate() can be used for simple concatenations of arrays:

In [6]: ser1 = pd.Series(['A', 'B', 'C'], index=[1, 2, 3])
ser2 = pd.Series(['D', 'E', 'F'], index=[4, 5, 6])
pd.concat([ser1, ser2])

Out[6]: 1 A
2 B
3 C
4 D
5 E
6 F
dtype: object

It also works to concatenate higher-dimensional objects, such as DataFrames:

In [7]: df1 = make_df('AB', [1, 2])
df2 = make_df('AB', [3, 4])
display('df1', 'df2', 'pd.concat([df1, df2])')

Out[7]: df1
A B

1 A1 B1
2 A2 B2

df2
A B

3 A3 B3
4 A4 B4

pd.concat([df1, df2])
A B

1 A1 B1
2 A2 B2
3 A3 B3
4 A4 B4

By default, the concatenation takes place row-wise within the DataFrame (i.e., axis=0). Like
np.concatenate, pd.concat allows specification of an axis along which concatenation will take
place. Consider the following example:
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In [8]: df3 = make_df('AB', [0, 1])
df4 = make_df('CD', [0, 1])
display('df3', 'df4', "pd.concat([df3, df4], axis='col')")

Out[8]: df3
A B

0 A0 B0
1 A1 B1

df4
C D

0 C0 D0
1 C1 D1

pd.concat([df3, df4], axis='col')
A B C D

0 A0 B0 C0 D0
1 A1 B1 C1 D1

We could have equivalently specified axis=1; here we’ve used the more intuitive axis='col'.

1.2.1 Duplicate indices

One important difference between np.concatenate and pd.concat is that Pandas concatenation
preserves indices, even if the result will have duplicate indices! Consider this simple example:

In [9]: x = make_df('AB', [0, 1])
y = make_df('AB', [2, 3])
y.index = x.index # make duplicate indices!
display('x', 'y', 'pd.concat([x, y])')

Out[9]: x
A B

0 A0 B0
1 A1 B1

y
A B

0 A2 B2
1 A3 B3

pd.concat([x, y])
A B

0 A0 B0
1 A1 B1
0 A2 B2
1 A3 B3

Notice the repeated indices in the result. While this is valid within DataFrames, the outcome is
often undesirable. pd.concat() gives us a few ways to handle it.
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Catching the repeats as an error If you’d like to simply verify that the indices in the result of
pd.concat() do not overlap, you can specify the verify_integrity flag. With this set to True,
the concatenation will raise an exception if there are duplicate indices. Here is an example, where
for clarity we’ll catch and print the error message:

In [10]: try:
pd.concat([x, y], verify_integrity=True)

except ValueError as e:
print("ValueError:", e)

ValueError: Indexes have overlapping values: [0, 1]

Ignoring the index Sometimes the index itself does not matter, and you would prefer it to simply
be ignored. This option can be specified using the ignore_index flag. With this set to true, the
concatenation will create a new integer index for the resulting Series:

In [11]: display('x', 'y', 'pd.concat([x, y], ignore_index=True)')

Out[11]: x
A B

0 A0 B0
1 A1 B1

y
A B

0 A2 B2
1 A3 B3

pd.concat([x, y], ignore_index=True)
A B

0 A0 B0
1 A1 B1
2 A2 B2
3 A3 B3

Adding MultiIndex keys Another option is to use the keys option to specify a label for the data
sources; the result will be a hierarchically indexed series containing the data:

In [12]: display('x', 'y', "pd.concat([x, y], keys=['x', 'y'])")

Out[12]: x
A B

0 A0 B0
1 A1 B1

y
A B
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0 A2 B2
1 A3 B3

pd.concat([x, y], keys=['x', 'y'])
A B

x 0 A0 B0
1 A1 B1

y 0 A2 B2
1 A3 B3

The result is a multiply indexed DataFrame, and we can use the tools discussed in Hierarchical
Indexing to transform this data into the representation we’re interested in.

1.2.2 Concatenation with joins

In the simple examples we just looked at, we were mainly concatenating DataFrames with shared
column names. In practice, data from different sources might have different sets of column names,
and pd.concat offers several options in this case. Consider the concatenation of the following two
DataFrames, which have some (but not all!) columns in common:

In [13]: df5 = make_df('ABC', [1, 2])
df6 = make_df('BCD', [3, 4])
display('df5', 'df6', 'pd.concat([df5, df6])')

Out[13]: df5
A B C

1 A1 B1 C1
2 A2 B2 C2

df6
B C D

3 B3 C3 D3
4 B4 C4 D4

pd.concat([df5, df6])
A B C D

1 A1 B1 C1 NaN
2 A2 B2 C2 NaN
3 NaN B3 C3 D3
4 NaN B4 C4 D4

By default, the entries for which no data is available are filled with NA values. To change this,
we can specify one of several options for the join and join_axes parameters of the concatenate
function. By default, the join is a union of the input columns (join='outer'), but we can change
this to an intersection of the columns using join='inner':

In [14]: display('df5', 'df6',
"pd.concat([df5, df6], join='inner')")
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Out[14]: df5
A B C

1 A1 B1 C1
2 A2 B2 C2

df6
B C D

3 B3 C3 D3
4 B4 C4 D4

pd.concat([df5, df6], join='inner')
B C

1 B1 C1
2 B2 C2
3 B3 C3
4 B4 C4

Another option is to directly specify the index of the remaininig colums using the join_axes
argument, which takes a list of index objects. Here we’ll specify that the returned columns should
be the same as those of the first input:

In [15]: display('df5', 'df6',
"pd.concat([df5, df6], join_axes=[df5.columns])")

Out[15]: df5
A B C

1 A1 B1 C1
2 A2 B2 C2

df6
B C D

3 B3 C3 D3
4 B4 C4 D4

pd.concat([df5, df6], join_axes=[df5.columns])
A B C

1 A1 B1 C1
2 A2 B2 C2
3 NaN B3 C3
4 NaN B4 C4

The combination of options of the pd.concat function allows a wide range of possible behav-
iors when joining two datasets; keep these in mind as you use these tools for your own data.

1.2.3 The append() method

Because direct array concatenation is so common, Series and DataFrame objects have an append
method that can accomplish the same thing in fewer keystrokes. For example, rather than calling
pd.concat([df1, df2]), you can simply call df1.append(df2):
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In [16]: display('df1', 'df2', 'df1.append(df2)')

Out[16]: df1
A B

1 A1 B1
2 A2 B2

df2
A B

3 A3 B3
4 A4 B4

df1.append(df2)
A B

1 A1 B1
2 A2 B2
3 A3 B3
4 A4 B4

Keep in mind that unlike the append() and extend() methods of Python lists, the append()
method in Pandas does not modify the original object–instead it creates a new object with the
combined data. It also is not a very efficient method, because it involves creation of a new index
and data buffer. Thus, if you plan to do multiple append operations, it is generally better to build
a list of DataFrames and pass them all at once to the concat() function.

In the next section, we’ll look at another more powerful approach to combining data from mul-
tiple sources, the database-style merges/joins implemented in pd.merge. For more information on
concat(), append(), and related functionality, see the “Merge, Join, and Concatenate” section of
the Pandas documentation.

< Hierarchical Indexing | Contents | Combining Datasets: Merge and Join >
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03.07-Merge-and-Join

October 29, 2018

This notebook contains an excerpt from the Python Data Science Handbook by Jake VanderPlas; the
content is available on GitHub.

The text is released under the CC-BY-NC-ND license, and code is released under the MIT license. If
you find this content useful, please consider supporting the work by buying the book!

< Combining Datasets: Concat and Append | Contents | Aggregation and Grouping >

1 Combining Datasets: Merge and Join

One essential feature offered by Pandas is its high-performance, in-memory join and merge op-
erations. If you have ever worked with databases, you should be familiar with this type of data
interaction. The main interface for this is the pd.merge function, and we’ll see few examples of
how this can work in practice.

For convenience, we will start by redefining the display() functionality from the previous
section:

In [1]: import pandas as pd
import numpy as np

class display(object):
"""Display HTML representation of multiple objects"""
template = """<div style="float: left; padding: 10px;">
<p style='font-family:"Courier New", Courier, monospace'>{0}</p>{1}
</div>"""
def __init__(self, *args):

self.args = args

def _repr_html_(self):
return '\n'.join(self.template.format(a, eval(a)._repr_html_())

for a in self.args)

def __repr__(self):
return '\n\n'.join(a + '\n' + repr(eval(a))

for a in self.args)
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1.1 Relational Algebra

The behavior implemented in pd.merge() is a subset of what is known as relational algebra, which
is a formal set of rules for manipulating relational data, and forms the conceptual foundation of
operations available in most databases. The strength of the relational algebra approach is that
it proposes several primitive operations, which become the building blocks of more complicated
operations on any dataset. With this lexicon of fundamental operations implemented efficiently
in a database or other program, a wide range of fairly complicated composite operations can be
performed.

Pandas implements several of these fundamental building-blocks in the pd.merge() function
and the related join() method of Series and Dataframes. As we will see, these let you efficiently
link data from different sources.

1.2 Categories of Joins

The pd.merge() function implements a number of types of joins: the one-to-one, many-to-one, and
many-to-many joins. All three types of joins are accessed via an identical call to the pd.merge()
interface; the type of join performed depends on the form of the input data. Here we will show
simple examples of the three types of merges, and discuss detailed options further below.

1.2.1 One-to-one joins

Perhaps the simplest type of merge expresion is the one-to-one join, which is in many ways very
similar to the column-wise concatenation seen in Combining Datasets: Concat & Append. As a
concrete example, consider the following two DataFrames which contain information on several
employees in a company:

In [2]: df1 = pd.DataFrame({'employee': ['Bob', 'Jake', 'Lisa', 'Sue'],
'group': ['Accounting', 'Engineering', 'Engineering', 'HR']})

df2 = pd.DataFrame({'employee': ['Lisa', 'Bob', 'Jake', 'Sue'],
'hire_date': [2004, 2008, 2012, 2014]})

display('df1', 'df2')

Out[2]: df1
employee group

0 Bob Accounting
1 Jake Engineering
2 Lisa Engineering
3 Sue HR

df2
employee hire_date

0 Lisa 2004
1 Bob 2008
2 Jake 2012
3 Sue 2014

To combine this information into a single DataFrame, we can use the pd.merge() function:
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In [3]: df3 = pd.merge(df1, df2)
df3

Out[3]: employee group hire_date
0 Bob Accounting 2008
1 Jake Engineering 2012
2 Lisa Engineering 2004
3 Sue HR 2014

The pd.merge() function recognizes that each DataFrame has an “employee” column, and
automatically joins using this column as a key. The result of the merge is a new DataFrame that
combines the information from the two inputs. Notice that the order of entries in each column
is not necessarily maintained: in this case, the order of the “employee” column differs between
df1 and df2, and the pd.merge() function correctly accounts for this. Additionally, keep in mind
that the merge in general discards the index, except in the special case of merges by index (see the
left_index and right_index keywords, discussed momentarily).

1.2.2 Many-to-one joins

Many-to-one joins are joins in which one of the two key columns contains duplicate entries. For
the many-to-one case, the resulting DataFrame will preserve those duplicate entries as appropriate.
Consider the following example of a many-to-one join:

In [4]: df4 = pd.DataFrame({'group': ['Accounting', 'Engineering', 'HR'],
'supervisor': ['Carly', 'Guido', 'Steve']})

display('df3', 'df4', 'pd.merge(df3, df4)')

Out[4]: df3
employee group hire_date

0 Bob Accounting 2008
1 Jake Engineering 2012
2 Lisa Engineering 2004
3 Sue HR 2014

df4
group supervisor

0 Accounting Carly
1 Engineering Guido
2 HR Steve

pd.merge(df3, df4)
employee group hire_date supervisor

0 Bob Accounting 2008 Carly
1 Jake Engineering 2012 Guido
2 Lisa Engineering 2004 Guido
3 Sue HR 2014 Steve

The resulting DataFrame has an aditional column with the “supervisor” information, where
the information is repeated in one or more locations as required by the inputs.
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1.2.3 Many-to-many joins

Many-to-many joins are a bit confusing conceptually, but are nevertheless well defined. If the
key column in both the left and right array contains duplicates, then the result is a many-to-many
merge. This will be perhaps most clear with a concrete example. Consider the following, where we
have a DataFrame showing one or more skills associated with a particular group. By performing
a many-to-many join, we can recover the skills associated with any individual person:

In [5]: df5 = pd.DataFrame({'group': ['Accounting', 'Accounting',
'Engineering', 'Engineering', 'HR', 'HR'],

'skills': ['math', 'spreadsheets', 'coding', 'linux',
'spreadsheets', 'organization']})

display('df1', 'df5', "pd.merge(df1, df5)")

Out[5]: df1
employee group

0 Bob Accounting
1 Jake Engineering
2 Lisa Engineering
3 Sue HR

df5
group skills

0 Accounting math
1 Accounting spreadsheets
2 Engineering coding
3 Engineering linux
4 HR spreadsheets
5 HR organization

pd.merge(df1, df5)
employee group skills

0 Bob Accounting math
1 Bob Accounting spreadsheets
2 Jake Engineering coding
3 Jake Engineering linux
4 Lisa Engineering coding
5 Lisa Engineering linux
6 Sue HR spreadsheets
7 Sue HR organization

These three types of joins can be used with other Pandas tools to implement a wide array of
functionality. But in practice, datasets are rarely as clean as the one we’re working with here. In
the following section we’ll consider some of the options provided by pd.merge() that enable you
to tune how the join operations work.

1.3 Specification of the Merge Key

We’ve already seen the default behavior of pd.merge(): it looks for one or more matching column
names between the two inputs, and uses this as the key. However, often the column names will
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not match so nicely, and pd.merge() provides a variety of options for handling this.

1.3.1 The on keyword

Most simply, you can explicitly specify the name of the key column using the on keyword, which
takes a column name or a list of column names:

In [6]: display('df1', 'df2', "pd.merge(df1, df2, on='employee')")

Out[6]: df1
employee group

0 Bob Accounting
1 Jake Engineering
2 Lisa Engineering
3 Sue HR

df2
employee hire_date

0 Lisa 2004
1 Bob 2008
2 Jake 2012
3 Sue 2014

pd.merge(df1, df2, on='employee')
employee group hire_date

0 Bob Accounting 2008
1 Jake Engineering 2012
2 Lisa Engineering 2004
3 Sue HR 2014

This option works only if both the left and right DataFrames have the specified column name.

1.3.2 The left_on and right_on keywords

At times you may wish to merge two datasets with different column names; for example, we may
have a dataset in which the employee name is labeled as “name” rather than “employee”. In this
case, we can use the left_on and right_on keywords to specify the two column names:

In [7]: df3 = pd.DataFrame({'name': ['Bob', 'Jake', 'Lisa', 'Sue'],
'salary': [70000, 80000, 120000, 90000]})

display('df1', 'df3', 'pd.merge(df1, df3, left_on="employee", right_on="name")')

Out[7]: df1
employee group

0 Bob Accounting
1 Jake Engineering
2 Lisa Engineering
3 Sue HR
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df3
name salary

0 Bob 70000
1 Jake 80000
2 Lisa 120000
3 Sue 90000

pd.merge(df1, df3, left_on="employee", right_on="name")
employee group name salary

0 Bob Accounting Bob 70000
1 Jake Engineering Jake 80000
2 Lisa Engineering Lisa 120000
3 Sue HR Sue 90000

The result has a redundant column that we can drop if desired–for example, by using the
drop() method of DataFrames:

In [8]: pd.merge(df1, df3, left_on="employee", right_on="name").drop('name', axis=1)

Out[8]: employee group salary
0 Bob Accounting 70000
1 Jake Engineering 80000
2 Lisa Engineering 120000
3 Sue HR 90000

1.3.3 The left_index and right_index keywords

Sometimes, rather than merging on a column, you would instead like to merge on an index. For
example, your data might look like this:

In [9]: df1a = df1.set_index('employee')
df2a = df2.set_index('employee')
display('df1a', 'df2a')

Out[9]: df1a
group

employee
Bob Accounting
Jake Engineering
Lisa Engineering
Sue HR

df2a
hire_date

employee
Lisa 2004
Bob 2008
Jake 2012
Sue 2014
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You can use the index as the key for merging by specifying the left_index and/or
right_index flags in pd.merge():

In [10]: display('df1a', 'df2a',
"pd.merge(df1a, df2a, left_index=True, right_index=True)")

Out[10]: df1a
group

employee
Bob Accounting
Jake Engineering
Lisa Engineering
Sue HR

df2a
hire_date

employee
Lisa 2004
Bob 2008
Jake 2012
Sue 2014

pd.merge(df1a, df2a, left_index=True, right_index=True)
group hire_date

employee
Lisa Engineering 2004
Bob Accounting 2008
Jake Engineering 2012
Sue HR 2014

For convenience, DataFrames implement the join() method, which performs a merge that
defaults to joining on indices:

In [11]: display('df1a', 'df2a', 'df1a.join(df2a)')

Out[11]: df1a
group

employee
Bob Accounting
Jake Engineering
Lisa Engineering
Sue HR

df2a
hire_date

employee
Lisa 2004
Bob 2008
Jake 2012
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Sue 2014

df1a.join(df2a)
group hire_date

employee
Bob Accounting 2008
Jake Engineering 2012
Lisa Engineering 2004
Sue HR 2014

If you’d like to mix indices and columns, you can combine left_index with right_on or
left_on with right_index to get the desired behavior:

In [12]: display('df1a', 'df3', "pd.merge(df1a, df3, left_index=True, right_on='name')")

Out[12]: df1a
group

employee
Bob Accounting
Jake Engineering
Lisa Engineering
Sue HR

df3
name salary

0 Bob 70000
1 Jake 80000
2 Lisa 120000
3 Sue 90000

pd.merge(df1a, df3, left_index=True, right_on='name')
group name salary

0 Accounting Bob 70000
1 Engineering Jake 80000
2 Engineering Lisa 120000
3 HR Sue 90000

All of these options also work with multiple indices and/or multiple columns; the interface
for this behavior is very intuitive. For more information on this, see the “Merge, Join, and Con-
catenate” section of the Pandas documentation.

1.4 Specifying Set Arithmetic for Joins

In all the preceding examples we have glossed over one important consideration in performing a
join: the type of set arithmetic used in the join. This comes up when a value appears in one key
column but not the other. Consider this example:

In [13]: df6 = pd.DataFrame({'name': ['Peter', 'Paul', 'Mary'],
'food': ['fish', 'beans', 'bread']},
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columns=['name', 'food'])
df7 = pd.DataFrame({'name': ['Mary', 'Joseph'],

'drink': ['wine', 'beer']},
columns=['name', 'drink'])

display('df6', 'df7', 'pd.merge(df6, df7)')

Out[13]: df6
name food

0 Peter fish
1 Paul beans
2 Mary bread

df7
name drink

0 Mary wine
1 Joseph beer

pd.merge(df6, df7)
name food drink

0 Mary bread wine

Here we have merged two datasets that have only a single “name” entry in common: Mary.
By default, the result contains the intersection of the two sets of inputs; this is what is known as an
inner join. We can specify this explicitly using the how keyword, which defaults to "inner":

In [14]: pd.merge(df6, df7, how='inner')

Out[14]: name food drink
0 Mary bread wine

Other options for the how keyword are 'outer', 'left', and 'right'. An outer join returns a
join over the union of the input columns, and fills in all missing values with NAs:

In [15]: display('df6', 'df7', "pd.merge(df6, df7, how='outer')")

Out[15]: df6
name food

0 Peter fish
1 Paul beans
2 Mary bread

df7
name drink

0 Mary wine
1 Joseph beer

pd.merge(df6, df7, how='outer')
name food drink

0 Peter fish NaN

9



1 Paul beans NaN
2 Mary bread wine
3 Joseph NaN beer

The left join and right join return joins over the left entries and right entries, respectively. For
example:

In [16]: display('df6', 'df7', "pd.merge(df6, df7, how='left')")

Out[16]: df6
name food

0 Peter fish
1 Paul beans
2 Mary bread

df7
name drink

0 Mary wine
1 Joseph beer

pd.merge(df6, df7, how='left')
name food drink

0 Peter fish NaN
1 Paul beans NaN
2 Mary bread wine

The output rows now correspond to the entries in the left input. Using how='right' works in
a similar manner.

All of these options can be applied straightforwardly to any of the preceding join types.

1.5 Overlapping Column Names: The suffixes Keyword

Finally, you may end up in a case where your two input DataFrames have conflicting column
names. Consider this example:

In [17]: df8 = pd.DataFrame({'name': ['Bob', 'Jake', 'Lisa', 'Sue'],
'rank': [1, 2, 3, 4]})

df9 = pd.DataFrame({'name': ['Bob', 'Jake', 'Lisa', 'Sue'],
'rank': [3, 1, 4, 2]})

display('df8', 'df9', 'pd.merge(df8, df9, on="name")')

Out[17]: df8
name rank

0 Bob 1
1 Jake 2
2 Lisa 3
3 Sue 4

df9
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name rank
0 Bob 3
1 Jake 1
2 Lisa 4
3 Sue 2

pd.merge(df8, df9, on="name")
name rank_x rank_y

0 Bob 1 3
1 Jake 2 1
2 Lisa 3 4
3 Sue 4 2

Because the output would have two conflicting column names, the merge function automati-
cally appends a suffix _x or _y to make the output columns unique. If these defaults are inappro-
priate, it is possible to specify a custom suffix using the suffixes keyword:

In [18]: display('df8', 'df9', 'pd.merge(df8, df9, on="name", suffixes=["_L", "_R"])')

Out[18]: df8
name rank

0 Bob 1
1 Jake 2
2 Lisa 3
3 Sue 4

df9
name rank

0 Bob 3
1 Jake 1
2 Lisa 4
3 Sue 2

pd.merge(df8, df9, on="name", suffixes=["_L", "_R"])
name rank_L rank_R

0 Bob 1 3
1 Jake 2 1
2 Lisa 3 4
3 Sue 4 2

These suffixes work in any of the possible join patterns, and work also if there are multiple
overlapping columns.

For more information on these patterns, see Aggregation and Grouping where we dive a bit
deeper into relational algebra. Also see the Pandas “Merge, Join and Concatenate” documentation
for further discussion of these topics.

1.6 Example: US States Data

Merge and join operations come up most often when combining data from different sources. Here
we will consider an example of some data about US states and their populations. The data files
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can be found at http://github.com/jakevdp/data-USstates/:

In [19]: # Following are shell commands to download the data
# !curl -O https://raw.githubusercontent.com/jakevdp/data-USstates/master/state-population.csv
# !curl -O https://raw.githubusercontent.com/jakevdp/data-USstates/master/state-areas.csv
# !curl -O https://raw.githubusercontent.com/jakevdp/data-USstates/master/state-abbrevs.csv

Let’s take a look at the three datasets, using the Pandas read_csv() function:

In [20]: pop = pd.read_csv('data/state-population.csv')
areas = pd.read_csv('data/state-areas.csv')
abbrevs = pd.read_csv('data/state-abbrevs.csv')

display('pop.head()', 'areas.head()', 'abbrevs.head()')

Out[20]: pop.head()
state/region ages year population

0 AL under18 2012 1117489.0
1 AL total 2012 4817528.0
2 AL under18 2010 1130966.0
3 AL total 2010 4785570.0
4 AL under18 2011 1125763.0

areas.head()
state area (sq. mi)

0 Alabama 52423
1 Alaska 656425
2 Arizona 114006
3 Arkansas 53182
4 California 163707

abbrevs.head()
state abbreviation

0 Alabama AL
1 Alaska AK
2 Arizona AZ
3 Arkansas AR
4 California CA

Given this information, say we want to compute a relatively straightforward result: rank US
states and territories by their 2010 population density. We clearly have the data here to find this
result, but we’ll have to combine the datasets to find the result.

We’ll start with a many-to-one merge that will give us the full state name within the population
DataFrame. We want to merge based on the state/region column of pop, and the abbreviation
column of abbrevs. We’ll use how='outer' to make sure no data is thrown away due to mis-
matched labels.

In [21]: merged = pd.merge(pop, abbrevs, how='outer',
left_on='state/region', right_on='abbreviation')
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merged = merged.drop('abbreviation', 1) # drop duplicate info
merged.head()

Out[21]: state/region ages year population state
0 AL under18 2012 1117489.0 Alabama
1 AL total 2012 4817528.0 Alabama
2 AL under18 2010 1130966.0 Alabama
3 AL total 2010 4785570.0 Alabama
4 AL under18 2011 1125763.0 Alabama

Let’s double-check whether there were any mismatches here, which we can do by looking for
rows with nulls:

In [22]: merged.isnull().any()

Out[22]: state/region False
ages False
year False
population True
state True
dtype: bool

Some of the population info is null; let’s figure out which these are!

In [23]: merged[merged['population'].isnull()].head()

Out[23]: state/region ages year population state
2448 PR under18 1990 NaN NaN
2449 PR total 1990 NaN NaN
2450 PR total 1991 NaN NaN
2451 PR under18 1991 NaN NaN
2452 PR total 1993 NaN NaN

It appears that all the null population values are from Puerto Rico prior to the year 2000; this
is likely due to this data not being available from the original source.

More importantly, we see also that some of the new state entries are also null, which means
that there was no corresponding entry in the abbrevs key! Let’s figure out which regions lack this
match:

In [24]: merged.loc[merged['state'].isnull(), 'state/region'].unique()

Out[24]: array(['PR', 'USA'], dtype=object)

We can quickly infer the issue: our population data includes entries for Puerto Rico (PR) and
the United States as a whole (USA), while these entries do not appear in the state abbreviation key.
We can fix these quickly by filling in appropriate entries:

In [25]: merged.loc[merged['state/region'] == 'PR', 'state'] = 'Puerto Rico'
merged.loc[merged['state/region'] == 'USA', 'state'] = 'United States'
merged.isnull().any()
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Out[25]: state/region False
ages False
year False
population True
state False
dtype: bool

No more nulls in the state column: we’re all set!
Now we can merge the result with the area data using a similar procedure. Examining our

results, we will want to join on the state column in both:

In [26]: final = pd.merge(merged, areas, on='state', how='left')
final.head()

Out[26]: state/region ages year population state area (sq. mi)
0 AL under18 2012 1117489.0 Alabama 52423.0
1 AL total 2012 4817528.0 Alabama 52423.0
2 AL under18 2010 1130966.0 Alabama 52423.0
3 AL total 2010 4785570.0 Alabama 52423.0
4 AL under18 2011 1125763.0 Alabama 52423.0

Again, let’s check for nulls to see if there were any mismatches:

In [27]: final.isnull().any()

Out[27]: state/region False
ages False
year False
population True
state False
area (sq. mi) True
dtype: bool

There are nulls in the area column; we can take a look to see which regions were ignored here:

In [28]: final['state'][final['area (sq. mi)'].isnull()].unique()

Out[28]: array(['United States'], dtype=object)

We see that our areas DataFrame does not contain the area of the United States as a whole. We
could insert the appropriate value (using the sum of all state areas, for instance), but in this case
we’ll just drop the null values because the population density of the entire United States is not
relevant to our current discussion:

In [29]: final.dropna(inplace=True)
final.head()

Out[29]: state/region ages year population state area (sq. mi)
0 AL under18 2012 1117489.0 Alabama 52423.0
1 AL total 2012 4817528.0 Alabama 52423.0
2 AL under18 2010 1130966.0 Alabama 52423.0
3 AL total 2010 4785570.0 Alabama 52423.0
4 AL under18 2011 1125763.0 Alabama 52423.0
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Now we have all the data we need. To answer the question of interest, let’s first select the
portion of the data corresponding with the year 2000, and the total population. We’ll use the
query() function to do this quickly (this requires the numexpr package to be installed; see High-
Performance Pandas: eval() and query()):

In [30]: data2010 = final.query("year == 2010 & ages == 'total'")
data2010.head()

Out[30]: state/region ages year population state area (sq. mi)
3 AL total 2010 4785570.0 Alabama 52423.0
91 AK total 2010 713868.0 Alaska 656425.0
101 AZ total 2010 6408790.0 Arizona 114006.0
189 AR total 2010 2922280.0 Arkansas 53182.0
197 CA total 2010 37333601.0 California 163707.0

Now let’s compute the population density and display it in order. We’ll start by re-indexing
our data on the state, and then compute the result:

In [31]: data2010.set_index('state', inplace=True)
density = data2010['population'] / data2010['area (sq. mi)']

In [32]: density.sort_values(ascending=False, inplace=True)
density.head()

Out[32]: state
District of Columbia 8898.897059
Puerto Rico 1058.665149
New Jersey 1009.253268
Rhode Island 681.339159
Connecticut 645.600649
dtype: float64

The result is a ranking of US states plus Washington, DC, and Puerto Rico in order of their
2010 population density, in residents per square mile. We can see that by far the densest region in
this dataset is Washington, DC (i.e., the District of Columbia); among states, the densest is New
Jersey.

We can also check the end of the list:

In [33]: density.tail()

Out[33]: state
South Dakota 10.583512
North Dakota 9.537565
Montana 6.736171
Wyoming 5.768079
Alaska 1.087509
dtype: float64
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We see that the least dense state, by far, is Alaska, averaging slightly over one resident per
square mile.

This type of messy data merging is a common task when trying to answer questions using real-
world data sources. I hope that this example has given you an idea of the ways you can combine
tools we’ve covered in order to gain insight from your data!

< Combining Datasets: Concat and Append | Contents | Aggregation and Grouping >
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03.08-Aggregation-and-Grouping

October 29, 2018

This notebook contains an excerpt from the Python Data Science Handbook by Jake VanderPlas; the
content is available on GitHub.

The text is released under the CC-BY-NC-ND license, and code is released under the MIT license. If
you find this content useful, please consider supporting the work by buying the book!

< Combining Datasets: Merge and Join | Contents | Pivot Tables >

1 Aggregation and Grouping

An essential piece of analysis of large data is efficient summarization: computing aggregations
like sum(), mean(), median(), min(), and max(), in which a single number gives insight into the
nature of a potentially large dataset. In this section, we’ll explore aggregations in Pandas, from
simple operations akin to what we’ve seen on NumPy arrays, to more sophisticated operations
based on the concept of a groupby.

For convenience, we’ll use the same display magic function that we’ve seen in previous sec-
tions:

In [1]: import numpy as np
import pandas as pd

class display(object):
"""Display HTML representation of multiple objects"""
template = """<div style="float: left; padding: 10px;">
<p style='font-family:"Courier New", Courier, monospace'>{0}</p>{1}
</div>"""
def __init__(self, *args):

self.args = args

def _repr_html_(self):
return '\n'.join(self.template.format(a, eval(a)._repr_html_())

for a in self.args)

def __repr__(self):
return '\n\n'.join(a + '\n' + repr(eval(a))

for a in self.args)
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1.1 Planets Data

Here we will use the Planets dataset, available via the Seaborn package (see Visualization With
Seaborn). It gives information on planets that astronomers have discovered around other stars
(known as extrasolar planets or exoplanets for short). It can be downloaded with a simple Seaborn
command:

In [2]: import seaborn as sns
planets = sns.load_dataset('planets')
planets.shape

Out[2]: (1035, 6)

In [3]: planets.head()

Out[3]: method number orbital_period mass distance year
0 Radial Velocity 1 269.300 7.10 77.40 2006
1 Radial Velocity 1 874.774 2.21 56.95 2008
2 Radial Velocity 1 763.000 2.60 19.84 2011
3 Radial Velocity 1 326.030 19.40 110.62 2007
4 Radial Velocity 1 516.220 10.50 119.47 2009

This has some details on the 1,000+ extrasolar planets discovered up to 2014.

1.2 Simple Aggregation in Pandas

Earlier, we explored some of the data aggregations available for NumPy arrays (“Aggregations:
Min, Max, and Everything In Between”). As with a one-dimensional NumPy array, for a Pandas
Series the aggregates return a single value:

In [4]: rng = np.random.RandomState(42)
ser = pd.Series(rng.rand(5))
ser

Out[4]: 0 0.374540
1 0.950714
2 0.731994
3 0.598658
4 0.156019
dtype: float64

In [5]: ser.sum()

Out[5]: 2.8119254917081569

In [6]: ser.mean()

Out[6]: 0.56238509834163142

For a DataFrame, by default the aggregates return results within each column:
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In [7]: df = pd.DataFrame({'A': rng.rand(5),
'B': rng.rand(5)})

df

Out[7]: A B
0 0.155995 0.020584
1 0.058084 0.969910
2 0.866176 0.832443
3 0.601115 0.212339
4 0.708073 0.181825

In [8]: df.mean()

Out[8]: A 0.477888
B 0.443420
dtype: float64

By specifying the axis argument, you can instead aggregate within each row:

In [9]: df.mean(axis='columns')

Out[9]: 0 0.088290
1 0.513997
2 0.849309
3 0.406727
4 0.444949
dtype: float64

Pandas Series and DataFrames include all of the common aggregates mentioned in Aggre-
gations: Min, Max, and Everything In Between; in addition, there is a convenience method
describe() that computes several common aggregates for each column and returns the result.
Let’s use this on the Planets data, for now dropping rows with missing values:

In [10]: planets.dropna().describe()

Out[10]: number orbital_period mass distance year
count 498.00000 498.000000 498.000000 498.000000 498.000000
mean 1.73494 835.778671 2.509320 52.068213 2007.377510
std 1.17572 1469.128259 3.636274 46.596041 4.167284
min 1.00000 1.328300 0.003600 1.350000 1989.000000
25% 1.00000 38.272250 0.212500 24.497500 2005.000000
50% 1.00000 357.000000 1.245000 39.940000 2009.000000
75% 2.00000 999.600000 2.867500 59.332500 2011.000000
max 6.00000 17337.500000 25.000000 354.000000 2014.000000

This can be a useful way to begin understanding the overall properties of a dataset. For ex-
ample, we see in the year column that although exoplanets were discovered as far back as 1989,
half of all known expolanets were not discovered until 2010 or after. This is largely thanks to the
Kepler mission, which is a space-based telescope specifically designed for finding eclipsing planets
around other stars.

The following table summarizes some other built-in Pandas aggregations:
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Aggregation Description

count() Total number of items
first(), last() First and last item
mean(), median() Mean and median
min(), max() Minimum and maximum
std(), var() Standard deviation and variance
mad() Mean absolute deviation
prod() Product of all items
sum() Sum of all items

These are all methods of DataFrame and Series objects.
To go deeper into the data, however, simple aggregates are often not enough. The next level of

data summarization is the groupby operation, which allows you to quickly and efficiently compute
aggregates on subsets of data.

1.3 GroupBy: Split, Apply, Combine

Simple aggregations can give you a flavor of your dataset, but often we would prefer to aggregate
conditionally on some label or index: this is implemented in the so-called groupby operation. The
name “group by” comes from a command in the SQL database language, but it is perhaps more
illuminative to think of it in the terms first coined by Hadley Wickham of Rstats fame: split, apply,
combine.

1.3.1 Split, apply, combine

A canonical example of this split-apply-combine operation, where the “apply” is a summation
aggregation, is illustrated in this figure:
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figure source in
Appendix

This makes clear what the groupby accomplishes:

• The split step involves breaking up and grouping a DataFrame depending on the value of
the specified key.

• The apply step involves computing some function, usually an aggregate, transformation, or
filtering, within the individual groups.

• The combine step merges the results of these operations into an output array.

While this could certainly be done manually using some combination of the masking, aggre-
gation, and merging commands covered earlier, an important realization is that the intermediate
splits do not need to be explicitly instantiated. Rather, the GroupBy can (often) do this in a single pass
over the data, updating the sum, mean, count, min, or other aggregate for each group along the
way. The power of the GroupBy is that it abstracts away these steps: the user need not think about
how the computation is done under the hood, but rather thinks about the operation as a whole.

As a concrete example, let’s take a look at using Pandas for the computation shown in this
diagram. We’ll start by creating the input DataFrame:

In [11]: df = pd.DataFrame({'key': ['A', 'B', 'C', 'A', 'B', 'C'],
'data': range(6)}, columns=['key', 'data'])

df

Out[11]: key data
0 A 0
1 B 1
2 C 2
3 A 3
4 B 4
5 C 5
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The most basic split-apply-combine operation can be computed with the groupby() method
of DataFrames, passing the name of the desired key column:

In [12]: df.groupby('key')

Out[12]: <pandas.core.groupby.DataFrameGroupBy object at 0x117272160>

Notice that what is returned is not a set of DataFrames, but a DataFrameGroupBy object. This
object is where the magic is: you can think of it as a special view of the DataFrame, which is poised
to dig into the groups but does no actual computation until the aggregation is applied. This “lazy
evaluation” approach means that common aggregates can be implemented very efficiently in a
way that is almost transparent to the user.

To produce a result, we can apply an aggregate to this DataFrameGroupBy object, which will
perform the appropriate apply/combine steps to produce the desired result:

In [13]: df.groupby('key').sum()

Out[13]: data
key
A 3
B 5
C 7

The sum() method is just one possibility here; you can apply virtually any common Pandas or
NumPy aggregation function, as well as virtually any valid DataFrame operation, as we will see
in the following discussion.

1.3.2 The GroupBy object

The GroupBy object is a very flexible abstraction. In many ways, you can simply treat it as if it’s a
collection of DataFrames, and it does the difficult things under the hood. Let’s see some examples
using the Planets data.

Perhaps the most important operations made available by a GroupBy are aggregate, filter, trans-
form, and apply. We’ll discuss each of these more fully in Section 1.3.3, but before that let’s intro-
duce some of the other functionality that can be used with the basic GroupBy operation.

Column indexing The GroupBy object supports column indexing in the same way as the
DataFrame, and returns a modified GroupBy object. For example:

In [14]: planets.groupby('method')

Out[14]: <pandas.core.groupby.DataFrameGroupBy object at 0x1172727b8>

In [15]: planets.groupby('method')['orbital_period']

Out[15]: <pandas.core.groupby.SeriesGroupBy object at 0x117272da0>

Here we’ve selected a particular Series group from the original DataFrame group by refer-
ence to its column name. As with the GroupBy object, no computation is done until we call some
aggregate on the object:
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In [16]: planets.groupby('method')['orbital_period'].median()

Out[16]: method
Astrometry 631.180000
Eclipse Timing Variations 4343.500000
Imaging 27500.000000
Microlensing 3300.000000
Orbital Brightness Modulation 0.342887
Pulsar Timing 66.541900
Pulsation Timing Variations 1170.000000
Radial Velocity 360.200000
Transit 5.714932
Transit Timing Variations 57.011000
Name: orbital_period, dtype: float64

This gives an idea of the general scale of orbital periods (in days) that each method is sensitive
to.

Iteration over groups The GroupBy object supports direct iteration over the groups, returning
each group as a Series or DataFrame:

In [17]: for (method, group) in planets.groupby('method'):
print("{0:30s} shape={1}".format(method, group.shape))

Astrometry shape=(2, 6)
Eclipse Timing Variations shape=(9, 6)
Imaging shape=(38, 6)
Microlensing shape=(23, 6)
Orbital Brightness Modulation shape=(3, 6)
Pulsar Timing shape=(5, 6)
Pulsation Timing Variations shape=(1, 6)
Radial Velocity shape=(553, 6)
Transit shape=(397, 6)
Transit Timing Variations shape=(4, 6)

This can be useful for doing certain things manually, though it is often much faster to use the
built-in apply functionality, which we will discuss momentarily.

Dispatch methods Through some Python class magic, any method not explicitly implemented
by the GroupBy object will be passed through and called on the groups, whether they are
DataFrame or Series objects. For example, you can use the describe() method of DataFrames
to perform a set of aggregations that describe each group in the data:

In [18]: planets.groupby('method')['year'].describe().unstack()

Out[18]: count mean std min 25% \
method
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Astrometry 2.0 2011.500000 2.121320 2010.0 2010.75
Eclipse Timing Variations 9.0 2010.000000 1.414214 2008.0 2009.00
Imaging 38.0 2009.131579 2.781901 2004.0 2008.00
Microlensing 23.0 2009.782609 2.859697 2004.0 2008.00
Orbital Brightness Modulation 3.0 2011.666667 1.154701 2011.0 2011.00
Pulsar Timing 5.0 1998.400000 8.384510 1992.0 1992.00
Pulsation Timing Variations 1.0 2007.000000 NaN 2007.0 2007.00
Radial Velocity 553.0 2007.518987 4.249052 1989.0 2005.00
Transit 397.0 2011.236776 2.077867 2002.0 2010.00
Transit Timing Variations 4.0 2012.500000 1.290994 2011.0 2011.75

50% 75% max
method
Astrometry 2011.5 2012.25 2013.0
Eclipse Timing Variations 2010.0 2011.00 2012.0
Imaging 2009.0 2011.00 2013.0
Microlensing 2010.0 2012.00 2013.0
Orbital Brightness Modulation 2011.0 2012.00 2013.0
Pulsar Timing 1994.0 2003.00 2011.0
Pulsation Timing Variations 2007.0 2007.00 2007.0
Radial Velocity 2009.0 2011.00 2014.0
Transit 2012.0 2013.00 2014.0
Transit Timing Variations 2012.5 2013.25 2014.0

Looking at this table helps us to better understand the data: for example, the vast majority of
planets have been discovered by the Radial Velocity and Transit methods, though the latter only
became common (due to new, more accurate telescopes) in the last decade. The newest methods
seem to be Transit Timing Variation and Orbital Brightness Modulation, which were not used to
discover a new planet until 2011.

This is just one example of the utility of dispatch methods. Notice that they are applied to
each individual group, and the results are then combined within GroupBy and returned. Again, any
valid DataFrame/Series method can be used on the corresponding GroupBy object, which allows
for some very flexible and powerful operations!

1.3.3 Aggregate, filter, transform, apply

The preceding discussion focused on aggregation for the combine operation, but there are more
options available. In particular, GroupBy objects have aggregate(), filter(), transform(), and
apply() methods that efficiently implement a variety of useful operations before combining the
grouped data.

For the purpose of the following subsections, we’ll use this DataFrame:

In [19]: rng = np.random.RandomState(0)
df = pd.DataFrame({'key': ['A', 'B', 'C', 'A', 'B', 'C'],

'data1': range(6),
'data2': rng.randint(0, 10, 6)},
columns = ['key', 'data1', 'data2'])

df
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Out[19]: key data1 data2
0 A 0 5
1 B 1 0
2 C 2 3
3 A 3 3
4 B 4 7
5 C 5 9

Aggregation We’re now familiar with GroupBy aggregations with sum(), median(), and the like,
but the aggregate() method allows for even more flexibility. It can take a string, a function, or a
list thereof, and compute all the aggregates at once. Here is a quick example combining all these:

In [20]: df.groupby('key').aggregate(['min', np.median, max])

Out[20]: data1 data2
min median max min median max

key
A 0 1.5 3 3 4.0 5
B 1 2.5 4 0 3.5 7
C 2 3.5 5 3 6.0 9

Another useful pattern is to pass a dictionary mapping column names to operations to be
applied on that column:

In [21]: df.groupby('key').aggregate({'data1': 'min',
'data2': 'max'})

Out[21]: data1 data2
key
A 0 5
B 1 7
C 2 9

Filtering A filtering operation allows you to drop data based on the group properties. For exam-
ple, we might want to keep all groups in which the standard deviation is larger than some critical
value:

In [22]: def filter_func(x):
return x['data2'].std() > 4

display('df', "df.groupby('key').std()", "df.groupby('key').filter(filter_func)")

Out[22]: df
key data1 data2

0 A 0 5
1 B 1 0
2 C 2 3
3 A 3 3
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4 B 4 7
5 C 5 9

df.groupby('key').std()
data1 data2

key
A 2.12132 1.414214
B 2.12132 4.949747
C 2.12132 4.242641

df.groupby('key').filter(filter_func)
key data1 data2

1 B 1 0
2 C 2 3
4 B 4 7
5 C 5 9

The filter function should return a Boolean value specifying whether the group passes the
filtering. Here because group A does not have a standard deviation greater than 4, it is dropped
from the result.

Transformation While aggregation must return a reduced version of the data, transformation
can return some transformed version of the full data to recombine. For such a transformation, the
output is the same shape as the input. A common example is to center the data by subtracting the
group-wise mean:

In [23]: df.groupby('key').transform(lambda x: x - x.mean())

Out[23]: data1 data2
0 -1.5 1.0
1 -1.5 -3.5
2 -1.5 -3.0
3 1.5 -1.0
4 1.5 3.5
5 1.5 3.0

The apply() method The apply() method lets you apply an arbitrary function to the group
results. The function should take a DataFrame, and return either a Pandas object (e.g., DataFrame,
Series) or a scalar; the combine operation will be tailored to the type of output returned.

For example, here is an apply() that normalizes the first column by the sum of the second:

In [24]: def norm_by_data2(x):
# x is a DataFrame of group values
x['data1'] /= x['data2'].sum()
return x

display('df', "df.groupby('key').apply(norm_by_data2)")
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Out[24]: df
key data1 data2

0 A 0 5
1 B 1 0
2 C 2 3
3 A 3 3
4 B 4 7
5 C 5 9

df.groupby('key').apply(norm_by_data2)
key data1 data2

0 A 0.000000 5
1 B 0.142857 0
2 C 0.166667 3
3 A 0.375000 3
4 B 0.571429 7
5 C 0.416667 9

apply() within a GroupBy is quite flexible: the only criterion is that the function takes a
DataFrame and returns a Pandas object or scalar; what you do in the middle is up to you!

1.3.4 Specifying the split key

In the simple examples presented before, we split the DataFrame on a single column name. This
is just one of many options by which the groups can be defined, and we’ll go through some other
options for group specification here.

A list, array, series, or index providing the grouping keys The key can be any series or list with
a length matching that of the DataFrame. For example:

In [25]: L = [0, 1, 0, 1, 2, 0]
display('df', 'df.groupby(L).sum()')

Out[25]: df
key data1 data2

0 A 0 5
1 B 1 0
2 C 2 3
3 A 3 3
4 B 4 7
5 C 5 9

df.groupby(L).sum()
data1 data2

0 7 17
1 4 3
2 4 7
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Of course, this means there’s another, more verbose way of accomplishing the
df.groupby('key') from before:

In [26]: display('df', "df.groupby(df['key']).sum()")

Out[26]: df
key data1 data2

0 A 0 5
1 B 1 0
2 C 2 3
3 A 3 3
4 B 4 7
5 C 5 9

df.groupby(df['key']).sum()
data1 data2

key
A 3 8
B 5 7
C 7 12

A dictionary or series mapping index to group Another method is to provide a dictionary that
maps index values to the group keys:

In [27]: df2 = df.set_index('key')
mapping = {'A': 'vowel', 'B': 'consonant', 'C': 'consonant'}
display('df2', 'df2.groupby(mapping).sum()')

Out[27]: df2
data1 data2

key
A 0 5
B 1 0
C 2 3
A 3 3
B 4 7
C 5 9

df2.groupby(mapping).sum()
data1 data2

consonant 12 19
vowel 3 8

Any Python function Similar to mapping, you can pass any Python function that will input the
index value and output the group:

In [28]: display('df2', 'df2.groupby(str.lower).mean()')
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Out[28]: df2
data1 data2

key
A 0 5
B 1 0
C 2 3
A 3 3
B 4 7
C 5 9

df2.groupby(str.lower).mean()
data1 data2

a 1.5 4.0
b 2.5 3.5
c 3.5 6.0

A list of valid keys Further, any of the preceding key choices can be combined to group on a
multi-index:

In [29]: df2.groupby([str.lower, mapping]).mean()

Out[29]: data1 data2
a vowel 1.5 4.0
b consonant 2.5 3.5
c consonant 3.5 6.0

1.3.5 Grouping example

As an example of this, in a couple lines of Python code we can put all these together and count
discovered planets by method and by decade:

In [30]: decade = 10 * (planets['year'] // 10)
decade = decade.astype(str) + 's'
decade.name = 'decade'
planets.groupby(['method', decade])['number'].sum().unstack().fillna(0)

Out[30]: decade 1980s 1990s 2000s 2010s
method
Astrometry 0.0 0.0 0.0 2.0
Eclipse Timing Variations 0.0 0.0 5.0 10.0
Imaging 0.0 0.0 29.0 21.0
Microlensing 0.0 0.0 12.0 15.0
Orbital Brightness Modulation 0.0 0.0 0.0 5.0
Pulsar Timing 0.0 9.0 1.0 1.0
Pulsation Timing Variations 0.0 0.0 1.0 0.0
Radial Velocity 1.0 52.0 475.0 424.0
Transit 0.0 0.0 64.0 712.0
Transit Timing Variations 0.0 0.0 0.0 9.0
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This shows the power of combining many of the operations we’ve discussed up to this point
when looking at realistic datasets. We immediately gain a coarse understanding of when and how
planets have been discovered over the past several decades!

Here I would suggest digging into these few lines of code, and evaluating the individual steps
to make sure you understand exactly what they are doing to the result. It’s certainly a somewhat
complicated example, but understanding these pieces will give you the means to similarly explore
your own data.

< Combining Datasets: Merge and Join | Contents | Pivot Tables >
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03.09-Pivot-Tables

October 29, 2018

This notebook contains an excerpt from the Python Data Science Handbook by Jake VanderPlas; the
content is available on GitHub.

The text is released under the CC-BY-NC-ND license, and code is released under the MIT license. If
you find this content useful, please consider supporting the work by buying the book!

< Aggregation and Grouping | Contents | Vectorized String Operations >

1 Pivot Tables

We have seen how the GroupBy abstraction lets us explore relationships within a dataset. A pivot
table is a similar operation that is commonly seen in spreadsheets and other programs that operate
on tabular data. The pivot table takes simple column-wise data as input, and groups the entries
into a two-dimensional table that provides a multidimensional summarization of the data. The
difference between pivot tables and GroupBy can sometimes cause confusion; it helps me to think
of pivot tables as essentially a multidimensional version of GroupBy aggregation. That is, you split-
apply-combine, but both the split and the combine happen across not a one-dimensional index,
but across a two-dimensional grid.

1.1 Motivating Pivot Tables

For the examples in this section, we’ll use the database of passengers on the Titanic, available
through the Seaborn library (see Visualization With Seaborn):

In [1]: import numpy as np
import pandas as pd
import seaborn as sns
titanic = sns.load_dataset('titanic')

In [2]: titanic.head()

Out[2]: survived pclass sex age sibsp parch fare embarked class \
0 0 3 male 22.0 1 0 7.2500 S Third
1 1 1 female 38.0 1 0 71.2833 C First
2 1 3 female 26.0 0 0 7.9250 S Third
3 1 1 female 35.0 1 0 53.1000 S First
4 0 3 male 35.0 0 0 8.0500 S Third

who adult_male deck embark_town alive alone
0 man True NaN Southampton no False
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1 woman False C Cherbourg yes False
2 woman False NaN Southampton yes True
3 woman False C Southampton yes False
4 man True NaN Southampton no True

This contains a wealth of information on each passenger of that ill-fated voyage, including
gender, age, class, fare paid, and much more.

1.2 Pivot Tables by Hand

To start learning more about this data, we might begin by grouping according to gender, survival
status, or some combination thereof. If you have read the previous section, you might be tempted
to apply a GroupBy operation–for example, let’s look at survival rate by gender:

In [3]: titanic.groupby('sex')[['survived']].mean()

Out[3]: survived
sex
female 0.742038
male 0.188908

This immediately gives us some insight: overall, three of every four females on board survived,
while only one in five males survived!

This is useful, but we might like to go one step deeper and look at survival by both sex and,
say, class. Using the vocabulary of GroupBy, we might proceed using something like this: we group
by class and gender, select survival, apply a mean aggregate, combine the resulting groups, and then
unstack the hierarchical index to reveal the hidden multidimensionality. In code:

In [4]: titanic.groupby(['sex', 'class'])['survived'].aggregate('mean').unstack()

Out[4]: class First Second Third
sex
female 0.968085 0.921053 0.500000
male 0.368852 0.157407 0.135447

This gives us a better idea of how both gender and class affected survival, but the code
is starting to look a bit garbled. While each step of this pipeline makes sense in light of the
tools we’ve previously discussed, the long string of code is not particularly easy to read or use.
This two-dimensional GroupBy is common enough that Pandas includes a convenience routine,
pivot_table, which succinctly handles this type of multi-dimensional aggregation.

1.3 Pivot Table Syntax

Here is the equivalent to the preceding operation using the pivot_table method of DataFrames:

In [5]: titanic.pivot_table('survived', index='sex', columns='class')

Out[5]: class First Second Third
sex
female 0.968085 0.921053 0.500000
male 0.368852 0.157407 0.135447
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This is eminently more readable than the groupby approach, and produces the same result. As
you might expect of an early 20th-century transatlantic cruise, the survival gradient favors both
women and higher classes. First-class women survived with near certainty (hi, Rose!), while only
one in ten third-class men survived (sorry, Jack!).

1.3.1 Multi-level pivot tables

Just as in the GroupBy, the grouping in pivot tables can be specified with multiple levels, and via
a number of options. For example, we might be interested in looking at age as a third dimension.
We’ll bin the age using the pd.cut function:

In [6]: age = pd.cut(titanic['age'], [0, 18, 80])
titanic.pivot_table('survived', ['sex', age], 'class')

Out[6]: class First Second Third
sex age
female (0, 18] 0.909091 1.000000 0.511628

(18, 80] 0.972973 0.900000 0.423729
male (0, 18] 0.800000 0.600000 0.215686

(18, 80] 0.375000 0.071429 0.133663

We can apply the same strategy when working with the columns as well; let’s add info on the
fare paid using pd.qcut to automatically compute quantiles:

In [7]: fare = pd.qcut(titanic['fare'], 2)
titanic.pivot_table('survived', ['sex', age], [fare, 'class'])

Out[7]: fare [0, 14.454] (14.454, 512.329] \
class First Second Third First Second
sex age
female (0, 18] NaN 1.000000 0.714286 0.909091 1.000000

(18, 80] NaN 0.880000 0.444444 0.972973 0.914286
male (0, 18] NaN 0.000000 0.260870 0.800000 0.818182

(18, 80] 0.0 0.098039 0.125000 0.391304 0.030303

fare
class Third
sex age
female (0, 18] 0.318182

(18, 80] 0.391304
male (0, 18] 0.178571

(18, 80] 0.192308

The result is a four-dimensional aggregation with hierarchical indices (see Hierarchical Index-
ing), shown in a grid demonstrating the relationship between the values.

1.3.2 Additional pivot table options

The full call signature of the pivot_table method of DataFrames is as follows:
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# call signature as of Pandas 0.18
DataFrame.pivot_table(data, values=None, index=None, columns=None,

aggfunc='mean', fill_value=None, margins=False,
dropna=True, margins_name='All')

We’ve already seen examples of the first three arguments; here we’ll take a quick look at the
remaining ones. Two of the options, fill_value and dropna, have to do with missing data and
are fairly straightforward; we will not show examples of them here.

The aggfunc keyword controls what type of aggregation is applied, which is a mean by de-
fault. As in the GroupBy, the aggregation specification can be a string representing one of several
common choices (e.g., 'sum', 'mean', 'count', 'min', 'max', etc.) or a function that implements
an aggregation (e.g., np.sum(), min(), sum(), etc.). Additionally, it can be specified as a dictionary
mapping a column to any of the above desired options:

In [8]: titanic.pivot_table(index='sex', columns='class',
aggfunc={'survived':sum, 'fare':'mean'})

Out[8]: fare survived
class First Second Third First Second Third
sex
female 106.125798 21.970121 16.118810 91.0 70.0 72.0
male 67.226127 19.741782 12.661633 45.0 17.0 47.0

Notice also here that we’ve omitted the values keyword; when specifying a mapping for
aggfunc, this is determined automatically.

At times it’s useful to compute totals along each grouping. This can be done via the margins
keyword:

In [9]: titanic.pivot_table('survived', index='sex', columns='class', margins=True)

Out[9]: class First Second Third All
sex
female 0.968085 0.921053 0.500000 0.742038
male 0.368852 0.157407 0.135447 0.188908
All 0.629630 0.472826 0.242363 0.383838

Here this automatically gives us information about the class-agnostic survival rate by gender,
the gender-agnostic survival rate by class, and the overall survival rate of 38%. The margin label
can be specified with the margins_name keyword, which defaults to "All".

1.4 Example: Birthrate Data

As a more interesting example, let’s take a look at the freely available data on births in the
United States, provided by the Centers for Disease Control (CDC). This data can be found
at https://raw.githubusercontent.com/jakevdp/data-CDCbirths/master/births.csv (this dataset
has been analyzed rather extensively by Andrew Gelman and his group; see, for example, this
blog post):

In [10]: # shell command to download the data:
# !curl -O https://raw.githubusercontent.com/jakevdp/data-CDCbirths/master/births.csv
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In [11]: births = pd.read_csv('data/births.csv')

Taking a look at the data, we see that it’s relatively simple–it contains the number of births
grouped by date and gender:

In [12]: births.head()

Out[12]: year month day gender births
0 1969 1 1 F 4046
1 1969 1 1 M 4440
2 1969 1 2 F 4454
3 1969 1 2 M 4548
4 1969 1 3 F 4548

We can start to understand this data a bit more by using a pivot table. Let’s add a decade
column, and take a look at male and female births as a function of decade:

In [13]: births['decade'] = 10 * (births['year'] // 10)
births.pivot_table('births', index='decade', columns='gender', aggfunc='sum')

Out[13]: gender F M
decade
1960 1753634 1846572
1970 16263075 17121550
1980 18310351 19243452
1990 19479454 20420553
2000 18229309 19106428

We immediately see that male births outnumber female births in every decade. To see this
trend a bit more clearly, we can use the built-in plotting tools in Pandas to visualize the total num-
ber of births by year (see Introduction to Matplotlib for a discussion of plotting with Matplotlib):

In [14]: %matplotlib inline
import matplotlib.pyplot as plt
sns.set() # use Seaborn styles
births.pivot_table('births', index='year', columns='gender', aggfunc='sum').plot()
plt.ylabel('total births per year');
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With a simple pivot table and plot() method, we can immediately see the annual trend in
births by gender. By eye, it appears that over the past 50 years male births have outnumbered
female births by around 5%.

1.4.1 Further data exploration

Though this doesn’t necessarily relate to the pivot table, there are a few more interesting features
we can pull out of this dataset using the Pandas tools covered up to this point. We must start by
cleaning the data a bit, removing outliers caused by mistyped dates (e.g., June 31st) or missing
values (e.g., June 99th). One easy way to remove these all at once is to cut outliers; we’ll do this
via a robust sigma-clipping operation:

In [15]: quartiles = np.percentile(births['births'], [25, 50, 75])
mu = quartiles[1]
sig = 0.74 * (quartiles[2] - quartiles[0])

This final line is a robust estimate of the sample mean, where the 0.74 comes from the in-
terquartile range of a Gaussian distribution (You can learn more about sigma-clipping operations
in a book I coauthored with eljko Ivezi, Andrew J. Connolly, and Alexander Gray: “Statistics, Data
Mining, and Machine Learning in Astronomy” (Princeton University Press, 2014)).

With this we can use the query() method (discussed further in High-Performance Pandas:
eval() and query()) to filter-out rows with births outside these values:

In [16]: births = births.query('(births > @mu - 5 * @sig) & (births < @mu + 5 * @sig)')
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Next we set the day column to integers; previously it had been a string because some columns
in the dataset contained the value 'null':

In [17]: # set 'day' column to integer; it originally was a string due to nulls
births['day'] = births['day'].astype(int)

Finally, we can combine the day, month, and year to create a Date index (see Working with
Time Series). This allows us to quickly compute the weekday corresponding to each row:

In [18]: # create a datetime index from the year, month, day
births.index = pd.to_datetime(10000 * births.year +

100 * births.month +
births.day, format='%Y%m%d')

births['dayofweek'] = births.index.dayofweek

Using this we can plot births by weekday for several decades:

In [19]: import matplotlib.pyplot as plt
import matplotlib as mpl

births.pivot_table('births', index='dayofweek',
columns='decade', aggfunc='mean').plot()

plt.gca().set_xticklabels(['Mon', 'Tues', 'Wed', 'Thurs', 'Fri', 'Sat', 'Sun'])
plt.ylabel('mean births by day');
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Apparently births are slightly less common on weekends than on weekdays! Note that the
1990s and 2000s are missing because the CDC data contains only the month of birth starting in
1989.

Another intersting view is to plot the mean number of births by the day of the year. Let’s first
group the data by month and day separately:

In [20]: births_by_date = births.pivot_table('births',
[births.index.month, births.index.day])

births_by_date.head()

Out[20]: 1 1 4009.225
2 4247.400
3 4500.900
4 4571.350
5 4603.625

Name: births, dtype: float64

The result is a multi-index over months and days. To make this easily plottable, let’s turn
these months and days into a date by associating them with a dummy year variable (making sure
to choose a leap year so February 29th is correctly handled!)

In [21]: births_by_date.index = [pd.datetime(2012, month, day)
for (month, day) in births_by_date.index]

births_by_date.head()

Out[21]: 2012-01-01 4009.225
2012-01-02 4247.400
2012-01-03 4500.900
2012-01-04 4571.350
2012-01-05 4603.625
Name: births, dtype: float64

Focusing on the month and day only, we now have a time series reflecting the average number
of births by date of the year. From this, we can use the plot method to plot the data. It reveals
some interesting trends:

In [22]: # Plot the results
fig, ax = plt.subplots(figsize=(12, 4))
births_by_date.plot(ax=ax);
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In particular, the striking feature of this graph is the dip in birthrate on US holidays (e.g.,
Independence Day, Labor Day, Thanksgiving, Christmas, New Year’s Day) although this likely
reflects trends in scheduled/induced births rather than some deep psychosomatic effect on natural
births. For more discussion on this trend, see the analysis and links in Andrew Gelman’s blog post
on the subject. We’ll return to this figure in Example:-Effect-of-Holidays-on-US-Births, where we
will use Matplotlib’s tools to annotate this plot.

Looking at this short example, you can see that many of the Python and Pandas tools we’ve
seen to this point can be combined and used to gain insight from a variety of datasets. We will see
some more sophisticated applications of these data manipulations in future sections!

< Aggregation and Grouping | Contents | Vectorized String Operations >
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03.10-Working-With-Strings

October 29, 2018

This notebook contains an excerpt from the Python Data Science Handbook by Jake VanderPlas; the
content is available on GitHub.

The text is released under the CC-BY-NC-ND license, and code is released under the MIT license. If
you find this content useful, please consider supporting the work by buying the book!

< Pivot Tables | Contents | Working with Time Series >

1 Vectorized String Operations

One strength of Python is its relative ease in handling and manipulating string data. Pandas builds
on this and provides a comprehensive set of vectorized string operations that become an essential
piece of the type of munging required when working with (read: cleaning up) real-world data.
In this section, we’ll walk through some of the Pandas string operations, and then take a look at
using them to partially clean up a very messy dataset of recipes collected from the Internet.

1.1 Introducing Pandas String Operations

We saw in previous sections how tools like NumPy and Pandas generalize arithmetic operations
so that we can easily and quickly perform the same operation on many array elements. For exam-
ple:

In [1]: import numpy as np
x = np.array([2, 3, 5, 7, 11, 13])
x * 2

Out[1]: array([ 4, 6, 10, 14, 22, 26])

This vectorization of operations simplifies the syntax of operating on arrays of data: we no
longer have to worry about the size or shape of the array, but just about what operation we want
done. For arrays of strings, NumPy does not provide such simple access, and thus you’re stuck
using a more verbose loop syntax:

In [2]: data = ['peter', 'Paul', 'MARY', 'gUIDO']
[s.capitalize() for s in data]

Out[2]: ['Peter', 'Paul', 'Mary', 'Guido']

This is perhaps sufficient to work with some data, but it will break if there are any missing
values. For example:
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In [3]: data = ['peter', 'Paul', None, 'MARY', 'gUIDO']
[s.capitalize() for s in data]

---------------------------------------------------------------------------

AttributeError Traceback (most recent call last)

<ipython-input-3-fc1d891ab539> in <module>()
1 data = ['peter', 'Paul', None, 'MARY', 'gUIDO']

----> 2 [s.capitalize() for s in data]

<ipython-input-3-fc1d891ab539> in <listcomp>(.0)
1 data = ['peter', 'Paul', None, 'MARY', 'gUIDO']

----> 2 [s.capitalize() for s in data]

AttributeError: 'NoneType' object has no attribute 'capitalize'

Pandas includes features to address both this need for vectorized string operations and for
correctly handling missing data via the str attribute of Pandas Series and Index objects containing
strings. So, for example, suppose we create a Pandas Series with this data:

In [4]: import pandas as pd
names = pd.Series(data)
names

Out[4]: 0 peter
1 Paul
2 None
3 MARY
4 gUIDO
dtype: object

We can now call a single method that will capitalize all the entries, while skipping over any
missing values:

In [5]: names.str.capitalize()

Out[5]: 0 Peter
1 Paul
2 None
3 Mary
4 Guido
dtype: object

Using tab completion on this str attribute will list all the vectorized string methods available
to Pandas.
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1.2 Tables of Pandas String Methods

If you have a good understanding of string manipulation in Python, most of Pandas string syntax
is intuitive enough that it’s probably sufficient to just list a table of available methods; we will
start with that here, before diving deeper into a few of the subtleties. The examples in this section
use the following series of names:

In [6]: monte = pd.Series(['Graham Chapman', 'John Cleese', 'Terry Gilliam',
'Eric Idle', 'Terry Jones', 'Michael Palin'])

1.2.1 Methods similar to Python string methods

Nearly all Python’s built-in string methods are mirrored by a Pandas vectorized string method.
Here is a list of Pandas str methods that mirror Python string methods:

len() lower() translate() islower()
ljust() upper() startswith() isupper()
rjust() find() endswith() isnumeric()
center() rfind() isalnum() isdecimal()
zfill() index() isalpha() split()
strip() rindex() isdigit() rsplit()
rstrip() capitalize() isspace() partition()
lstrip() swapcase() istitle() rpartition()

Notice that these have various return values. Some, like lower(), return a series of strings:

In [7]: monte.str.lower()

Out[7]: 0 graham chapman
1 john cleese
2 terry gilliam
3 eric idle
4 terry jones
5 michael palin
dtype: object

But some others return numbers:

In [8]: monte.str.len()

Out[8]: 0 14
1 11
2 13
3 9
4 11
5 13
dtype: int64

Or Boolean values:
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In [9]: monte.str.startswith('T')

Out[9]: 0 False
1 False
2 True
3 False
4 True
5 False
dtype: bool

Still others return lists or other compound values for each element:

In [10]: monte.str.split()

Out[10]: 0 [Graham, Chapman]
1 [John, Cleese]
2 [Terry, Gilliam]
3 [Eric, Idle]
4 [Terry, Jones]
5 [Michael, Palin]
dtype: object

We’ll see further manipulations of this kind of series-of-lists object as we continue our discus-
sion.

1.2.2 Methods using regular expressions

In addition, there are several methods that accept regular expressions to examine the content of
each string element, and follow some of the API conventions of Python’s built-in re module:

Method Description

match() Call re.match() on each element, returning a boolean.
extract() Call re.match() on each element, returning matched

groups as strings.
findall() Call re.findall() on each element
replace() Replace occurrences of pattern with some other string
contains() Call re.search() on each element, returning a boolean
count() Count occurrences of pattern
split() Equivalent to str.split(), but accepts regexps
rsplit() Equivalent to str.rsplit(), but accepts regexps

With these, you can do a wide range of interesting operations. For example, we can extract
the first name from each by asking for a contiguous group of characters at the beginning of each
element:

In [11]: monte.str.extract('([A-Za-z]+)', expand=False)

Out[11]: 0 Graham
1 John
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2 Terry
3 Eric
4 Terry
5 Michael
dtype: object

Or we can do something more complicated, like finding all names that start and end with a
consonant, making use of the start-of-string (ˆ) and end-of-string ($) regular expression characters:

In [12]: monte.str.findall(r'^[^AEIOU].*[^aeiou]$')

Out[12]: 0 [Graham Chapman]
1 []
2 [Terry Gilliam]
3 []
4 [Terry Jones]
5 [Michael Palin]
dtype: object

The ability to concisely apply regular expressions across Series or Dataframe entries opens
up many possibilities for analysis and cleaning of data.

1.2.3 Miscellaneous methods

Finally, there are some miscellaneous methods that enable other convenient operations:

Method Description

get() Index each element
slice() Slice each element
slice_replace() Replace slice in each element with passed value
cat() Concatenate strings
repeat() Repeat values
normalize() Return Unicode form of string
pad() Add whitespace to left, right, or both sides of strings
wrap() Split long strings into lines with length less than a given width
join() Join strings in each element of the Series with passed separator
get_dummies() extract dummy variables as a dataframe

Vectorized item access and slicing The get() and slice() operations, in particular, enable vec-
torized element access from each array. For example, we can get a slice of the first three characters
of each array using str.slice(0, 3). Note that this behavior is also available through Python’s
normal indexing syntax–for example, df.str.slice(0, 3) is equivalent to df.str[0:3]:

In [13]: monte.str[0:3]

Out[13]: 0 Gra
1 Joh
2 Ter
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3 Eri
4 Ter
5 Mic
dtype: object

Indexing via df.str.get(i) and df.str[i] is likewise similar.
These get() and slice() methods also let you access elements of arrays returned by split().

For example, to extract the last name of each entry, we can combine split() and get():

In [14]: monte.str.split().str.get(-1)

Out[14]: 0 Chapman
1 Cleese
2 Gilliam
3 Idle
4 Jones
5 Palin
dtype: object

Indicator variables Another method that requires a bit of extra explanation is the
get_dummies() method. This is useful when your data has a column containing some sort of
coded indicator. For example, we might have a dataset that contains information in the form
of codes, such as A=“born in America,” B=“born in the United Kingdom,” C=“likes cheese,”
D=“likes spam”:

In [15]: full_monte = pd.DataFrame({'name': monte,
'info': ['B|C|D', 'B|D', 'A|C',

'B|D', 'B|C', 'B|C|D']})
full_monte

Out[15]: info name
0 B|C|D Graham Chapman
1 B|D John Cleese
2 A|C Terry Gilliam
3 B|D Eric Idle
4 B|C Terry Jones
5 B|C|D Michael Palin

The get_dummies() routine lets you quickly split-out these indicator variables into a
DataFrame:

In [16]: full_monte['info'].str.get_dummies('|')

Out[16]: A B C D
0 0 1 1 1
1 0 1 0 1
2 1 0 1 0
3 0 1 0 1
4 0 1 1 0
5 0 1 1 1
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With these operations as building blocks, you can construct an endless range of string process-
ing procedures when cleaning your data.

We won’t dive further into these methods here, but I encourage you to read through “Working
with Text Data” in the Pandas online documentation, or to refer to the resources listed in Further
Resources.

1.3 Example: Recipe Database

These vectorized string operations become most useful in the process of cleaning up messy, real-
world data. Here I’ll walk through an example of that, using an open recipe database compiled
from various sources on the Web. Our goal will be to parse the recipe data into ingredient lists, so
we can quickly find a recipe based on some ingredients we have on hand.

The scripts used to compile this can be found at https://github.com/fictivekin/openrecipes,
and the link to the current version of the database is found there as well.

As of Spring 2016, this database is about 30 MB, and can be downloaded and unzipped with
these commands:

In [17]: # !curl -O http://openrecipes.s3.amazonaws.com/recipeitems-latest.json.gz
# !gunzip recipeitems-latest.json.gz

The database is in JSON format, so we will try pd.read_json to read it:

In [18]: try:
recipes = pd.read_json('recipeitems-latest.json')

except ValueError as e:
print("ValueError:", e)

ValueError: Trailing data

Oops! We get a ValueError mentioning that there is “trailing data.” Searching for the text of
this error on the Internet, it seems that it’s due to using a file in which each line is itself a valid
JSON, but the full file is not. Let’s check if this interpretation is true:

In [19]: with open('recipeitems-latest.json') as f:
line = f.readline()

pd.read_json(line).shape

Out[19]: (2, 12)

Yes, apparently each line is a valid JSON, so we’ll need to string them together. One way we
can do this is to actually construct a string representation containing all these JSON entries, and
then load the whole thing with pd.read_json:

In [20]: # read the entire file into a Python array
with open('recipeitems-latest.json', 'r') as f:

# Extract each line
data = (line.strip() for line in f)
# Reformat so each line is the element of a list
data_json = "[{0}]".format(','.join(data))

# read the result as a JSON
recipes = pd.read_json(data_json)
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In [21]: recipes.shape

Out[21]: (173278, 17)

We see there are nearly 200,000 recipes, and 17 columns. Let’s take a look at one row to see
what we have:

In [22]: recipes.iloc[0]

Out[22]: _id {'$oid': '5160756b96cc62079cc2db15'}
cookTime PT30M
creator NaN
dateModified NaN
datePublished 2013-03-11
description Late Saturday afternoon, after Marlboro Man ha...
image http://static.thepioneerwoman.com/cooking/file...
ingredients Biscuits\n3 cups All-purpose Flour\n2 Tablespo...
name Drop Biscuits and Sausage Gravy
prepTime PT10M
recipeCategory NaN
recipeInstructions NaN
recipeYield 12
source thepioneerwoman
totalTime NaN
ts {'$date': 1365276011104}
url http://thepioneerwoman.com/cooking/2013/03/dro...
Name: 0, dtype: object

There is a lot of information there, but much of it is in a very messy form, as is typical of data
scraped from the Web. In particular, the ingredient list is in string format; we’re going to have
to carefully extract the information we’re interested in. Let’s start by taking a closer look at the
ingredients:

In [23]: recipes.ingredients.str.len().describe()

Out[23]: count 173278.000000
mean 244.617926
std 146.705285
min 0.000000
25% 147.000000
50% 221.000000
75% 314.000000
max 9067.000000
Name: ingredients, dtype: float64

The ingredient lists average 250 characters long, with a minimum of 0 and a maximum of
nearly 10,000 characters!

Just out of curiousity, let’s see which recipe has the longest ingredient list:

In [24]: recipes.name[np.argmax(recipes.ingredients.str.len())]
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Out[24]: 'Carrot Pineapple Spice &amp; Brownie Layer Cake with Whipped Cream &amp; Cream Cheese Frosting and Marzipan Carrots'

That certainly looks like an involved recipe.
We can do other aggregate explorations; for example, let’s see how many of the recipes are for

breakfast food:

In [25]: recipes.description.str.contains('[Bb]reakfast').sum()

Out[25]: 3524

Or how many of the recipes list cinnamon as an ingredient:

In [26]: recipes.ingredients.str.contains('[Cc]innamon').sum()

Out[26]: 10526

We could even look to see whether any recipes misspell the ingredient as “cinamon”:

In [27]: recipes.ingredients.str.contains('[Cc]inamon').sum()

Out[27]: 11

This is the type of essential data exploration that is possible with Pandas string tools. It is data
munging like this that Python really excels at.

1.3.1 A simple recipe recommender

Let’s go a bit further, and start working on a simple recipe recommendation system: given a list
of ingredients, find a recipe that uses all those ingredients. While conceptually straightforward,
the task is complicated by the heterogeneity of the data: there is no easy operation, for example,
to extract a clean list of ingredients from each row. So we will cheat a bit: we’ll start with a list
of common ingredients, and simply search to see whether they are in each recipe’s ingredient list.
For simplicity, let’s just stick with herbs and spices for the time being:

In [28]: spice_list = ['salt', 'pepper', 'oregano', 'sage', 'parsley',
'rosemary', 'tarragon', 'thyme', 'paprika', 'cumin']

We can then build a Boolean DataFrame consisting of True and False values, indicating whether
this ingredient appears in the list:

In [29]: import re
spice_df = pd.DataFrame(dict((spice, recipes.ingredients.str.contains(spice, re.IGNORECASE))

for spice in spice_list))
spice_df.head()

Out[29]: cumin oregano paprika parsley pepper rosemary sage salt tarragon thyme
0 False False False False False False True False False False
1 False False False False False False False False False False
2 True False False False True False False True False False
3 False False False False False False False False False False
4 False False False False False False False False False False
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Now, as an example, let’s say we’d like to find a recipe that uses parsley, paprika, and tarragon.
We can compute this very quickly using the query() method of DataFrames, discussed in High-
Performance Pandas: eval() and query():

In [30]: selection = spice_df.query('parsley & paprika & tarragon')
len(selection)

Out[30]: 10

We find only 10 recipes with this combination; let’s use the index returned by this selection to
discover the names of the recipes that have this combination:

In [31]: recipes.name[selection.index]

Out[31]: 2069 All cremat with a Little Gem, dandelion and wa...
74964 Lobster with Thermidor butter
93768 Burton's Southern Fried Chicken with White Gravy
113926 Mijo's Slow Cooker Shredded Beef
137686 Asparagus Soup with Poached Eggs
140530 Fried Oyster Poboys
158475 Lamb shank tagine with herb tabbouleh
158486 Southern fried chicken in buttermilk
163175 Fried Chicken Sliders with Pickles + Slaw
165243 Bar Tartine Cauliflower Salad
Name: name, dtype: object

Now that we have narrowed down our recipe selection by a factor of almost 20,000, we are in
a position to make a more informed decision about what we’d like to cook for dinner.

1.3.2 Going further with recipes

Hopefully this example has given you a bit of a flavor (ba-dum!) for the types of data cleaning
operations that are efficiently enabled by Pandas string methods. Of course, building a very robust
recipe recommendation system would require a lot more work! Extracting full ingredient lists from
each recipe would be an important piece of the task; unfortunately, the wide variety of formats
used makes this a relatively time-consuming process. This points to the truism that in data science,
cleaning and munging of real-world data often comprises the majority of the work, and Pandas
provides the tools that can help you do this efficiently.

< Pivot Tables | Contents | Working with Time Series >
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03.11-Working-with-Time-Series

October 29, 2018

This notebook contains an excerpt from the Python Data Science Handbook by Jake VanderPlas; the
content is available on GitHub.

The text is released under the CC-BY-NC-ND license, and code is released under the MIT license. If
you find this content useful, please consider supporting the work by buying the book!

< Vectorized String Operations | Contents | High-Performance Pandas: eval() and query() >

1 Working with Time Series

Pandas was developed in the context of financial modeling, so as you might expect, it contains a
fairly extensive set of tools for working with dates, times, and time-indexed data. Date and time
data comes in a few flavors, which we will discuss here:

• Time stamps reference particular moments in time (e.g., July 4th, 2015 at 7:00am).
• Time intervals and periods reference a length of time between a particular beginning and end

point; for example, the year 2015. Periods usually reference a special case of time intervals
in which each interval is of uniform length and does not overlap (e.g., 24 hour-long periods
comprising days).

• Time deltas or durations reference an exact length of time (e.g., a duration of 22.56 seconds).

In this section, we will introduce how to work with each of these types of date/time data
in Pandas. This short section is by no means a complete guide to the time series tools available
in Python or Pandas, but instead is intended as a broad overview of how you as a user should
approach working with time series. We will start with a brief discussion of tools for dealing with
dates and times in Python, before moving more specifically to a discussion of the tools provided by
Pandas. After listing some resources that go into more depth, we will review some short examples
of working with time series data in Pandas.

1.1 Dates and Times in Python

The Python world has a number of available representations of dates, times, deltas, and times-
pans. While the time series tools provided by Pandas tend to be the most useful for data science
applications, it is helpful to see their relationship to other packages used in Python.

1.1.1 Native Python dates and times: datetime and dateutil

Python’s basic objects for working with dates and times reside in the built-in datetime module.
Along with the third-party dateutil module, you can use it to quickly perform a host of useful
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functionalities on dates and times. For example, you can manually build a date using the datetime
type:

In [1]: from datetime import datetime
datetime(year=2015, month=7, day=4)

Out[1]: datetime.datetime(2015, 7, 4, 0, 0)

Or, using the dateutil module, you can parse dates from a variety of string formats:

In [2]: from dateutil import parser
date = parser.parse("4th of July, 2015")
date

Out[2]: datetime.datetime(2015, 7, 4, 0, 0)

Once you have a datetime object, you can do things like printing the day of the week:

In [3]: date.strftime('%A')

Out[3]: 'Saturday'

In the final line, we’ve used one of the standard string format codes for printing dates ("%A"),
which you can read about in the strftime section of Python’s datetime documentation. Documen-
tation of other useful date utilities can be found in dateutil’s online documentation. A related
package to be aware of is pytz, which contains tools for working with the most migrane-inducing
piece of time series data: time zones.

The power of datetime and dateutil lie in their flexibility and easy syntax: you can use these
objects and their built-in methods to easily perform nearly any operation you might be interested
in. Where they break down is when you wish to work with large arrays of dates and times: just
as lists of Python numerical variables are suboptimal compared to NumPy-style typed numerical
arrays, lists of Python datetime objects are suboptimal compared to typed arrays of encoded dates.

1.1.2 Typed arrays of times: NumPy’s datetime64

The weaknesses of Python’s datetime format inspired the NumPy team to add a set of native
time series data type to NumPy. The datetime64 dtype encodes dates as 64-bit integers, and thus
allows arrays of dates to be represented very compactly. The datetime64 requires a very specific
input format:

In [4]: import numpy as np
date = np.array('2015-07-04', dtype=np.datetime64)
date

Out[4]: array(datetime.date(2015, 7, 4), dtype='datetime64[D]')

Once we have this date formatted, however, we can quickly do vectorized operations on it:

In [5]: date + np.arange(12)
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Out[5]: array(['2015-07-04', '2015-07-05', '2015-07-06', '2015-07-07',
'2015-07-08', '2015-07-09', '2015-07-10', '2015-07-11',
'2015-07-12', '2015-07-13', '2015-07-14', '2015-07-15'], dtype='datetime64[D]')

Because of the uniform type in NumPy datetime64 arrays, this type of operation can be ac-
complished much more quickly than if we were working directly with Python’s datetime objects,
especially as arrays get large (we introduced this type of vectorization in Computation on NumPy
Arrays: Universal Functions).

One detail of the datetime64 and timedelta64 objects is that they are built on a fundamental
time unit. Because the datetime64 object is limited to 64-bit precision, the range of encodable times
is 264 times this fundamental unit. In other words, datetime64 imposes a trade-off between time
resolution and maximum time span.

For example, if you want a time resolution of one nanosecond, you only have enough informa-
tion to encode a range of 264 nanoseconds, or just under 600 years. NumPy will infer the desired
unit from the input; for example, here is a day-based datetime:

In [6]: np.datetime64('2015-07-04')

Out[6]: numpy.datetime64('2015-07-04')

Here is a minute-based datetime:

In [7]: np.datetime64('2015-07-04 12:00')

Out[7]: numpy.datetime64('2015-07-04T12:00')

Notice that the time zone is automatically set to the local time on the computer executing the
code. You can force any desired fundamental unit using one of many format codes; for example,
here we’ll force a nanosecond-based time:

In [8]: np.datetime64('2015-07-04 12:59:59.50', 'ns')

Out[8]: numpy.datetime64('2015-07-04T12:59:59.500000000')

The following table, drawn from the NumPy datetime64 documentation, lists the available
format codes along with the relative and absolute timespans that they can encode:

Code Meaning Time span (relative) Time span (absolute)

Y Year ś 9.2e18 years [9.2e18 BC, 9.2e18 AD]
M Month ś 7.6e17 years [7.6e17 BC, 7.6e17 AD]
W Week ś 1.7e17 years [1.7e17 BC, 1.7e17 AD]
D Day ś 2.5e16 years [2.5e16 BC, 2.5e16 AD]
h Hour ś 1.0e15 years [1.0e15 BC, 1.0e15 AD]
m Minute ś 1.7e13 years [1.7e13 BC, 1.7e13 AD]
s Second ś 2.9e12 years [ 2.9e9 BC, 2.9e9 AD]
ms Millisecond ś 2.9e9 years [ 2.9e6 BC, 2.9e6 AD]
us Microsecond ś 2.9e6 years [290301 BC, 294241 AD]
ns Nanosecond ś 292 years [ 1678 AD, 2262 AD]
ps Picosecond ś 106 days [ 1969 AD, 1970 AD]
fs Femtosecond ś 2.6 hours [ 1969 AD, 1970 AD]
as Attosecond ś 9.2 seconds [ 1969 AD, 1970 AD]3
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For the types of data we see in the real world, a useful default is datetime64[ns], as it can
encode a useful range of modern dates with a suitably fine precision.

Finally, we will note that while the datetime64 data type addresses some of the deficiencies
of the built-in Python datetime type, it lacks many of the convenient methods and functions
provided by datetime and especially dateutil. More information can be found in NumPy’s
datetime64 documentation.

1.1.3 Dates and times in pandas: best of both worlds

Pandas builds upon all the tools just discussed to provide a Timestamp object, which com-
bines the ease-of-use of datetime and dateutil with the efficient storage and vectorized inter-
face of numpy.datetime64. From a group of these Timestamp objects, Pandas can construct a
DatetimeIndex that can be used to index data in a Series or DataFrame; we’ll see many examples
of this below.

For example, we can use Pandas tools to repeat the demonstration from above. We can parse
a flexibly formatted string date, and use format codes to output the day of the week:

In [9]: import pandas as pd
date = pd.to_datetime("4th of July, 2015")
date

Out[9]: Timestamp('2015-07-04 00:00:00')

In [10]: date.strftime('%A')

Out[10]: 'Saturday'

Additionally, we can do NumPy-style vectorized operations directly on this same object:

In [11]: date + pd.to_timedelta(np.arange(12), 'D')

Out[11]: DatetimeIndex(['2015-07-04', '2015-07-05', '2015-07-06', '2015-07-07',
'2015-07-08', '2015-07-09', '2015-07-10', '2015-07-11',
'2015-07-12', '2015-07-13', '2015-07-14', '2015-07-15'],

dtype='datetime64[ns]', freq=None)

In the next section, we will take a closer look at manipulating time series data with the tools
provided by Pandas.

1.2 Pandas Time Series: Indexing by Time

Where the Pandas time series tools really become useful is when you begin to index data by times-
tamps. For example, we can construct a Series object that has time indexed data:

In [12]: index = pd.DatetimeIndex(['2014-07-04', '2014-08-04',
'2015-07-04', '2015-08-04'])

data = pd.Series([0, 1, 2, 3], index=index)
data
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Out[12]: 2014-07-04 0
2014-08-04 1
2015-07-04 2
2015-08-04 3
dtype: int64

Now that we have this data in a Series, we can make use of any of the Series indexing
patterns we discussed in previous sections, passing values that can be coerced into dates:

In [13]: data['2014-07-04':'2015-07-04']

Out[13]: 2014-07-04 0
2014-08-04 1
2015-07-04 2
dtype: int64

There are additional special date-only indexing operations, such as passing a year to obtain a
slice of all data from that year:

In [14]: data['2015']

Out[14]: 2015-07-04 2
2015-08-04 3
dtype: int64

Later, we will see additional examples of the convenience of dates-as-indices. But first, a closer
look at the available time series data structures.

1.3 Pandas Time Series Data Structures

This section will introduce the fundamental Pandas data structures for working with time series
data:

• For time stamps, Pandas provides the Timestamp type. As mentioned before, it is es-
sentially a replacement for Python’s native datetime, but is based on the more efficient
numpy.datetime64 data type. The associated Index structure is DatetimeIndex.

• For time Periods, Pandas provides the Period type. This encodes a fixed-frequency interval
based on numpy.datetime64. The associated index structure is PeriodIndex.

• For time deltas or durations, Pandas provides the Timedelta type. Timedelta is a more
efficient replacement for Python’s native datetime.timedelta type, and is based on
numpy.timedelta64. The associated index structure is TimedeltaIndex.

The most fundamental of these date/time objects are the Timestamp and DatetimeIndex
objects. While these class objects can be invoked directly, it is more common to use the
pd.to_datetime() function, which can parse a wide variety of formats. Passing a single
date to pd.to_datetime() yields a Timestamp; passing a series of dates by default yields a
DatetimeIndex:

In [15]: dates = pd.to_datetime([datetime(2015, 7, 3), '4th of July, 2015',
'2015-Jul-6', '07-07-2015', '20150708'])

dates
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Out[15]: DatetimeIndex(['2015-07-03', '2015-07-04', '2015-07-06', '2015-07-07',
'2015-07-08'],

dtype='datetime64[ns]', freq=None)

Any DatetimeIndex can be converted to a PeriodIndex with the to_period() function with
the addition of a frequency code; here we’ll use 'D' to indicate daily frequency:

In [16]: dates.to_period('D')

Out[16]: PeriodIndex(['2015-07-03', '2015-07-04', '2015-07-06', '2015-07-07',
'2015-07-08'],

dtype='int64', freq='D')

A TimedeltaIndex is created, for example, when a date is subtracted from another:

In [17]: dates - dates[0]

Out[17]: TimedeltaIndex(['0 days', '1 days', '3 days', '4 days', '5 days'], dtype='timedelta64[ns]', freq=None)

1.3.1 Regular sequences: pd.date_range()

To make the creation of regular date sequences more convenient, Pandas offers a few func-
tions for this purpose: pd.date_range() for timestamps, pd.period_range() for periods, and
pd.timedelta_range() for time deltas. We’ve seen that Python’s range() and NumPy’s
np.arange() turn a startpoint, endpoint, and optional stepsize into a sequence. Similarly,
pd.date_range() accepts a start date, an end date, and an optional frequency code to create a
regular sequence of dates. By default, the frequency is one day:

In [18]: pd.date_range('2015-07-03', '2015-07-10')

Out[18]: DatetimeIndex(['2015-07-03', '2015-07-04', '2015-07-05', '2015-07-06',
'2015-07-07', '2015-07-08', '2015-07-09', '2015-07-10'],

dtype='datetime64[ns]', freq='D')

Alternatively, the date range can be specified not with a start and endpoint, but with a start-
point and a number of periods:

In [19]: pd.date_range('2015-07-03', periods=8)

Out[19]: DatetimeIndex(['2015-07-03', '2015-07-04', '2015-07-05', '2015-07-06',
'2015-07-07', '2015-07-08', '2015-07-09', '2015-07-10'],

dtype='datetime64[ns]', freq='D')

The spacing can be modified by altering the freq argument, which defaults to D. For example,
here we will construct a range of hourly timestamps:

In [20]: pd.date_range('2015-07-03', periods=8, freq='H')

Out[20]: DatetimeIndex(['2015-07-03 00:00:00', '2015-07-03 01:00:00',
'2015-07-03 02:00:00', '2015-07-03 03:00:00',
'2015-07-03 04:00:00', '2015-07-03 05:00:00',
'2015-07-03 06:00:00', '2015-07-03 07:00:00'],

dtype='datetime64[ns]', freq='H')
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To create regular sequences of Period or Timedelta values, the very similar
pd.period_range() and pd.timedelta_range() functions are useful. Here are some monthly
periods:

In [21]: pd.period_range('2015-07', periods=8, freq='M')

Out[21]: PeriodIndex(['2015-07', '2015-08', '2015-09', '2015-10', '2015-11', '2015-12',
'2016-01', '2016-02'],

dtype='int64', freq='M')

And a sequence of durations increasing by an hour:

In [22]: pd.timedelta_range(0, periods=10, freq='H')

Out[22]: TimedeltaIndex(['00:00:00', '01:00:00', '02:00:00', '03:00:00', '04:00:00',
'05:00:00', '06:00:00', '07:00:00', '08:00:00', '09:00:00'],

dtype='timedelta64[ns]', freq='H')

All of these require an understanding of Pandas frequency codes, which we’ll summarize in
the next section.

1.4 Frequencies and Offsets

Fundamental to these Pandas time series tools is the concept of a frequency or date offset. Just
as we saw the D (day) and H (hour) codes above, we can use such codes to specify any desired
frequency spacing. The following table summarizes the main codes available:

Code Description Code Description

D Calendar day B Business day
W Weekly
M Month end BM Business month end
Q Quarter end BQ Business quarter end
A Year end BA Business year end
H Hours BH Business hours
T Minutes
S Seconds
L Milliseonds
U Microseconds
N nanoseconds

The monthly, quarterly, and annual frequencies are all marked at the end of the specified pe-
riod. By adding an S suffix to any of these, they instead will be marked at the beginning:

Code | Description || Code | Description |
|———|————————||———|————————| | MS | Month start ||BMS | Busi-

ness month start | | QS | Quarter start ||BQS | Business quarter start | | AS | Year start ||BAS |
Business year start |

Additionally, you can change the month used to mark any quarterly or annual code by adding
a three-letter month code as a suffix:
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• Q-JAN, BQ-FEB, QS-MAR, BQS-APR, etc.
• A-JAN, BA-FEB, AS-MAR, BAS-APR, etc.

In the same way, the split-point of the weekly frequency can be modified by adding a three-
letter weekday code:

• W-SUN, W-MON, W-TUE, W-WED, etc.

On top of this, codes can be combined with numbers to specify other frequencies. For example,
for a frequency of 2 hours 30 minutes, we can combine the hour (H) and minute (T) codes as follows:

In [23]: pd.timedelta_range(0, periods=9, freq="2H30T")

Out[23]: TimedeltaIndex(['00:00:00', '02:30:00', '05:00:00', '07:30:00', '10:00:00',
'12:30:00', '15:00:00', '17:30:00', '20:00:00'],

dtype='timedelta64[ns]', freq='150T')

All of these short codes refer to specific instances of Pandas time series offsets, which can
be found in the pd.tseries.offsets module. For example, we can create a business day offset
directly as follows:

In [24]: from pandas.tseries.offsets import BDay
pd.date_range('2015-07-01', periods=5, freq=BDay())

Out[24]: DatetimeIndex(['2015-07-01', '2015-07-02', '2015-07-03', '2015-07-06',
'2015-07-07'],

dtype='datetime64[ns]', freq='B')

For more discussion of the use of frequencies and offsets, see the “DateOffset” section of the
Pandas documentation.

1.5 Resampling, Shifting, and Windowing

The ability to use dates and times as indices to intuitively organize and access data is an important
piece of the Pandas time series tools. The benefits of indexed data in general (automatic alignment
during operations, intuitive data slicing and access, etc.) still apply, and Pandas provides several
additional time series-specific operations.

We will take a look at a few of those here, using some stock price data as an example. Because
Pandas was developed largely in a finance context, it includes some very specific tools for fi-
nancial data. For example, the accompanying pandas-datareader package (installable via conda
install pandas-datareader), knows how to import financial data from a number of available
sources, including Yahoo finance, Google Finance, and others. Here we will load Google’s closing
price history:

In [25]: from pandas_datareader import data

goog = data.DataReader('GOOG', start='2004', end='2016',
data_source='google')

goog.head()
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Out[25]: Open High Low Close Volume
Date
2004-08-19 49.96 51.98 47.93 50.12 NaN
2004-08-20 50.69 54.49 50.20 54.10 NaN
2004-08-23 55.32 56.68 54.47 54.65 NaN
2004-08-24 55.56 55.74 51.73 52.38 NaN
2004-08-25 52.43 53.95 51.89 52.95 NaN

For simplicity, we’ll use just the closing price:

In [26]: goog = goog['Close']

We can visualize this using the plot() method, after the normal Matplotlib setup boilerplate
(see Chapter 4):

In [27]: %matplotlib inline
import matplotlib.pyplot as plt
import seaborn; seaborn.set()

In [28]: goog.plot();
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1.5.1 Resampling and converting frequencies

One common need for time series data is resampling at a higher or lower frequency. This can
be done using the resample() method, or the much simpler asfreq() method. The primary
difference between the two is that resample() is fundamentally a data aggregation, while asfreq()
is fundamentally a data selection.

Taking a look at the Google closing price, let’s compare what the two return when we down-
sample the data. Here we will resample the data at the end of business year:

In [29]: goog.plot(alpha=0.5, style='-')
goog.resample('BA').mean().plot(style=':')
goog.asfreq('BA').plot(style='--');
plt.legend(['input', 'resample', 'asfreq'],

loc='upper left');

Notice the difference: at each point, resample reports the average of the previous year, while
asfreq reports the value at the end of the year.

For up-sampling, resample() and asfreq() are largely equivalent, though resample has many
more options available. In this case, the default for both methods is to leave the up-sampled points
empty, that is, filled with NA values. Just as with the pd.fillna() function discussed previously,
asfreq() accepts a method argument to specify how values are imputed. Here, we will resample
the business day data at a daily frequency (i.e., including weekends):

In [30]: fig, ax = plt.subplots(2, sharex=True)
data = goog.iloc[:10]
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data.asfreq('D').plot(ax=ax[0], marker='o')

data.asfreq('D', method='bfill').plot(ax=ax[1], style='-o')
data.asfreq('D', method='ffill').plot(ax=ax[1], style='--o')
ax[1].legend(["back-fill", "forward-fill"]);

The top panel is the default: non-business days are left as NA values and do not appear on the
plot. The bottom panel shows the differences between two strategies for filling the gaps: forward-
filling and backward-filling.

1.5.2 Time-shifts

Another common time series-specific operation is shifting of data in time. Pandas has two closely
related methods for computing this: shift() and tshift() In short, the difference between them
is that shift() shifts the data, while tshift() shifts the index. In both cases, the shift is specified in
multiples of the frequency.

Here we will both shift() and tshift() by 900 days;

In [31]: fig, ax = plt.subplots(3, sharey=True)
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# apply a frequency to the data
goog = goog.asfreq('D', method='pad')

goog.plot(ax=ax[0])
goog.shift(900).plot(ax=ax[1])
goog.tshift(900).plot(ax=ax[2])

# legends and annotations
local_max = pd.to_datetime('2007-11-05')
offset = pd.Timedelta(900, 'D')

ax[0].legend(['input'], loc=2)
ax[0].get_xticklabels()[2].set(weight='heavy', color='red')
ax[0].axvline(local_max, alpha=0.3, color='red')

ax[1].legend(['shift(900)'], loc=2)
ax[1].get_xticklabels()[2].set(weight='heavy', color='red')
ax[1].axvline(local_max + offset, alpha=0.3, color='red')

ax[2].legend(['tshift(900)'], loc=2)
ax[2].get_xticklabels()[1].set(weight='heavy', color='red')
ax[2].axvline(local_max + offset, alpha=0.3, color='red');
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We see here that shift(900) shifts the data by 900 days, pushing some of it off the end of the
graph (and leaving NA values at the other end), while tshift(900) shifts the index values by 900
days.

A common context for this type of shift is in computing differences over time. For example, we
use shifted values to compute the one-year return on investment for Google stock over the course
of the dataset:

In [32]: ROI = 100 * (goog.tshift(-365) / goog - 1)
ROI.plot()
plt.ylabel('% Return on Investment');

This helps us to see the overall trend in Google stock: thus far, the most profitable times to
invest in Google have been (unsurprisingly, in retrospect) shortly after its IPO, and in the middle
of the 2009 recession.

1.5.3 Rolling windows

Rolling statistics are a third type of time series-specific operation implemented by Pandas. These
can be accomplished via the rolling() attribute of Series and DataFrame objects, which returns
a view similar to what we saw with the groupby operation (see Aggregation and Grouping). This
rolling view makes available a number of aggregation operations by default.

For example, here is the one-year centered rolling mean and standard deviation of the Google
stock prices:

13

03.08-Aggregation-and-Grouping.ipynb


In [33]: rolling = goog.rolling(365, center=True)

data = pd.DataFrame({'input': goog,
'one-year rolling_mean': rolling.mean(),
'one-year rolling_std': rolling.std()})

ax = data.plot(style=['-', '--', ':'])
ax.lines[0].set_alpha(0.3)

As with group-by operations, the aggregate() and apply() methods can be used for custom
rolling computations.

1.6 Where to Learn More

This section has provided only a brief summary of some of the most essential features of time
series tools provided by Pandas; for a more complete discussion, you can refer to the “Time Se-
ries/Date” section of the Pandas online documentation.

Another excellent resource is the textbook Python for Data Analysis by Wes McKinney (OR-
eilly, 2012). Although it is now a few years old, it is an invaluable resource on the use of Pandas.
In particular, this book emphasizes time series tools in the context of business and finance, and
focuses much more on particular details of business calendars, time zones, and related topics.

As always, you can also use the IPython help functionality to explore and try further options
available to the functions and methods discussed here. I find this often is the best way to learn a
new Python tool.
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1.7 Example: Visualizing Seattle Bicycle Counts

As a more involved example of working with some time series data, let’s take a look at bicycle
counts on Seattle’s Fremont Bridge. This data comes from an automated bicycle counter, installed
in late 2012, which has inductive sensors on the east and west sidewalks of the bridge. The hourly
bicycle counts can be downloaded from http://data.seattle.gov/; here is the direct link to the
dataset.

As of summer 2016, the CSV can be downloaded as follows:

In [34]: # !curl -o FremontBridge.csv https://data.seattle.gov/api/views/65db-xm6k/rows.csv?accessType=DOWNLOAD

Once this dataset is downloaded, we can use Pandas to read the CSV output into a DataFrame.
We will specify that we want the Date as an index, and we want these dates to be automatically
parsed:

In [35]: data = pd.read_csv('FremontBridge.csv', index_col='Date', parse_dates=True)
data.head()

Out[35]: Fremont Bridge West Sidewalk \
Date
2012-10-03 00:00:00 4.0
2012-10-03 01:00:00 4.0
2012-10-03 02:00:00 1.0
2012-10-03 03:00:00 2.0
2012-10-03 04:00:00 6.0

Fremont Bridge East Sidewalk
Date
2012-10-03 00:00:00 9.0
2012-10-03 01:00:00 6.0
2012-10-03 02:00:00 1.0
2012-10-03 03:00:00 3.0
2012-10-03 04:00:00 1.0

For convenience, we’ll further process this dataset by shortening the column names and
adding a “Total” column:

In [36]: data.columns = ['West', 'East']
data['Total'] = data.eval('West + East')

Now let’s take a look at the summary statistics for this data:

In [37]: data.dropna().describe()

Out[37]: West East Total
count 35752.000000 35752.000000 35752.000000
mean 61.470267 54.410774 115.881042
std 82.588484 77.659796 145.392385
min 0.000000 0.000000 0.000000
25% 8.000000 7.000000 16.000000
50% 33.000000 28.000000 65.000000
75% 79.000000 67.000000 151.000000
max 825.000000 717.000000 1186.000000

15

http://www.openstreetmap.org/#map=17/47.64813/-122.34965
https://data.seattle.gov/Transportation/Fremont-Bridge-Hourly-Bicycle-Counts-by-Month-Octo/65db-xm6k
https://data.seattle.gov/Transportation/Fremont-Bridge-Hourly-Bicycle-Counts-by-Month-Octo/65db-xm6k


1.7.1 Visualizing the data

We can gain some insight into the dataset by visualizing it. Let’s start by plotting the raw data:

In [38]: %matplotlib inline
import seaborn; seaborn.set()

In [39]: data.plot()
plt.ylabel('Hourly Bicycle Count');

The ~25,000 hourly samples are far too dense for us to make much sense of. We can gain more
insight by resampling the data to a coarser grid. Let’s resample by week:

In [40]: weekly = data.resample('W').sum()
weekly.plot(style=[':', '--', '-'])
plt.ylabel('Weekly bicycle count');
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This shows us some interesting seasonal trends: as you might expect, people bicycle more in
the summer than in the winter, and even within a particular season the bicycle use varies from
week to week (likely dependent on weather; see In Depth: Linear Regression where we explore
this further).

Another way that comes in handy for aggregating the data is to use a rolling mean, utilizing
the pd.rolling_mean() function. Here we’ll do a 30 day rolling mean of our data, making sure to
center the window:

In [41]: daily = data.resample('D').sum()
daily.rolling(30, center=True).sum().plot(style=[':', '--', '-'])
plt.ylabel('mean hourly count');
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The jaggedness of the result is due to the hard cutoff of the window. We can get a smoother
version of a rolling mean using a window function–for example, a Gaussian window. The follow-
ing code specifies both the width of the window (we chose 50 days) and the width of the Gaussian
within the window (we chose 10 days):

In [42]: daily.rolling(50, center=True,
win_type='gaussian').sum(std=10).plot(style=[':', '--', '-']);
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1.7.2 Digging into the data

While these smoothed data views are useful to get an idea of the general trend in the data, they
hide much of the interesting structure. For example, we might want to look at the average traffic
as a function of the time of day. We can do this using the GroupBy functionality discussed in
Aggregation and Grouping:

In [43]: by_time = data.groupby(data.index.time).mean()
hourly_ticks = 4 * 60 * 60 * np.arange(6)
by_time.plot(xticks=hourly_ticks, style=[':', '--', '-']);
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The hourly traffic is a strongly bimodal distribution, with peaks around 8:00 in the morning
and 5:00 in the evening. This is likely evidence of a strong component of commuter traffic crossing
the bridge. This is further evidenced by the differences between the western sidewalk (generally
used going toward downtown Seattle), which peaks more strongly in the morning, and the eastern
sidewalk (generally used going away from downtown Seattle), which peaks more strongly in the
evening.

We also might be curious about how things change based on the day of the week. Again, we
can do this with a simple groupby:

In [44]: by_weekday = data.groupby(data.index.dayofweek).mean()
by_weekday.index = ['Mon', 'Tues', 'Wed', 'Thurs', 'Fri', 'Sat', 'Sun']
by_weekday.plot(style=[':', '--', '-']);
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This shows a strong distinction between weekday and weekend totals, with around twice as
many average riders crossing the bridge on Monday through Friday than on Saturday and Sunday.

With this in mind, let’s do a compound GroupBy and look at the hourly trend on weekdays
versus weekends. We’ll start by grouping by both a flag marking the weekend, and the time of
day:

In [45]: weekend = np.where(data.index.weekday < 5, 'Weekday', 'Weekend')
by_time = data.groupby([weekend, data.index.time]).mean()

Now we’ll use some of the Matplotlib tools described in Multiple Subplots to plot two panels
side by side:

In [46]: import matplotlib.pyplot as plt
fig, ax = plt.subplots(1, 2, figsize=(14, 5))
by_time.ix['Weekday'].plot(ax=ax[0], title='Weekdays',

xticks=hourly_ticks, style=[':', '--', '-'])
by_time.ix['Weekend'].plot(ax=ax[1], title='Weekends',

xticks=hourly_ticks, style=[':', '--', '-']);
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The result is very interesting: we see a bimodal commute pattern during the work week, and
a unimodal recreational pattern during the weekends. It would be interesting to dig through this
data in more detail, and examine the effect of weather, temperature, time of year, and other factors
on people’s commuting patterns; for further discussion, see my blog post “Is Seattle Really Seeing
an Uptick In Cycling?”, which uses a subset of this data. We will also revisit this dataset in the
context of modeling in In Depth: Linear Regression.

< Vectorized String Operations | Contents | High-Performance Pandas: eval() and query() >
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03.12-Performance-Eval-and-Query

October 29, 2018

This notebook contains an excerpt from the Python Data Science Handbook by Jake VanderPlas; the
content is available on GitHub.

The text is released under the CC-BY-NC-ND license, and code is released under the MIT license. If
you find this content useful, please consider supporting the work by buying the book!

< Working with Time Series | Contents | Further Resources >

1 High-Performance Pandas: eval() and query()

As we’ve already seen in previous sections, the power of the PyData stack is built upon the ability
of NumPy and Pandas to push basic operations into C via an intuitive syntax: examples are vec-
torized/broadcasted operations in NumPy, and grouping-type operations in Pandas. While these
abstractions are efficient and effective for many common use cases, they often rely on the creation
of temporary intermediate objects, which can cause undue overhead in computational time and
memory use.

As of version 0.13 (released January 2014), Pandas includes some experimental tools that allow
you to directly access C-speed operations without costly allocation of intermediate arrays. These
are the eval() and query() functions, which rely on the Numexpr package. In this notebook we
will walk through their use and give some rules-of-thumb about when you might think about
using them.

1.1 Motivating query() and eval(): Compound Expressions

We’ve seen previously that NumPy and Pandas support fast vectorized operations; for example,
when adding the elements of two arrays:

In [1]: import numpy as np
rng = np.random.RandomState(42)
x = rng.rand(1000000)
y = rng.rand(1000000)
%timeit x + y

100 loops, best of 3: 3.39 ms per loop

As discussed in Computation on NumPy Arrays: Universal Functions, this is much faster than
doing the addition via a Python loop or comprehension:

In [2]: %timeit np.fromiter((xi + yi for xi, yi in zip(x, y)), dtype=x.dtype, count=len(x))

1
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1 loop, best of 3: 266 ms per loop

But this abstraction can become less efficient when computing compound expressions. For
example, consider the following expression:

In [3]: mask = (x > 0.5) & (y < 0.5)

Because NumPy evaluates each subexpression, this is roughly equivalent to the following:

In [4]: tmp1 = (x > 0.5)
tmp2 = (y < 0.5)
mask = tmp1 & tmp2

In other words, every intermediate step is explicitly allocated in memory. If the x and y arrays are
very large, this can lead to significant memory and computational overhead. The Numexpr library
gives you the ability to compute this type of compound expression element by element, without
the need to allocate full intermediate arrays. The Numexpr documentation has more details, but
for the time being it is sufficient to say that the library accepts a string giving the NumPy-style
expression you’d like to compute:

In [5]: import numexpr
mask_numexpr = numexpr.evaluate('(x > 0.5) & (y < 0.5)')
np.allclose(mask, mask_numexpr)

Out[5]: True

The benefit here is that Numexpr evaluates the expression in a way that does not use full-
sized temporary arrays, and thus can be much more efficient than NumPy, especially for large
arrays. The Pandas eval() and query() tools that we will discuss here are conceptually similar,
and depend on the Numexpr package.

1.2 pandas.eval() for Efficient Operations

The eval() function in Pandas uses string expressions to efficiently compute operations using
DataFrames. For example, consider the following DataFrames:

In [6]: import pandas as pd
nrows, ncols = 100000, 100
rng = np.random.RandomState(42)
df1, df2, df3, df4 = (pd.DataFrame(rng.rand(nrows, ncols))

for i in range(4))

To compute the sum of all four DataFrames using the typical Pandas approach, we can just
write the sum:

In [7]: %timeit df1 + df2 + df3 + df4

10 loops, best of 3: 87.1 ms per loop
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The same result can be computed via pd.eval by constructing the expression as a string:

In [8]: %timeit pd.eval('df1 + df2 + df3 + df4')

10 loops, best of 3: 42.2 ms per loop

The eval() version of this expression is about 50% faster (and uses much less memory), while
giving the same result:

In [9]: np.allclose(df1 + df2 + df3 + df4,
pd.eval('df1 + df2 + df3 + df4'))

Out[9]: True

1.2.1 Operations supported by pd.eval()

As of Pandas v0.16, pd.eval() supports a wide range of operations. To demonstrate these, we’ll
use the following integer DataFrames:

In [10]: df1, df2, df3, df4, df5 = (pd.DataFrame(rng.randint(0, 1000, (100, 3)))
for i in range(5))

Arithmetic operators pd.eval() supports all arithmetic operators. For example:

In [11]: result1 = -df1 * df2 / (df3 + df4) - df5
result2 = pd.eval('-df1 * df2 / (df3 + df4) - df5')
np.allclose(result1, result2)

Out[11]: True

Comparison operators pd.eval() supports all comparison operators, including chained expres-
sions:

In [12]: result1 = (df1 < df2) & (df2 <= df3) & (df3 != df4)
result2 = pd.eval('df1 < df2 <= df3 != df4')
np.allclose(result1, result2)

Out[12]: True

Bitwise operators pd.eval() supports the & and | bitwise operators:

In [13]: result1 = (df1 < 0.5) & (df2 < 0.5) | (df3 < df4)
result2 = pd.eval('(df1 < 0.5) & (df2 < 0.5) | (df3 < df4)')
np.allclose(result1, result2)

Out[13]: True

In addition, it supports the use of the literal and and or in Boolean expressions:

In [14]: result3 = pd.eval('(df1 < 0.5) and (df2 < 0.5) or (df3 < df4)')
np.allclose(result1, result3)

Out[14]: True
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Object attributes and indices pd.eval() supports access to object attributes via the obj.attr
syntax, and indexes via the obj[index] syntax:

In [15]: result1 = df2.T[0] + df3.iloc[1]
result2 = pd.eval('df2.T[0] + df3.iloc[1]')
np.allclose(result1, result2)

Out[15]: True

Other operations Other operations such as function calls, conditional statements, loops, and
other more involved constructs are currently not implemented in pd.eval(). If you’d like to exe-
cute these more complicated types of expressions, you can use the Numexpr library itself.

1.3 DataFrame.eval() for Column-Wise Operations

Just as Pandas has a top-level pd.eval() function, DataFrames have an eval() method that works
in similar ways. The benefit of the eval() method is that columns can be referred to by name. We’ll
use this labeled array as an example:

In [16]: df = pd.DataFrame(rng.rand(1000, 3), columns=['A', 'B', 'C'])
df.head()

Out[16]: A B C
0 0.375506 0.406939 0.069938
1 0.069087 0.235615 0.154374
2 0.677945 0.433839 0.652324
3 0.264038 0.808055 0.347197
4 0.589161 0.252418 0.557789

Using pd.eval() as above, we can compute expressions with the three columns like this:

In [17]: result1 = (df['A'] + df['B']) / (df['C'] - 1)
result2 = pd.eval("(df.A + df.B) / (df.C - 1)")
np.allclose(result1, result2)

Out[17]: True

The DataFrame.eval() method allows much more succinct evaluation of expressions with the
columns:

In [18]: result3 = df.eval('(A + B) / (C - 1)')
np.allclose(result1, result3)

Out[18]: True

Notice here that we treat column names as variables within the evaluated expression, and the
result is what we would wish.
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1.3.1 Assignment in DataFrame.eval()

In addition to the options just discussed, DataFrame.eval() also allows assignment to any col-
umn. Let’s use the DataFrame from before, which has columns 'A', 'B', and 'C':

In [19]: df.head()

Out[19]: A B C
0 0.375506 0.406939 0.069938
1 0.069087 0.235615 0.154374
2 0.677945 0.433839 0.652324
3 0.264038 0.808055 0.347197
4 0.589161 0.252418 0.557789

We can use df.eval() to create a new column 'D' and assign to it a value computed from the
other columns:

In [20]: df.eval('D = (A + B) / C', inplace=True)
df.head()

Out[20]: A B C D
0 0.375506 0.406939 0.069938 11.187620
1 0.069087 0.235615 0.154374 1.973796
2 0.677945 0.433839 0.652324 1.704344
3 0.264038 0.808055 0.347197 3.087857
4 0.589161 0.252418 0.557789 1.508776

In the same way, any existing column can be modified:

In [21]: df.eval('D = (A - B) / C', inplace=True)
df.head()

Out[21]: A B C D
0 0.375506 0.406939 0.069938 -0.449425
1 0.069087 0.235615 0.154374 -1.078728
2 0.677945 0.433839 0.652324 0.374209
3 0.264038 0.808055 0.347197 -1.566886
4 0.589161 0.252418 0.557789 0.603708

1.3.2 Local variables in DataFrame.eval()

The DataFrame.eval() method supports an additional syntax that lets it work with local Python
variables. Consider the following:

In [22]: column_mean = df.mean(1)
result1 = df['A'] + column_mean
result2 = df.eval('A + @column_mean')
np.allclose(result1, result2)

Out[22]: True
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The @ character here marks a variable name rather than a column name, and lets you efficiently
evaluate expressions involving the two “namespaces”: the namespace of columns, and the names-
pace of Python objects. Notice that this @ character is only supported by the DataFrame.eval()
method, not by the pandas.eval() function, because the pandas.eval() function only has access
to the one (Python) namespace.

1.4 DataFrame.query() Method

The DataFrame has another method based on evaluated strings, called the query() method. Con-
sider the following:

In [23]: result1 = df[(df.A < 0.5) & (df.B < 0.5)]
result2 = pd.eval('df[(df.A < 0.5) & (df.B < 0.5)]')
np.allclose(result1, result2)

Out[23]: True

As with the example used in our discussion of DataFrame.eval(), this is an expression in-
volving columns of the DataFrame. It cannot be expressed using the DataFrame.eval() syntax,
however! Instead, for this type of filtering operation, you can use the query() method:

In [24]: result2 = df.query('A < 0.5 and B < 0.5')
np.allclose(result1, result2)

Out[24]: True

In addition to being a more efficient computation, compared to the masking expression this
is much easier to read and understand. Note that the query() method also accepts the @ flag to
mark local variables:

In [25]: Cmean = df['C'].mean()
result1 = df[(df.A < Cmean) & (df.B < Cmean)]
result2 = df.query('A < @Cmean and B < @Cmean')
np.allclose(result1, result2)

Out[25]: True

1.5 Performance: When to Use These Functions

When considering whether to use these functions, there are two considerations: computation time
and memory use. Memory use is the most predictable aspect. As already mentioned, every com-
pound expression involving NumPy arrays or Pandas DataFrames will result in implicit creation
of temporary arrays: For example, this:

In [26]: x = df[(df.A < 0.5) & (df.B < 0.5)]

Is roughly equivalent to this:

In [27]: tmp1 = df.A < 0.5
tmp2 = df.B < 0.5
tmp3 = tmp1 & tmp2
x = df[tmp3]
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If the size of the temporary DataFrames is significant compared to your available system mem-
ory (typically several gigabytes) then it’s a good idea to use an eval() or query() expression. You
can check the approximate size of your array in bytes using this:

In [28]: df.values.nbytes

Out[28]: 32000

On the performance side, eval() can be faster even when you are not maxing-out your system
memory. The issue is how your temporary DataFrames compare to the size of the L1 or L2 CPU
cache on your system (typically a few megabytes in 2016); if they are much bigger, then eval()
can avoid some potentially slow movement of values between the different memory caches. In
practice, I find that the difference in computation time between the traditional methods and the
eval/query method is usually not significant–if anything, the traditional method is faster for
smaller arrays! The benefit of eval/query is mainly in the saved memory, and the sometimes
cleaner syntax they offer.

We’ve covered most of the details of eval() and query() here; for more information on these,
you can refer to the Pandas documentation. In particular, different parsers and engines can be
specified for running these queries; for details on this, see the discussion within the “Enhancing
Performance” section.

< Working with Time Series | Contents | Further Resources >
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The text is released under the CC-BY-NC-ND license, and code is released under the MIT license. If
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1 Further Resources

In this chapter, we’ve covered many of the basics of using Pandas effectively for data analysis.
Still, much has been omitted from our discussion. To learn more about Pandas, I recommend the
following resources:

• Pandas online documentation: This is the go-to source for complete documentation of the
package. While the examples in the documentation tend to be small generated datasets, the
description of the options is complete and generally very useful for understanding the use
of various functions.

• Python for Data Analysis Written by Wes McKinney (the original creator of Pandas), this book
contains much more detail on the Pandas package than we had room for in this chapter. In
particular, he takes a deep dive into tools for time series, which were his bread and butter as
a financial consultant. The book also has many entertaining examples of applying Pandas to
gain insight from real-world datasets. Keep in mind, though, that the book is now several
years old, and the Pandas package has quite a few new features that this book does not cover
(but be on the lookout for a new edition in 2017).

• Stack Overflow: Pandas has so many users that any question you have has likely been asked
and answered on Stack Overflow. Using Pandas is a case where some Google-Fu is your best
friend. Simply go to your favorite search engine and type in the question, problem, or error
you’re coming across–more than likely you’ll find your answer on a Stack Overflow page.

• Pandas on PyVideo: From PyCon to SciPy to PyData, many conferences have featured tuto-
rials from Pandas developers and power users. The PyCon tutorials in particular tend to be
given by very well-vetted presenters.

Using these resources, combined with the walk-through given in this chapter, my hope is that
you’ll be poised to use Pandas to tackle any data analysis problem you come across!

< High-Performance Pandas: eval() and query() | Contents | Visualization with Matplotlib >
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This notebook contains an excerpt from the Python Data Science Handbook by Jake VanderPlas; the
content is available on GitHub.

The text is released under the CC-BY-NC-ND license, and code is released under the MIT license. If
you find this content useful, please consider supporting the work by buying the book!
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1 Visualization with Matplotlib

We’ll now take an in-depth look at the Matplotlib package for visualization in Python. Mat-
plotlib is a multi-platform data visualization library built on NumPy arrays, and designed to work
with the broader SciPy stack. It was conceived by John Hunter in 2002, originally as a patch to
IPython for enabling interactive MATLAB-style plotting via gnuplot from the IPython command
line. IPython’s creator, Fernando Perez, was at the time scrambling to finish his PhD, and let John
know he wouldn’t have time to review the patch for several months. John took this as a cue to set
out on his own, and the Matplotlib package was born, with version 0.1 released in 2003. It received
an early boost when it was adopted as the plotting package of choice of the Space Telescope Sci-
ence Institute (the folks behind the Hubble Telescope), which financially supported Matplotlib’s
development and greatly expanded its capabilities.

One of Matplotlib’s most important features is its ability to play well with many operating
systems and graphics backends. Matplotlib supports dozens of backends and output types, which
means you can count on it to work regardless of which operating system you are using or which
output format you wish. This cross-platform, everything-to-everyone approach has been one of
the great strengths of Matplotlib. It has led to a large user base, which in turn has led to an active
developer base and Matplotlib’s powerful tools and ubiquity within the scientific Python world.

In recent years, however, the interface and style of Matplotlib have begun to show their age.
Newer tools like ggplot and ggvis in the R language, along with web visualization toolkits based
on D3js and HTML5 canvas, often make Matplotlib feel clunky and old-fashioned. Still, I’m of
the opinion that we cannot ignore Matplotlib’s strength as a well-tested, cross-platform graphics
engine. Recent Matplotlib versions make it relatively easy to set new global plotting styles (see
Customizing Matplotlib: Configurations and Style Sheets), and people have been developing new
packages that build on its powerful internals to drive Matplotlib via cleaner, more modern APIs—
for example, Seaborn (discussed in Visualization With Seaborn), ggpy, HoloViews, Altair, and
even Pandas itself can be used as wrappers around Matplotlib’s API. Even with wrappers like
these, it is still often useful to dive into Matplotlib’s syntax to adjust the final plot output. For this
reason, I believe that Matplotlib itself will remain a vital piece of the data visualization stack, even
if new tools mean the community gradually moves away from using the Matplotlib API directly.
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1.1 General Matplotlib Tips

Before we dive into the details of creating visualizations with Matplotlib, there are a few useful
things you should know about using the package.

1.1.1 Importing Matplotlib

Just as we use the np shorthand for NumPy and the pd shorthand for Pandas, we will use some
standard shorthands for Matplotlib imports:

In [1]: import matplotlib as mpl
import matplotlib.pyplot as plt

The plt interface is what we will use most often, as we shall see throughout this chapter.

1.1.2 Setting Styles

We will use the plt.style directive to choose appropriate aesthetic styles for our figures. Here we
will set the classic style, which ensures that the plots we create use the classic Matplotlib style:

In [2]: plt.style.use('classic')

Throughout this section, we will adjust this style as needed. Note that the stylesheets used here
are supported as of Matplotlib version 1.5; if you are using an earlier version of Matplotlib, only
the default style is available. For more information on stylesheets, see Customizing Matplotlib:
Configurations and Style Sheets.

1.1.3 show() or No show()? How to Display Your Plots

A visualization you can’t see won’t be of much use, but just how you view your Matplotlib plots
depends on the context. The best use of Matplotlib differs depending on how you are using it;
roughly, the three applicable contexts are using Matplotlib in a script, in an IPython terminal, or
in an IPython notebook.

Plotting from a script If you are using Matplotlib from within a script, the function plt.show()
is your friend. plt.show() starts an event loop, looks for all currently active figure objects, and
opens one or more interactive windows that display your figure or figures.

So, for example, you may have a file called myplot.py containing the following:

# ------- file: myplot.py ------
import matplotlib.pyplot as plt
import numpy as np

x = np.linspace(0, 10, 100)

plt.plot(x, np.sin(x))
plt.plot(x, np.cos(x))

plt.show()
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You can then run this script from the command-line prompt, which will result in a window
opening with your figure displayed:

$ python myplot.py

The plt.show() command does a lot under the hood, as it must interact with your system’s
interactive graphical backend. The details of this operation can vary greatly from system to system
and even installation to installation, but matplotlib does its best to hide all these details from you.

One thing to be aware of: the plt.show() command should be used only once per Python
session, and is most often seen at the very end of the script. Multiple show() commands can lead
to unpredictable backend-dependent behavior, and should mostly be avoided.

Plotting from an IPython shell It can be very convenient to use Matplotlib interactively within
an IPython shell (see IPython: Beyond Normal Python). IPython is built to work well with Mat-
plotlib if you specify Matplotlib mode. To enable this mode, you can use the %matplotlib magic
command after starting ipython:

In [1]: %matplotlib
Using matplotlib backend: TkAgg

In [2]: import matplotlib.pyplot as plt

At this point, any plt plot command will cause a figure window to open, and further com-
mands can be run to update the plot. Some changes (such as modifying properties of lines that
are already drawn) will not draw automatically: to force an update, use plt.draw(). Using
plt.show() in Matplotlib mode is not required.

Plotting from an IPython notebook The IPython notebook is a browser-based interactive data
analysis tool that can combine narrative, code, graphics, HTML elements, and much more into a
single executable document (see IPython: Beyond Normal Python).

Plotting interactively within an IPython notebook can be done with the %matplotlib com-
mand, and works in a similar way to the IPython shell. In the IPython notebook, you also have
the option of embedding graphics directly in the notebook, with two possible options:

• %matplotlib notebook will lead to interactive plots embedded within the notebook
• %matplotlib inline will lead to static images of your plot embedded in the notebook

For this book, we will generally opt for %matplotlib inline:

In [3]: %matplotlib inline

After running this command (it needs to be done only once per kernel/session), any cell within
the notebook that creates a plot will embed a PNG image of the resulting graphic:

In [4]: import numpy as np
x = np.linspace(0, 10, 100)

fig = plt.figure()
plt.plot(x, np.sin(x), '-')
plt.plot(x, np.cos(x), '--');
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1.1.4 Saving Figures to File

One nice feature of Matplotlib is the ability to save figures in a wide variety of formats. Saving a
figure can be done using the savefig() command. For example, to save the previous figure as a
PNG file, you can run this:

In [5]: fig.savefig('my_figure.png')

We now have a file called my_figure.png in the current working directory:

In [6]: !ls -lh my_figure.png

-rw-r--r-- 1 jakevdp staff 16K Aug 11 10:59 my_figure.png

To confirm that it contains what we think it contains, let’s use the IPython Image object to
display the contents of this file:

In [7]: from IPython.display import Image
Image('my_figure.png')

Out[7]:
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In savefig(), the file format is inferred from the extension of the given filename. Depending
on what backends you have installed, many different file formats are available. The list of sup-
ported file types can be found for your system by using the following method of the figure canvas
object:

In [8]: fig.canvas.get_supported_filetypes()

Out[8]: {'eps': 'Encapsulated Postscript',
'jpeg': 'Joint Photographic Experts Group',
'jpg': 'Joint Photographic Experts Group',
'pdf': 'Portable Document Format',
'pgf': 'PGF code for LaTeX',
'png': 'Portable Network Graphics',
'ps': 'Postscript',
'raw': 'Raw RGBA bitmap',
'rgba': 'Raw RGBA bitmap',
'svg': 'Scalable Vector Graphics',
'svgz': 'Scalable Vector Graphics',
'tif': 'Tagged Image File Format',
'tiff': 'Tagged Image File Format'}

Note that when saving your figure, it’s not necessary to use plt.show() or related commands
discussed earlier.
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1.2 Two Interfaces for the Price of One

A potentially confusing feature of Matplotlib is its dual interfaces: a convenient MATLAB-style
state-based interface, and a more powerful object-oriented interface. We’ll quickly highlight the
differences between the two here.

MATLAB-style Interface Matplotlib was originally written as a Python alternative for MATLAB
users, and much of its syntax reflects that fact. The MATLAB-style tools are contained in the pyplot
(plt) interface. For example, the following code will probably look quite familiar to MATLAB
users:

In [9]: plt.figure() # create a plot figure

# create the first of two panels and set current axis
plt.subplot(2, 1, 1) # (rows, columns, panel number)
plt.plot(x, np.sin(x))

# create the second panel and set current axis
plt.subplot(2, 1, 2)
plt.plot(x, np.cos(x));

It is important to note that this interface is stateful: it keeps track of the “current” figure and
axes, which are where all plt commands are applied. You can get a reference to these using the
plt.gcf() (get current figure) and plt.gca() (get current axes) routines.

While this stateful interface is fast and convenient for simple plots, it is easy to run into prob-
lems. For example, once the second panel is created, how can we go back and add something to
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the first? This is possible within the MATLAB-style interface, but a bit clunky. Fortunately, there
is a better way.

Object-oriented interface The object-oriented interface is available for these more complicated
situations, and for when you want more control over your figure. Rather than depending on
some notion of an “active” figure or axes, in the object-oriented interface the plotting functions
are methods of explicit Figure and Axes objects. To re-create the previous plot using this style of
plotting, you might do the following:

In [10]: # First create a grid of plots
# ax will be an array of two Axes objects
fig, ax = plt.subplots(2)

# Call plot() method on the appropriate object
ax[0].plot(x, np.sin(x))
ax[1].plot(x, np.cos(x));

For more simple plots, the choice of which style to use is largely a matter of preference, but the
object-oriented approach can become a necessity as plots become more complicated. Throughout
this chapter, we will switch between the MATLAB-style and object-oriented interfaces, depending
on what is most convenient. In most cases, the difference is as small as switching plt.plot() to
ax.plot(), but there are a few gotchas that we will highlight as they come up in the following
sections.

< Further Resources | Contents | Simple Line Plots >

7

03.13-Further-Resources.ipynb
Index.ipynb
04.01-Simple-Line-Plots.ipynb


04.01-Simple-Line-Plots

October 29, 2018

This notebook contains an excerpt from the Python Data Science Handbook by Jake VanderPlas; the
content is available on GitHub.

The text is released under the CC-BY-NC-ND license, and code is released under the MIT license. If
you find this content useful, please consider supporting the work by buying the book!

< Visualization with Matplotlib | Contents | Simple Scatter Plots >

1 Simple Line Plots

Perhaps the simplest of all plots is the visualization of a single function y = f (x). Here we will
take a first look at creating a simple plot of this type. As with all the following sections, we’ll start
by setting up the notebook for plotting and importing the packages we will use:

In [1]: %matplotlib inline
import matplotlib.pyplot as plt
plt.style.use('seaborn-whitegrid')
import numpy as np

For all Matplotlib plots, we start by creating a figure and an axes. In their simplest form, a
figure and axes can be created as follows:

In [2]: fig = plt.figure()
ax = plt.axes()
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In Matplotlib, the figure (an instance of the class plt.Figure) can be thought of as a single
container that contains all the objects representing axes, graphics, text, and labels. The axes (an
instance of the class plt.Axes) is what we see above: a bounding box with ticks and labels, which
will eventually contain the plot elements that make up our visualization. Throughout this book,
we’ll commonly use the variable name fig to refer to a figure instance, and ax to refer to an axes
instance or group of axes instances.

Once we have created an axes, we can use the ax.plot function to plot some data. Let’s start
with a simple sinusoid:

In [3]: fig = plt.figure()
ax = plt.axes()

x = np.linspace(0, 10, 1000)
ax.plot(x, np.sin(x));
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Alternatively, we can use the pylab interface and let the figure and axes be created for us in the
background (see Two Interfaces for the Price of One for a discussion of these two interfaces):

In [4]: plt.plot(x, np.sin(x));
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If we want to create a single figure with multiple lines, we can simply call the plot function
multiple times:

In [5]: plt.plot(x, np.sin(x))
plt.plot(x, np.cos(x));

That’s all there is to plotting simple functions in Matplotlib! We’ll now dive into some more
details about how to control the appearance of the axes and lines.

1.1 Adjusting the Plot: Line Colors and Styles

The first adjustment you might wish to make to a plot is to control the line colors and styles. The
plt.plot() function takes additional arguments that can be used to specify these. To adjust the
color, you can use the color keyword, which accepts a string argument representing virtually any
imaginable color. The color can be specified in a variety of ways:

In [6]: plt.plot(x, np.sin(x - 0), color='blue') # specify color by name
plt.plot(x, np.sin(x - 1), color='g') # short color code (rgbcmyk)
plt.plot(x, np.sin(x - 2), color='0.75') # Grayscale between 0 and 1
plt.plot(x, np.sin(x - 3), color='#FFDD44') # Hex code (RRGGBB from 00 to FF)
plt.plot(x, np.sin(x - 4), color=(1.0,0.2,0.3)) # RGB tuple, values 0 to 1
plt.plot(x, np.sin(x - 5), color='chartreuse'); # all HTML color names supported
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If no color is specified, Matplotlib will automatically cycle through a set of default colors for
multiple lines.

Similarly, the line style can be adjusted using the linestyle keyword:

In [7]: plt.plot(x, x + 0, linestyle='solid')
plt.plot(x, x + 1, linestyle='dashed')
plt.plot(x, x + 2, linestyle='dashdot')
plt.plot(x, x + 3, linestyle='dotted');

# For short, you can use the following codes:
plt.plot(x, x + 4, linestyle='-') # solid
plt.plot(x, x + 5, linestyle='--') # dashed
plt.plot(x, x + 6, linestyle='-.') # dashdot
plt.plot(x, x + 7, linestyle=':'); # dotted
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If you would like to be extremely terse, these linestyle and color codes can be combined
into a single non-keyword argument to the plt.plot() function:

In [8]: plt.plot(x, x + 0, '-g') # solid green
plt.plot(x, x + 1, '--c') # dashed cyan
plt.plot(x, x + 2, '-.k') # dashdot black
plt.plot(x, x + 3, ':r'); # dotted red
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These single-character color codes reflect the standard abbreviations in the RGB
(Red/Green/Blue) and CMYK (Cyan/Magenta/Yellow/blacK) color systems, commonly used
for digital color graphics.

There are many other keyword arguments that can be used to fine-tune the appearance of
the plot; for more details, I’d suggest viewing the docstring of the plt.plot() function using
IPython’s help tools (See Help and Documentation in IPython).

1.2 Adjusting the Plot: Axes Limits

Matplotlib does a decent job of choosing default axes limits for your plot, but sometimes it’s
nice to have finer control. The most basic way to adjust axis limits is to use the plt.xlim() and
plt.ylim() methods:

In [9]: plt.plot(x, np.sin(x))

plt.xlim(-1, 11)
plt.ylim(-1.5, 1.5);

If for some reason you’d like either axis to be displayed in reverse, you can simply reverse the
order of the arguments:

In [10]: plt.plot(x, np.sin(x))

plt.xlim(10, 0)
plt.ylim(1.2, -1.2);
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A useful related method is plt.axis() (note here the potential confusion between axes with
an e, and axis with an i). The plt.axis() method allows you to set the x and y limits with a single
call, by passing a list which specifies [xmin, xmax, ymin, ymax]:

In [11]: plt.plot(x, np.sin(x))
plt.axis([-1, 11, -1.5, 1.5]);
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The plt.axis() method goes even beyond this, allowing you to do things like automatically
tighten the bounds around the current plot:

In [12]: plt.plot(x, np.sin(x))
plt.axis('tight');

It allows even higher-level specifications, such as ensuring an equal aspect ratio so that on
your screen, one unit in x is equal to one unit in y:

In [13]: plt.plot(x, np.sin(x))
plt.axis('equal');
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For more information on axis limits and the other capabilities of the plt.axis method, refer to
the plt.axis docstring.

1.3 Labeling Plots

As the last piece of this section, we’ll briefly look at the labeling of plots: titles, axis labels, and
simple legends.

Titles and axis labels are the simplest such labels—there are methods that can be used to
quickly set them:

In [14]: plt.plot(x, np.sin(x))
plt.title("A Sine Curve")
plt.xlabel("x")
plt.ylabel("sin(x)");
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The position, size, and style of these labels can be adjusted using optional arguments to the
function. For more information, see the Matplotlib documentation and the docstrings of each of
these functions.

When multiple lines are being shown within a single axes, it can be useful to create a plot
legend that labels each line type. Again, Matplotlib has a built-in way of quickly creating such a
legend. It is done via the (you guessed it) plt.legend() method. Though there are several valid
ways of using this, I find it easiest to specify the label of each line using the label keyword of the
plot function:

In [15]: plt.plot(x, np.sin(x), '-g', label='sin(x)')
plt.plot(x, np.cos(x), ':b', label='cos(x)')
plt.axis('equal')

plt.legend();
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As you can see, the plt.legend() function keeps track of the line style and color, and matches
these with the correct label. More information on specifying and formatting plot legends can
be found in the plt.legend docstring; additionally, we will cover some more advanced legend
options in Customizing Plot Legends.

1.4 Aside: Matplotlib Gotchas

While most plt functions translate directly to ax methods (such as plt.plot() ax.plot(),
plt.legend() ax.legend(), etc.), this is not the case for all commands. In particular, functions
to set limits, labels, and titles are slightly modified. For transitioning between MATLAB-style
functions and object-oriented methods, make the following changes:

• plt.xlabel() ax.set_xlabel()
• plt.ylabel() ax.set_ylabel()
• plt.xlim() ax.set_xlim()
• plt.ylim() ax.set_ylim()
• plt.title() ax.set_title()

In the object-oriented interface to plotting, rather than calling these functions individually, it
is often more convenient to use the ax.set() method to set all these properties at once:

In [16]: ax = plt.axes()
ax.plot(x, np.sin(x))
ax.set(xlim=(0, 10), ylim=(-2, 2),

xlabel='x', ylabel='sin(x)',
title='A Simple Plot');
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< Visualization with Matplotlib | Contents | Simple Scatter Plots >
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04.02-Simple-Scatter-Plots

October 29, 2018

This notebook contains an excerpt from the Python Data Science Handbook by Jake VanderPlas; the
content is available on GitHub.

The text is released under the CC-BY-NC-ND license, and code is released under the MIT license. If
you find this content useful, please consider supporting the work by buying the book!

< Simple Line Plots | Contents | Visualizing Errors >

1 Simple Scatter Plots

Another commonly used plot type is the simple scatter plot, a close cousin of the line plot. In-
stead of points being joined by line segments, here the points are represented individually with a
dot, circle, or other shape. We’ll start by setting up the notebook for plotting and importing the
functions we will use:

In [1]: %matplotlib inline
import matplotlib.pyplot as plt
plt.style.use('seaborn-whitegrid')
import numpy as np

1.1 Scatter Plots with plt.plot

In the previous section we looked at plt.plot/ax.plot to produce line plots. It turns out that
this same function can produce scatter plots as well:

In [2]: x = np.linspace(0, 10, 30)
y = np.sin(x)

plt.plot(x, y, 'o', color='black');
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The third argument in the function call is a character that represents the type of symbol used
for the plotting. Just as you can specify options such as '-', '--' to control the line style, the
marker style has its own set of short string codes. The full list of available symbols can be seen in
the documentation of plt.plot, or in Matplotlib’s online documentation. Most of the possibilities
are fairly intuitive, and we’ll show a number of the more common ones here:

In [3]: rng = np.random.RandomState(0)
for marker in ['o', '.', ',', 'x', '+', 'v', '^', '<', '>', 's', 'd']:

plt.plot(rng.rand(5), rng.rand(5), marker,
label="marker='{0}'".format(marker))

plt.legend(numpoints=1)
plt.xlim(0, 1.8);
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For even more possibilities, these character codes can be used together with line and color
codes to plot points along with a line connecting them:

In [4]: plt.plot(x, y, '-ok');
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Additional keyword arguments to plt.plot specify a wide range of properties of the lines and
markers:

In [5]: plt.plot(x, y, '-p', color='gray',
markersize=15, linewidth=4,
markerfacecolor='white',
markeredgecolor='gray',
markeredgewidth=2)

plt.ylim(-1.2, 1.2);

This type of flexibility in the plt.plot function allows for a wide variety of possible visualiza-
tion options. For a full description of the options available, refer to the plt.plot documentation.

1.2 Scatter Plots with plt.scatter

A second, more powerful method of creating scatter plots is the plt.scatter function, which can
be used very similarly to the plt.plot function:

In [6]: plt.scatter(x, y, marker='o');
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The primary difference of plt.scatter from plt.plot is that it can be used to create scat-
ter plots where the properties of each individual point (size, face color, edge color, etc.) can be
individually controlled or mapped to data.

Let’s show this by creating a random scatter plot with points of many colors and sizes. In order
to better see the overlapping results, we’ll also use the alpha keyword to adjust the transparency
level:

In [7]: rng = np.random.RandomState(0)
x = rng.randn(100)
y = rng.randn(100)
colors = rng.rand(100)
sizes = 1000 * rng.rand(100)

plt.scatter(x, y, c=colors, s=sizes, alpha=0.3,
cmap='viridis')

plt.colorbar(); # show color scale
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Notice that the color argument is automatically mapped to a color scale (shown here by the
colorbar() command), and that the size argument is given in pixels. In this way, the color and
size of points can be used to convey information in the visualization, in order to visualize multi-
dimensional data.

For example, we might use the Iris data from Scikit-Learn, where each sample is one of three
types of flowers that has had the size of its petals and sepals carefully measured:

In [8]: from sklearn.datasets import load_iris
iris = load_iris()
features = iris.data.T

plt.scatter(features[0], features[1], alpha=0.2,
s=100*features[3], c=iris.target, cmap='viridis')

plt.xlabel(iris.feature_names[0])
plt.ylabel(iris.feature_names[1]);
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We can see that this scatter plot has given us the ability to simultaneously explore four different
dimensions of the data: the (x, y) location of each point corresponds to the sepal length and width,
the size of the point is related to the petal width, and the color is related to the particular species
of flower. Multicolor and multifeature scatter plots like this can be useful for both exploration and
presentation of data.

1.3 plot Versus scatter: A Note on Efficiency

Aside from the different features available in plt.plot and plt.scatter, why might you choose
to use one over the other? While it doesn’t matter as much for small amounts of data, as
datasets get larger than a few thousand points, plt.plot can be noticeably more efficient than
plt.scatter. The reason is that plt.scatter has the capability to render a different size and/or
color for each point, so the renderer must do the extra work of constructing each point individu-
ally. In plt.plot, on the other hand, the points are always essentially clones of each other, so the
work of determining the appearance of the points is done only once for the entire set of data. For
large datasets, the difference between these two can lead to vastly different performance, and for
this reason, plt.plot should be preferred over plt.scatter for large datasets.

< Simple Line Plots | Contents | Visualizing Errors >
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04.03-Errorbars

October 29, 2018

This notebook contains an excerpt from the Python Data Science Handbook by Jake VanderPlas; the
content is available on GitHub.

The text is released under the CC-BY-NC-ND license, and code is released under the MIT license. If
you find this content useful, please consider supporting the work by buying the book!

< Simple Scatter Plots | Contents | Density and Contour Plots >

1 Visualizing Errors

For any scientific measurement, accurate accounting for errors is nearly as important, if not more
important, than accurate reporting of the number itself. For example, imagine that I am using
some astrophysical observations to estimate the Hubble Constant, the local measurement of the
expansion rate of the Universe. I know that the current literature suggests a value of around 71
(km/s)/Mpc, and I measure a value of 74 (km/s)/Mpc with my method. Are the values consis-
tent? The only correct answer, given this information, is this: there is no way to know.

Suppose I augment this information with reported uncertainties: the current literature sug-
gests a value of around 71 ± 2.5 (km/s)/Mpc, and my method has measured a value of 74 ± 5
(km/s)/Mpc. Now are the values consistent? That is a question that can be quantitatively an-
swered.

In visualization of data and results, showing these errors effectively can make a plot convey
much more complete information.

1.1 Basic Errorbars

A basic errorbar can be created with a single Matplotlib function call:

In [1]: %matplotlib inline
import matplotlib.pyplot as plt
plt.style.use('seaborn-whitegrid')
import numpy as np

In [2]: x = np.linspace(0, 10, 50)
dy = 0.8
y = np.sin(x) + dy * np.random.randn(50)

plt.errorbar(x, y, yerr=dy, fmt='.k');
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Here the fmt is a format code controlling the appearance of lines and points, and has the same
syntax as the shorthand used in plt.plot, outlined in Simple Line Plots and Simple Scatter Plots.

In addition to these basic options, the errorbar function has many options to fine-tune the
outputs. Using these additional options you can easily customize the aesthetics of your errorbar
plot. I often find it helpful, especially in crowded plots, to make the errorbars lighter than the
points themselves:

In [3]: plt.errorbar(x, y, yerr=dy, fmt='o', color='black',
ecolor='lightgray', elinewidth=3, capsize=0);
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In addition to these options, you can also specify horizontal errorbars (xerr), one-sided er-
rorbars, and many other variants. For more information on the options available, refer to the
docstring of plt.errorbar.

1.2 Continuous Errors

In some situations it is desirable to show errorbars on continuous quantities. Though Matplotlib
does not have a built-in convenience routine for this type of application, it’s relatively easy to
combine primitives like plt.plot and plt.fill_between for a useful result.

Here we’ll perform a simple Gaussian process regression, using the Scikit-Learn API (see Intro-
ducing Scikit-Learn for details). This is a method of fitting a very flexible non-parametric function
to data with a continuous measure of the uncertainty. We won’t delve into the details of Gaus-
sian process regression at this point, but will focus instead on how you might visualize such a
continuous error measurement:

In [4]: from sklearn.gaussian_process import GaussianProcess

# define the model and draw some data
model = lambda x: x * np.sin(x)
xdata = np.array([1, 3, 5, 6, 8])
ydata = model(xdata)

# Compute the Gaussian process fit
gp = GaussianProcess(corr='cubic', theta0=1e-2, thetaL=1e-4, thetaU=1E-1,

random_start=100)
gp.fit(xdata[:, np.newaxis], ydata)
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xfit = np.linspace(0, 10, 1000)
yfit, MSE = gp.predict(xfit[:, np.newaxis], eval_MSE=True)
dyfit = 2 * np.sqrt(MSE) # 2*sigma ~ 95% confidence region

We now have xfit, yfit, and dyfit, which sample the continuous fit to our data. We could
pass these to the plt.errorbar function as above, but we don’t really want to plot 1,000 points
with 1,000 errorbars. Instead, we can use the plt.fill_between function with a light color to
visualize this continuous error:

In [5]: # Visualize the result
plt.plot(xdata, ydata, 'or')
plt.plot(xfit, yfit, '-', color='gray')

plt.fill_between(xfit, yfit - dyfit, yfit + dyfit,
color='gray', alpha=0.2)

plt.xlim(0, 10);

Note what we’ve done here with the fill_between function: we pass an x value, then the
lower y-bound, then the upper y-bound, and the result is that the area between these regions is
filled.

The resulting figure gives a very intuitive view into what the Gaussian process regression
algorithm is doing: in regions near a measured data point, the model is strongly constrained and
this is reflected in the small model errors. In regions far from a measured data point, the model is
not strongly constrained, and the model errors increase.

For more information on the options available in plt.fill_between() (and the closely related
plt.fill() function), see the function docstring or the Matplotlib documentation.
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Finally, if this seems a bit too low level for your taste, refer to Visualization With Seaborn,
where we discuss the Seaborn package, which has a more streamlined API for visualizing this
type of continuous errorbar.

< Simple Scatter Plots | Contents | Density and Contour Plots >
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< Visualizing Errors | Contents | Histograms, Binnings, and Density >

1 Density and Contour Plots

Sometimes it is useful to display three-dimensional data in two dimensions using contours or
color-coded regions. There are three Matplotlib functions that can be helpful for this task:
plt.contour for contour plots, plt.contourf for filled contour plots, and plt.imshow for show-
ing images. This section looks at several examples of using these. We’ll start by setting up the
notebook for plotting and importing the functions we will use:

In [1]: %matplotlib inline
import matplotlib.pyplot as plt
plt.style.use('seaborn-white')
import numpy as np

1.1 Visualizing a Three-Dimensional Function

We’ll start by demonstrating a contour plot using a function z = f (x, y), using the following
particular choice for f (we’ve seen this before in Computation on Arrays: Broadcasting, when we
used it as a motivating example for array broadcasting):

In [2]: def f(x, y):
return np.sin(x) ** 10 + np.cos(10 + y * x) * np.cos(x)

A contour plot can be created with the plt.contour function. It takes three arguments: a grid
of x values, a grid of y values, and a grid of z values. The x and y values represent positions on the
plot, and the z values will be represented by the contour levels. Perhaps the most straightforward
way to prepare such data is to use the np.meshgrid function, which builds two-dimensional grids
from one-dimensional arrays:

In [3]: x = np.linspace(0, 5, 50)
y = np.linspace(0, 5, 40)

X, Y = np.meshgrid(x, y)
Z = f(X, Y)
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Now let’s look at this with a standard line-only contour plot:

In [4]: plt.contour(X, Y, Z, colors='black');

Notice that by default when a single color is used, negative values are represented by dashed
lines, and positive values by solid lines. Alternatively, the lines can be color-coded by specifying a
colormap with the cmap argument. Here, we’ll also specify that we want more lines to be drawn—
20 equally spaced intervals within the data range:

In [5]: plt.contour(X, Y, Z, 20, cmap='RdGy');
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Here we chose the RdGy (short for Red-Gray) colormap, which is a good choice for centered
data. Matplotlib has a wide range of colormaps available, which you can easily browse in IPython
by doing a tab completion on the plt.cm module:

plt.cm.<TAB>

Our plot is looking nicer, but the spaces between the lines may be a bit distracting. We can
change this by switching to a filled contour plot using the plt.contourf() function (notice the f
at the end), which uses largely the same syntax as plt.contour().

Additionally, we’ll add a plt.colorbar() command, which automatically creates an addi-
tional axis with labeled color information for the plot:

In [6]: plt.contourf(X, Y, Z, 20, cmap='RdGy')
plt.colorbar();
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The colorbar makes it clear that the black regions are “peaks,” while the red regions are “val-
leys.”

One potential issue with this plot is that it is a bit “splotchy.” That is, the color steps are discrete
rather than continuous, which is not always what is desired. This could be remedied by setting the
number of contours to a very high number, but this results in a rather inefficient plot: Matplotlib
must render a new polygon for each step in the level. A better way to handle this is to use the
plt.imshow() function, which interprets a two-dimensional grid of data as an image.

The following code shows this:

In [7]: plt.imshow(Z, extent=[0, 5, 0, 5], origin='lower',
cmap='RdGy')

plt.colorbar()
plt.axis(aspect='image');
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There are a few potential gotchas with imshow(), however:

• plt.imshow() doesn’t accept an x and y grid, so you must manually specify the extent [xmin,
xmax, ymin, ymax] of the image on the plot.

• plt.imshow() by default follows the standard image array definition where the origin is in
the upper left, not in the lower left as in most contour plots. This must be changed when
showing gridded data.

• plt.imshow() will automatically adjust the axis aspect ratio to match the input data; this
can be changed by setting, for example, plt.axis(aspect='image') to make x and y units
match.

Finally, it can sometimes be useful to combine contour plots and image plots. For example,
here we’ll use a partially transparent background image (with transparency set via the alpha
parameter) and overplot contours with labels on the contours themselves (using the plt.clabel()
function):

In [8]: contours = plt.contour(X, Y, Z, 3, colors='black')
plt.clabel(contours, inline=True, fontsize=8)

plt.imshow(Z, extent=[0, 5, 0, 5], origin='lower',
cmap='RdGy', alpha=0.5)

plt.colorbar();
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The combination of these three functions—plt.contour, plt.contourf, and plt.imshow—
gives nearly limitless possibilities for displaying this sort of three-dimensional data within a two-
dimensional plot. For more information on the options available in these functions, refer to their
docstrings. If you are interested in three-dimensional visualizations of this type of data, see Three-
dimensional Plotting in Matplotlib.
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< Density and Contour Plots | Contents | Customizing Plot Legends >

1 Histograms, Binnings, and Density

A simple histogram can be a great first step in understanding a dataset. Earlier, we saw a preview
of Matplotlib’s histogram function (see Comparisons, Masks, and Boolean Logic), which creates a
basic histogram in one line, once the normal boiler-plate imports are done:

In [1]: %matplotlib inline
import numpy as np
import matplotlib.pyplot as plt
plt.style.use('seaborn-white')

data = np.random.randn(1000)

In [2]: plt.hist(data);
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The hist() function has many options to tune both the calculation and the display; here’s an
example of a more customized histogram:

In [3]: plt.hist(data, bins=30, normed=True, alpha=0.5,
histtype='stepfilled', color='steelblue',
edgecolor='none');
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The plt.hist docstring has more information on other customization options available. I
find this combination of histtype='stepfilled' along with some transparency alpha to be very
useful when comparing histograms of several distributions:

In [4]: x1 = np.random.normal(0, 0.8, 1000)
x2 = np.random.normal(-2, 1, 1000)
x3 = np.random.normal(3, 2, 1000)

kwargs = dict(histtype='stepfilled', alpha=0.3, normed=True, bins=40)

plt.hist(x1, **kwargs)
plt.hist(x2, **kwargs)
plt.hist(x3, **kwargs);

If you would like to simply compute the histogram (that is, count the number of points in a
given bin) and not display it, the np.histogram() function is available:

In [5]: counts, bin_edges = np.histogram(data, bins=5)
print(counts)

[ 12 190 468 301 29]
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1.1 Two-Dimensional Histograms and Binnings

Just as we create histograms in one dimension by dividing the number-line into bins, we can also
create histograms in two-dimensions by dividing points among two-dimensional bins. We’ll take
a brief look at several ways to do this here. We’ll start by defining some data—an x and y array
drawn from a multivariate Gaussian distribution:

In [6]: mean = [0, 0]
cov = [[1, 1], [1, 2]]
x, y = np.random.multivariate_normal(mean, cov, 10000).T

1.1.1 plt.hist2d: Two-dimensional histogram

One straightforward way to plot a two-dimensional histogram is to use Matplotlib’s plt.hist2d
function:

In [12]: plt.hist2d(x, y, bins=30, cmap='Blues')
cb = plt.colorbar()
cb.set_label('counts in bin')

Just as with plt.hist, plt.hist2d has a number of extra options to fine-tune the plot and
the binning, which are nicely outlined in the function docstring. Further, just as plt.hist has
a counterpart in np.histogram, plt.hist2d has a counterpart in np.histogram2d, which can be
used as follows:

In [8]: counts, xedges, yedges = np.histogram2d(x, y, bins=30)

For the generalization of this histogram binning in dimensions higher than two, see the
np.histogramdd function.
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1.1.2 plt.hexbin: Hexagonal binnings

The two-dimensional histogram creates a tesselation of squares across the axes. Another natural
shape for such a tesselation is the regular hexagon. For this purpose, Matplotlib provides the
plt.hexbin routine, which will represents a two-dimensional dataset binned within a grid of
hexagons:

In [9]: plt.hexbin(x, y, gridsize=30, cmap='Blues')
cb = plt.colorbar(label='count in bin')

plt.hexbin has a number of interesting options, including the ability to specify weights for
each point, and to change the output in each bin to any NumPy aggregate (mean of weights,
standard deviation of weights, etc.).

1.1.3 Kernel density estimation

Another common method of evaluating densities in multiple dimensions is kernel density estimation
(KDE). This will be discussed more fully in In-Depth: Kernel Density Estimation, but for now we’ll
simply mention that KDE can be thought of as a way to “smear out” the points in space and add
up the result to obtain a smooth function. One extremely quick and simple KDE implementation
exists in the scipy.stats package. Here is a quick example of using the KDE on this data:

In [10]: from scipy.stats import gaussian_kde

# fit an array of size [Ndim, Nsamples]
data = np.vstack([x, y])
kde = gaussian_kde(data)
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# evaluate on a regular grid
xgrid = np.linspace(-3.5, 3.5, 40)
ygrid = np.linspace(-6, 6, 40)
Xgrid, Ygrid = np.meshgrid(xgrid, ygrid)
Z = kde.evaluate(np.vstack([Xgrid.ravel(), Ygrid.ravel()]))

# Plot the result as an image
plt.imshow(Z.reshape(Xgrid.shape),

origin='lower', aspect='auto',
extent=[-3.5, 3.5, -6, 6],
cmap='Blues')

cb = plt.colorbar()
cb.set_label("density")

KDE has a smoothing length that effectively slides the knob between detail and smoothness
(one example of the ubiquitous bias–variance trade-off). The literature on choosing an appropriate
smoothing length is vast: gaussian_kde uses a rule-of-thumb to attempt to find a nearly optimal
smoothing length for the input data.

Other KDE implementations are available within the SciPy ecosystem, each with its
own strengths and weaknesses; see, for example, sklearn.neighbors.KernelDensity and
statsmodels.nonparametric.kernel_density.KDEMultivariate. For visualizations based on
KDE, using Matplotlib tends to be overly verbose. The Seaborn library, discussed in Visualization
With Seaborn, provides a much more terse API for creating KDE-based visualizations.

< Density and Contour Plots | Contents | Customizing Plot Legends >
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< Histograms, Binnings, and Density | Contents | Customizing Colorbars >

1 Customizing Plot Legends

Plot legends give meaning to a visualization, assigning meaning to the various plot elements. We
previously saw how to create a simple legend; here we’ll take a look at customizing the placement
and aesthetics of the legend in Matplotlib.

The simplest legend can be created with the plt.legend() command, which automatically
creates a legend for any labeled plot elements:

In [1]: import matplotlib.pyplot as plt
plt.style.use('classic')

In [2]: %matplotlib inline
import numpy as np

In [3]: x = np.linspace(0, 10, 1000)
fig, ax = plt.subplots()
ax.plot(x, np.sin(x), '-b', label='Sine')
ax.plot(x, np.cos(x), '--r', label='Cosine')
ax.axis('equal')
leg = ax.legend();
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But there are many ways we might want to customize such a legend. For example, we can
specify the location and turn off the frame:

In [4]: ax.legend(loc='upper left', frameon=False)
fig

Out[4]:
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We can use the ncol command to specify the number of columns in the legend:

In [5]: ax.legend(frameon=False, loc='lower center', ncol=2)
fig

Out[5]:

We can use a rounded box (fancybox) or add a shadow, change the transparency (alpha value)
of the frame, or change the padding around the text:

In [6]: ax.legend(fancybox=True, framealpha=1, shadow=True, borderpad=1)
fig

Out[6]:
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For more information on available legend options, see the plt.legend docstring.

1.1 Choosing Elements for the Legend

As we have already seen, the legend includes all labeled elements by default. If this is not what
is desired, we can fine-tune which elements and labels appear in the legend by using the objects
returned by plot commands. The plt.plot() command is able to create multiple lines at once,
and returns a list of created line instances. Passing any of these to plt.legend() will tell it which
to identify, along with the labels we’d like to specify:

In [7]: y = np.sin(x[:, np.newaxis] + np.pi * np.arange(0, 2, 0.5))
lines = plt.plot(x, y)

# lines is a list of plt.Line2D instances
plt.legend(lines[:2], ['first', 'second']);
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I generally find in practice that it is clearer to use the first method, applying labels to the plot
elements you’d like to show on the legend:

In [8]: plt.plot(x, y[:, 0], label='first')
plt.plot(x, y[:, 1], label='second')
plt.plot(x, y[:, 2:])
plt.legend(framealpha=1, frameon=True);
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Notice that by default, the legend ignores all elements without a label attribute set.

1.2 Legend for Size of Points

Sometimes the legend defaults are not sufficient for the given visualization. For example, perhaps
you’re be using the size of points to mark certain features of the data, and want to create a legend
reflecting this. Here is an example where we’ll use the size of points to indicate populations of
California cities. We’d like a legend that specifies the scale of the sizes of the points, and we’ll
accomplish this by plotting some labeled data with no entries:

In [9]: import pandas as pd
cities = pd.read_csv('data/california_cities.csv')

# Extract the data we're interested in
lat, lon = cities['latd'], cities['longd']
population, area = cities['population_total'], cities['area_total_km2']

# Scatter the points, using size and color but no label
plt.scatter(lon, lat, label=None,

c=np.log10(population), cmap='viridis',
s=area, linewidth=0, alpha=0.5)

plt.axis(aspect='equal')
plt.xlabel('longitude')
plt.ylabel('latitude')
plt.colorbar(label='log$_{10}$(population)')
plt.clim(3, 7)

# Here we create a legend:
# we'll plot empty lists with the desired size and label
for area in [100, 300, 500]:

plt.scatter([], [], c='k', alpha=0.3, s=area,
label=str(area) + ' km$^2$')

plt.legend(scatterpoints=1, frameon=False, labelspacing=1, title='City Area')

plt.title('California Cities: Area and Population');
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The legend will always reference some object that is on the plot, so if we’d like to display a
particular shape we need to plot it. In this case, the objects we want (gray circles) are not on the
plot, so we fake them by plotting empty lists. Notice too that the legend only lists plot elements
that have a label specified.

By plotting empty lists, we create labeled plot objects which are picked up by the legend, and
now our legend tells us some useful information. This strategy can be useful for creating more
sophisticated visualizations.

Finally, note that for geographic data like this, it would be clearer if we could show state
boundaries or other map-specific elements. For this, an excellent choice of tool is Matplotlib’s
Basemap addon toolkit, which we’ll explore in Geographic Data with Basemap.

1.3 Multiple Legends

Sometimes when designing a plot you’d like to add multiple legends to the same axes. Unfortu-
nately, Matplotlib does not make this easy: via the standard legend interface, it is only possible to
create a single legend for the entire plot. If you try to create a second legend using plt.legend()
or ax.legend(), it will simply override the first one. We can work around this by creating a new
legend artist from scratch, and then using the lower-level ax.add_artist() method to manually
add the second artist to the plot:

In [10]: fig, ax = plt.subplots()

lines = []
styles = ['-', '--', '-.', ':']
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x = np.linspace(0, 10, 1000)

for i in range(4):
lines += ax.plot(x, np.sin(x - i * np.pi / 2),

styles[i], color='black')
ax.axis('equal')

# specify the lines and labels of the first legend
ax.legend(lines[:2], ['line A', 'line B'],

loc='upper right', frameon=False)

# Create the second legend and add the artist manually.
from matplotlib.legend import Legend
leg = Legend(ax, lines[2:], ['line C', 'line D'],

loc='lower right', frameon=False)
ax.add_artist(leg);

This is a peek into the low-level artist objects that comprise any Matplotlib plot. If you examine
the source code of ax.legend() (recall that you can do this with within the IPython notebook
using ax.legend??) you’ll see that the function simply consists of some logic to create a suitable
Legend artist, which is then saved in the legend_ attribute and added to the figure when the plot
is drawn.
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< Customizing Plot Legends | Contents | Multiple Subplots >

1 Customizing Colorbars

Plot legends identify discrete labels of discrete points. For continuous labels based on the color
of points, lines, or regions, a labeled colorbar can be a great tool. In Matplotlib, a colorbar is
a separate axes that can provide a key for the meaning of colors in a plot. Because the book is
printed in black-and-white, this section has an accompanying online supplement where you can
view the figures in full color (https://github.com/jakevdp/PythonDataScienceHandbook). We’ll
start by setting up the notebook for plotting and importing the functions we will use:

In [1]: import matplotlib.pyplot as plt
plt.style.use('classic')

In [2]: %matplotlib inline
import numpy as np

As we have seen several times throughout this section, the simplest colorbar can be created
with the plt.colorbar function:

In [3]: x = np.linspace(0, 10, 1000)
I = np.sin(x) * np.cos(x[:, np.newaxis])

plt.imshow(I)
plt.colorbar();
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We’ll now discuss a few ideas for customizing these colorbars and using them effectively in
various situations.

1.1 Customizing Colorbars

The colormap can be specified using the cmap argument to the plotting function that is creating
the visualization:

In [4]: plt.imshow(I, cmap='gray');
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All the available colormaps are in the plt.cm namespace; using IPython’s tab-completion will
give you a full list of built-in possibilities:

plt.cm.<TAB>

But being able to choose a colormap is just the first step: more important is how to decide among
the possibilities! The choice turns out to be much more subtle than you might initially expect.

1.1.1 Choosing the Colormap

A full treatment of color choice within visualization is beyond the scope of this book, but for en-
tertaining reading on this subject and others, see the article “Ten Simple Rules for Better Figures”.
Matplotlib’s online documentation also has an interesting discussion of colormap choice.

Broadly, you should be aware of three different categories of colormaps:

• Sequential colormaps: These are made up of one continuous sequence of colors (e.g., binary
or viridis).

• Divergent colormaps: These usually contain two distinct colors, which show positive and
negative deviations from a mean (e.g., RdBu or PuOr).

• Qualitative colormaps: these mix colors with no particular sequence (e.g., rainbow or jet).

The jet colormap, which was the default in Matplotlib prior to version 2.0, is an example
of a qualitative colormap. Its status as the default was quite unfortunate, because qualitative
maps are often a poor choice for representing quantitative data. Among the problems is the fact
that qualitative maps usually do not display any uniform progression in brightness as the scale
increases.

We can see this by converting the jet colorbar into black and white:
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In [5]: from matplotlib.colors import LinearSegmentedColormap

def grayscale_cmap(cmap):
"""Return a grayscale version of the given colormap"""
cmap = plt.cm.get_cmap(cmap)
colors = cmap(np.arange(cmap.N))

# convert RGBA to perceived grayscale luminance
# cf. http://alienryderflex.com/hsp.html
RGB_weight = [0.299, 0.587, 0.114]
luminance = np.sqrt(np.dot(colors[:, :3] ** 2, RGB_weight))
colors[:, :3] = luminance[:, np.newaxis]

return LinearSegmentedColormap.from_list(cmap.name + "_gray", colors, cmap.N)

def view_colormap(cmap):
"""Plot a colormap with its grayscale equivalent"""
cmap = plt.cm.get_cmap(cmap)
colors = cmap(np.arange(cmap.N))

cmap = grayscale_cmap(cmap)
grayscale = cmap(np.arange(cmap.N))

fig, ax = plt.subplots(2, figsize=(6, 2),
subplot_kw=dict(xticks=[], yticks=[]))

ax[0].imshow([colors], extent=[0, 10, 0, 1])
ax[1].imshow([grayscale], extent=[0, 10, 0, 1])

In [6]: view_colormap('jet')

Notice the bright stripes in the grayscale image. Even in full color, this uneven brightness
means that the eye will be drawn to certain portions of the color range, which will potentially
emphasize unimportant parts of the dataset. It’s better to use a colormap such as viridis (the
default as of Matplotlib 2.0), which is specifically constructed to have an even brightness variation
across the range. Thus it not only plays well with our color perception, but also will translate well
to grayscale printing:
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In [7]: view_colormap('viridis')

If you favor rainbow schemes, another good option for continuous data is the cubehelix col-
ormap:

In [8]: view_colormap('cubehelix')

For other situations, such as showing positive and negative deviations from some mean, dual-
color colorbars such as RdBu (Red-Blue) can be useful. However, as you can see in the following
figure, it’s important to note that the positive-negative information will be lost upon translation
to grayscale!

In [9]: view_colormap('RdBu')

We’ll see examples of using some of these color maps as we continue.
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There are a large number of colormaps available in Matplotlib; to see a list of them, you can use
IPython to explore the plt.cm submodule. For a more principled approach to colors in Python,
you can refer to the tools and documentation within the Seaborn library (see Visualization With
Seaborn).

1.1.2 Color limits and extensions

Matplotlib allows for a large range of colorbar customization. The colorbar itself is simply an
instance of plt.Axes, so all of the axes and tick formatting tricks we’ve learned are applicable.
The colorbar has some interesting flexibility: for example, we can narrow the color limits and
indicate the out-of-bounds values with a triangular arrow at the top and bottom by setting the
extend property. This might come in handy, for example, if displaying an image that is subject to
noise:

In [10]: # make noise in 1% of the image pixels
speckles = (np.random.random(I.shape) < 0.01)
I[speckles] = np.random.normal(0, 3, np.count_nonzero(speckles))

plt.figure(figsize=(10, 3.5))

plt.subplot(1, 2, 1)
plt.imshow(I, cmap='RdBu')
plt.colorbar()

plt.subplot(1, 2, 2)
plt.imshow(I, cmap='RdBu')
plt.colorbar(extend='both')
plt.clim(-1, 1);

Notice that in the left panel, the default color limits respond to the noisy pixels, and the range of
the noise completely washes-out the pattern we are interested in. In the right panel, we manually
set the color limits, and add extensions to indicate values which are above or below those limits.
The result is a much more useful visualization of our data.
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1.1.3 Discrete Color Bars

Colormaps are by default continuous, but sometimes you’d like to represent discrete values. The
easiest way to do this is to use the plt.cm.get_cmap() function, and pass the name of a suitable
colormap along with the number of desired bins:

In [11]: plt.imshow(I, cmap=plt.cm.get_cmap('Blues', 6))
plt.colorbar()
plt.clim(-1, 1);

The discrete version of a colormap can be used just like any other colormap.

1.2 Example: Handwritten Digits

For an example of where this might be useful, let’s look at an interesting visualization of some
hand written digits data. This data is included in Scikit-Learn, and consists of nearly 2,000 8 × 8
thumbnails showing various hand-written digits.

For now, let’s start by downloading the digits data and visualizing several of the example
images with plt.imshow():

In [12]: # load images of the digits 0 through 5 and visualize several of them
from sklearn.datasets import load_digits
digits = load_digits(n_class=6)

fig, ax = plt.subplots(8, 8, figsize=(6, 6))
for i, axi in enumerate(ax.flat):

axi.imshow(digits.images[i], cmap='binary')
axi.set(xticks=[], yticks=[])
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Because each digit is defined by the hue of its 64 pixels, we can consider each digit to be a
point lying in 64-dimensional space: each dimension represents the brightness of one pixel. But
visualizing relationships in such high-dimensional spaces can be extremely difficult. One way to
approach this is to use a dimensionality reduction technique such as manifold learning to reduce
the dimensionality of the data while maintaining the relationships of interest. Dimensionality
reduction is an example of unsupervised machine learning, and we will discuss it in more detail
in What Is Machine Learning?.

Deferring the discussion of these details, let’s take a look at a two-dimensional manifold learn-
ing projection of this digits data (see In-Depth: Manifold Learning for details):

In [13]: # project the digits into 2 dimensions using IsoMap
from sklearn.manifold import Isomap
iso = Isomap(n_components=2)
projection = iso.fit_transform(digits.data)

We’ll use our discrete colormap to view the results, setting the ticks and clim to improve the
aesthetics of the resulting colorbar:

In [14]: # plot the results
plt.scatter(projection[:, 0], projection[:, 1], lw=0.1,
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c=digits.target, cmap=plt.cm.get_cmap('cubehelix', 6))
plt.colorbar(ticks=range(6), label='digit value')
plt.clim(-0.5, 5.5)

The projection also gives us some interesting insights on the relationships within the dataset:
for example, the ranges of 5 and 3 nearly overlap in this projection, indicating that some hand
written fives and threes are difficult to distinguish, and therefore more likely to be confused by an
automated classification algorithm. Other values, like 0 and 1, are more distantly separated, and
therefore much less likely to be confused. This observation agrees with our intuition, because 5
and 3 look much more similar than do 0 and 1.

We’ll return to manifold learning and to digit classification in Chapter 5.
< Customizing Plot Legends | Contents | Multiple Subplots >
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04.08-Multiple-Subplots

October 29, 2018

This notebook contains an excerpt from the Python Data Science Handbook by Jake VanderPlas; the
content is available on GitHub.

The text is released under the CC-BY-NC-ND license, and code is released under the MIT license. If
you find this content useful, please consider supporting the work by buying the book!

< Customizing Colorbars | Contents | Text and Annotation >

1 Multiple Subplots

Sometimes it is helpful to compare different views of data side by side. To this end, Matplotlib has
the concept of subplots: groups of smaller axes that can exist together within a single figure. These
subplots might be insets, grids of plots, or other more complicated layouts. In this section we’ll
explore four routines for creating subplots in Matplotlib.

In [1]: %matplotlib inline
import matplotlib.pyplot as plt
plt.style.use('seaborn-white')
import numpy as np

1.1 plt.axes: Subplots by Hand

The most basic method of creating an axes is to use the plt.axes function. As we’ve seen previ-
ously, by default this creates a standard axes object that fills the entire figure. plt.axes also takes
an optional argument that is a list of four numbers in the figure coordinate system. These numbers
represent [left, bottom, width, height] in the figure coordinate system, which ranges from 0
at the bottom left of the figure to 1 at the top right of the figure.

For example, we might create an inset axes at the top-right corner of another axes by setting
the x and y position to 0.65 (that is, starting at 65% of the width and 65% of the height of the figure)
and the x and y extents to 0.2 (that is, the size of the axes is 20% of the width and 20% of the height
of the figure):

In [2]: ax1 = plt.axes() # standard axes
ax2 = plt.axes([0.65, 0.65, 0.2, 0.2])
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The equivalent of this command within the object-oriented interface is fig.add_axes(). Let’s
use this to create two vertically stacked axes:

In [3]: fig = plt.figure()
ax1 = fig.add_axes([0.1, 0.5, 0.8, 0.4],

xticklabels=[], ylim=(-1.2, 1.2))
ax2 = fig.add_axes([0.1, 0.1, 0.8, 0.4],

ylim=(-1.2, 1.2))

x = np.linspace(0, 10)
ax1.plot(np.sin(x))
ax2.plot(np.cos(x));
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We now have two axes (the top with no tick labels) that are just touching: the bottom of the
upper panel (at position 0.5) matches the top of the lower panel (at position 0.1 + 0.4).

1.2 plt.subplot: Simple Grids of Subplots

Aligned columns or rows of subplots are a common-enough need that Matplotlib has several
convenience routines that make them easy to create. The lowest level of these is plt.subplot(),
which creates a single subplot within a grid. As you can see, this command takes three integer
arguments—the number of rows, the number of columns, and the index of the plot to be created
in this scheme, which runs from the upper left to the bottom right:

In [4]: for i in range(1, 7):
plt.subplot(2, 3, i)
plt.text(0.5, 0.5, str((2, 3, i)),

fontsize=18, ha='center')
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The command plt.subplots_adjust can be used to adjust the spacing between these plots.
The following code uses the equivalent object-oriented command, fig.add_subplot():

In [5]: fig = plt.figure()
fig.subplots_adjust(hspace=0.4, wspace=0.4)
for i in range(1, 7):

ax = fig.add_subplot(2, 3, i)
ax.text(0.5, 0.5, str((2, 3, i)),

fontsize=18, ha='center')
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We’ve used the hspace and wspace arguments of plt.subplots_adjust, which specify the
spacing along the height and width of the figure, in units of the subplot size (in this case, the
space is 40% of the subplot width and height).

1.3 plt.subplots: The Whole Grid in One Go

The approach just described can become quite tedious when creating a large grid of subplots,
especially if you’d like to hide the x- and y-axis labels on the inner plots. For this purpose,
plt.subplots() is the easier tool to use (note the s at the end of subplots). Rather than cre-
ating a single subplot, this function creates a full grid of subplots in a single line, returning them
in a NumPy array. The arguments are the number of rows and number of columns, along with
optional keywords sharex and sharey, which allow you to specify the relationships between dif-
ferent axes.

Here we’ll create a 2 × 3 grid of subplots, where all axes in the same row share their y-axis
scale, and all axes in the same column share their x-axis scale:

In [6]: fig, ax = plt.subplots(2, 3, sharex='col', sharey='row')
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Note that by specifying sharex and sharey, we’ve automatically removed inner labels on the
grid to make the plot cleaner. The resulting grid of axes instances is returned within a NumPy
array, allowing for convenient specification of the desired axes using standard array indexing
notation:

In [7]: # axes are in a two-dimensional array, indexed by [row, col]
for i in range(2):

for j in range(3):
ax[i, j].text(0.5, 0.5, str((i, j)),

fontsize=18, ha='center')
fig

Out[7]:

6



In comparison to plt.subplot(), plt.subplots() is more consistent with Python’s conven-
tional 0-based indexing.

1.4 plt.GridSpec: More Complicated Arrangements

To go beyond a regular grid to subplots that span multiple rows and columns, plt.GridSpec() is
the best tool. The plt.GridSpec() object does not create a plot by itself; it is simply a convenient
interface that is recognized by the plt.subplot() command. For example, a gridspec for a grid
of two rows and three columns with some specified width and height space looks like this:

In [8]: grid = plt.GridSpec(2, 3, wspace=0.4, hspace=0.3)

From this we can specify subplot locations and extents using the familiary Python slicing syn-
tax:

In [9]: plt.subplot(grid[0, 0])
plt.subplot(grid[0, 1:])
plt.subplot(grid[1, :2])
plt.subplot(grid[1, 2]);
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This type of flexible grid alignment has a wide range of uses. I most often use it when creating
multi-axes histogram plots like the ones shown here:

In [10]: # Create some normally distributed data
mean = [0, 0]
cov = [[1, 1], [1, 2]]
x, y = np.random.multivariate_normal(mean, cov, 3000).T

# Set up the axes with gridspec
fig = plt.figure(figsize=(6, 6))
grid = plt.GridSpec(4, 4, hspace=0.2, wspace=0.2)
main_ax = fig.add_subplot(grid[:-1, 1:])
y_hist = fig.add_subplot(grid[:-1, 0], xticklabels=[], sharey=main_ax)
x_hist = fig.add_subplot(grid[-1, 1:], yticklabels=[], sharex=main_ax)

# scatter points on the main axes
main_ax.plot(x, y, 'ok', markersize=3, alpha=0.2)

# histogram on the attached axes
x_hist.hist(x, 40, histtype='stepfilled',

orientation='vertical', color='gray')
x_hist.invert_yaxis()

y_hist.hist(y, 40, histtype='stepfilled',
orientation='horizontal', color='gray')

y_hist.invert_xaxis()
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This type of distribution plotted alongside its margins is common enough that it has its own
plotting API in the Seaborn package; see Visualization With Seaborn for more details.

< Customizing Colorbars | Contents | Text and Annotation >
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04.09-Text-and-Annotation

October 29, 2018

This notebook contains an excerpt from the Python Data Science Handbook by Jake VanderPlas; the
content is available on GitHub.

The text is released under the CC-BY-NC-ND license, and code is released under the MIT license. If
you find this content useful, please consider supporting the work by buying the book!

< Multiple Subplots | Contents | Customizing Ticks >

1 Text and Annotation

Creating a good visualization involves guiding the reader so that the figure tells a story. In some
cases, this story can be told in an entirely visual manner, without the need for added text, but in
others, small textual cues and labels are necessary. Perhaps the most basic types of annotations
you will use are axes labels and titles, but the options go beyond this. Let’s take a look at some
data and how we might visualize and annotate it to help convey interesting information. We’ll
start by setting up the notebook for plotting and importing the functions we will use:

In [1]: %matplotlib inline
import matplotlib.pyplot as plt
import matplotlib as mpl
plt.style.use('seaborn-whitegrid')
import numpy as np
import pandas as pd

1.1 Example: Effect of Holidays on US Births

Let’s return to some data we worked with earler, in “Example: Birthrate Data”, where we
generated a plot of average births over the course of the calendar year; as already men-
tioned, that this data can be downloaded at https://raw.githubusercontent.com/jakevdp/data-
CDCbirths/master/births.csv.

We’ll start with the same cleaning procedure we used there, and plot the results:

In [2]: births = pd.read_csv('data/births.csv')

quartiles = np.percentile(births['births'], [25, 50, 75])
mu, sig = quartiles[1], 0.74 * (quartiles[2] - quartiles[0])
births = births.query('(births > @mu - 5 * @sig) & (births < @mu + 5 * @sig)')

births['day'] = births['day'].astype(int)
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births.index = pd.to_datetime(10000 * births.year +
100 * births.month +
births.day, format='%Y%m%d')

births_by_date = births.pivot_table('births',
[births.index.month, births.index.day])

births_by_date.index = [pd.datetime(2012, month, day)
for (month, day) in births_by_date.index]

In [3]: fig, ax = plt.subplots(figsize=(12, 4))
births_by_date.plot(ax=ax);

When we’re communicating data like this, it is often useful to annotate certain features of
the plot to draw the reader’s attention. This can be done manually with the plt.text/ax.text
command, which will place text at a particular x/y value:

In [4]: fig, ax = plt.subplots(figsize=(12, 4))
births_by_date.plot(ax=ax)

# Add labels to the plot
style = dict(size=10, color='gray')

ax.text('2012-1-1', 3950, "New Year's Day", **style)
ax.text('2012-7-4', 4250, "Independence Day", ha='center', **style)
ax.text('2012-9-4', 4850, "Labor Day", ha='center', **style)
ax.text('2012-10-31', 4600, "Halloween", ha='right', **style)
ax.text('2012-11-25', 4450, "Thanksgiving", ha='center', **style)
ax.text('2012-12-25', 3850, "Christmas ", ha='right', **style)

# Label the axes
ax.set(title='USA births by day of year (1969-1988)',

ylabel='average daily births')

# Format the x axis with centered month labels

2



ax.xaxis.set_major_locator(mpl.dates.MonthLocator())
ax.xaxis.set_minor_locator(mpl.dates.MonthLocator(bymonthday=15))
ax.xaxis.set_major_formatter(plt.NullFormatter())
ax.xaxis.set_minor_formatter(mpl.dates.DateFormatter('%h'));

The ax.text method takes an x position, a y position, a string, and then optional keywords
specifying the color, size, style, alignment, and other properties of the text. Here we used
ha='right' and ha='center', where ha is short for horizonal alignment. See the docstring of
plt.text() and of mpl.text.Text() for more information on available options.

1.2 Transforms and Text Position

In the previous example, we have anchored our text annotations to data locations. Sometimes
it’s preferable to anchor the text to a position on the axes or figure, independent of the data. In
Matplotlib, this is done by modifying the transform.

Any graphics display framework needs some scheme for translating between coordinate sys-
tems. For example, a data point at (x, y) = (1, 1) needs to somehow be represented at a certain
location on the figure, which in turn needs to be represented in pixels on the screen. Mathe-
matically, such coordinate transformations are relatively straightforward, and Matplotlib has a
well-developed set of tools that it uses internally to perform them (these tools can be explored in
the matplotlib.transforms submodule).

The average user rarely needs to worry about the details of these transforms, but it is helpful
knowledge to have when considering the placement of text on a figure. There are three pre-defined
transforms that can be useful in this situation:

• ax.transData: Transform associated with data coordinates
• ax.transAxes: Transform associated with the axes (in units of axes dimensions)
• fig.transFigure: Transform associated with the figure (in units of figure dimensions)

Here let’s look at an example of drawing text at various locations using these transforms:

In [5]: fig, ax = plt.subplots(facecolor='lightgray')
ax.axis([0, 10, 0, 10])
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# transform=ax.transData is the default, but we'll specify it anyway
ax.text(1, 5, ". Data: (1, 5)", transform=ax.transData)
ax.text(0.5, 0.1, ". Axes: (0.5, 0.1)", transform=ax.transAxes)
ax.text(0.2, 0.2, ". Figure: (0.2, 0.2)", transform=fig.transFigure);

Note that by default, the text is aligned above and to the left of the specified coordinates: here
the “.” at the beginning of each string will approximately mark the given coordinate location.

The transData coordinates give the usual data coordinates associated with the x- and y-axis
labels. The transAxes coordinates give the location from the bottom-left corner of the axes (here
the white box), as a fraction of the axes size. The transFigure coordinates are similar, but specify
the position from the bottom-left of the figure (here the gray box), as a fraction of the figure size.

Notice now that if we change the axes limits, it is only the transData coordinates that will be
affected, while the others remain stationary:

In [6]: ax.set_xlim(0, 2)
ax.set_ylim(-6, 6)
fig

Out[6]:
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This behavior can be seen more clearly by changing the axes limits interactively: if you are
executing this code in a notebook, you can make that happen by changing %matplotlib inline
to %matplotlib notebook and using each plot’s menu to interact with the plot.

1.3 Arrows and Annotation

Along with tick marks and text, another useful annotation mark is the simple arrow.
Drawing arrows in Matplotlib is often much harder than you’d bargain for. While there is a

plt.arrow() function available, I wouldn’t suggest using it: the arrows it creates are SVG objects
that will be subject to the varying aspect ratio of your plots, and the result is rarely what the user
intended. Instead, I’d suggest using the plt.annotate() function. This function creates some text
and an arrow, and the arrows can be very flexibly specified.

Here we’ll use annotate with several of its options:

In [7]: %matplotlib inline

fig, ax = plt.subplots()

x = np.linspace(0, 20, 1000)
ax.plot(x, np.cos(x))
ax.axis('equal')

ax.annotate('local maximum', xy=(6.28, 1), xytext=(10, 4),
arrowprops=dict(facecolor='black', shrink=0.05))

ax.annotate('local minimum', xy=(5 * np.pi, -1), xytext=(2, -6),
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arrowprops=dict(arrowstyle="->",
connectionstyle="angle3,angleA=0,angleB=-90"));

The arrow style is controlled through the arrowprops dictionary, which has numerous op-
tions available. These options are fairly well-documented in Matplotlib’s online documentation,
so rather than repeating them here it is probably more useful to quickly show some of the possi-
bilities. Let’s demonstrate several of the possible options using the birthrate plot from before:

In [8]: fig, ax = plt.subplots(figsize=(12, 4))
births_by_date.plot(ax=ax)

# Add labels to the plot
ax.annotate("New Year's Day", xy=('2012-1-1', 4100), xycoords='data',

xytext=(50, -30), textcoords='offset points',
arrowprops=dict(arrowstyle="->",

connectionstyle="arc3,rad=-0.2"))

ax.annotate("Independence Day", xy=('2012-7-4', 4250), xycoords='data',
bbox=dict(boxstyle="round", fc="none", ec="gray"),
xytext=(10, -40), textcoords='offset points', ha='center',
arrowprops=dict(arrowstyle="->"))

ax.annotate('Labor Day', xy=('2012-9-4', 4850), xycoords='data', ha='center',
xytext=(0, -20), textcoords='offset points')

ax.annotate('', xy=('2012-9-1', 4850), xytext=('2012-9-7', 4850),
xycoords='data', textcoords='data',
arrowprops={'arrowstyle': '|-|,widthA=0.2,widthB=0.2', })
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ax.annotate('Halloween', xy=('2012-10-31', 4600), xycoords='data',
xytext=(-80, -40), textcoords='offset points',
arrowprops=dict(arrowstyle="fancy",

fc="0.6", ec="none",
connectionstyle="angle3,angleA=0,angleB=-90"))

ax.annotate('Thanksgiving', xy=('2012-11-25', 4500), xycoords='data',
xytext=(-120, -60), textcoords='offset points',
bbox=dict(boxstyle="round4,pad=.5", fc="0.9"),
arrowprops=dict(arrowstyle="->",

connectionstyle="angle,angleA=0,angleB=80,rad=20"))

ax.annotate('Christmas', xy=('2012-12-25', 3850), xycoords='data',
xytext=(-30, 0), textcoords='offset points',
size=13, ha='right', va="center",
bbox=dict(boxstyle="round", alpha=0.1),
arrowprops=dict(arrowstyle="wedge,tail_width=0.5", alpha=0.1));

# Label the axes
ax.set(title='USA births by day of year (1969-1988)',

ylabel='average daily births')

# Format the x axis with centered month labels
ax.xaxis.set_major_locator(mpl.dates.MonthLocator())
ax.xaxis.set_minor_locator(mpl.dates.MonthLocator(bymonthday=15))
ax.xaxis.set_major_formatter(plt.NullFormatter())
ax.xaxis.set_minor_formatter(mpl.dates.DateFormatter('%h'));

ax.set_ylim(3600, 5400);

You’ll notice that the specifications of the arrows and text boxes are very detailed: this gives
you the power to create nearly any arrow style you wish. Unfortunately, it also means that these
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sorts of features often must be manually tweaked, a process that can be very time consuming
when producing publication-quality graphics! Finally, I’ll note that the preceding mix of styles is
by no means best practice for presenting data, but rather included as a demonstration of some of
the available options.

More discussion and examples of available arrow and annotation styles can be found in the
Matplotlib gallery, in particular the Annotation Demo.

< Multiple Subplots | Contents | Customizing Ticks >
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you find this content useful, please consider supporting the work by buying the book!

< Text and Annotation | Contents | Customizing Matplotlib: Configurations and Stylesheets
>

1 Customizing Ticks

Matplotlib’s default tick locators and formatters are designed to be generally sufficient in many
common situations, but are in no way optimal for every plot. This section will give several ex-
amples of adjusting the tick locations and formatting for the particular plot type you’re interested
in.

Before we go into examples, it will be best for us to understand further the object hierarchy
of Matplotlib plots. Matplotlib aims to have a Python object representing everything that appears
on the plot: for example, recall that the figure is the bounding box within which plot elements
appear. Each Matplotlib object can also act as a container of sub-objects: for example, each figure
can contain one or more axes objects, each of which in turn contain other objects representing plot
contents.

The tick marks are no exception. Each axes has attributes xaxis and yaxis, which in turn have
attributes that contain all the properties of the lines, ticks, and labels that make up the axes.

1.1 Major and Minor Ticks

Within each axis, there is the concept of a major tick mark, and a minor tick mark. As the names
would imply, major ticks are usually bigger or more pronounced, while minor ticks are usually
smaller. By default, Matplotlib rarely makes use of minor ticks, but one place you can see them is
within logarithmic plots:

In [1]: import matplotlib.pyplot as plt
plt.style.use('classic')
%matplotlib inline
import numpy as np

In [2]: ax = plt.axes(xscale='log', yscale='log')
ax.grid();
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We see here that each major tick shows a large tickmark and a label, while each minor tick
shows a smaller tickmark with no label.

These tick properties—locations and labels—that is, can be customized by setting the
formatter and locator objects of each axis. Let’s examine these for the x axis of the just shown
plot:

In [3]: print(ax.xaxis.get_major_locator())
print(ax.xaxis.get_minor_locator())

<matplotlib.ticker.LogLocator object at 0x10dbaf630>
<matplotlib.ticker.LogLocator object at 0x10dba6e80>

In [4]: print(ax.xaxis.get_major_formatter())
print(ax.xaxis.get_minor_formatter())

<matplotlib.ticker.LogFormatterMathtext object at 0x10db8dbe0>
<matplotlib.ticker.NullFormatter object at 0x10db9af60>

We see that both major and minor tick labels have their locations specified by a LogLocator
(which makes sense for a logarithmic plot). Minor ticks, though, have their labels formatted by a
NullFormatter: this says that no labels will be shown.

We’ll now show a few examples of setting these locators and formatters for various plots.
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1.2 Hiding Ticks or Labels

Perhaps the most common tick/label formatting operation is the act of hiding ticks or labels. This
can be done using plt.NullLocator() and plt.NullFormatter(), as shown here:

In [5]: ax = plt.axes()
ax.plot(np.random.rand(50))

ax.yaxis.set_major_locator(plt.NullLocator())
ax.xaxis.set_major_formatter(plt.NullFormatter())

Notice that we’ve removed the labels (but kept the ticks/gridlines) from the x axis, and re-
moved the ticks (and thus the labels as well) from the y axis. Having no ticks at all can be useful
in many situations—for example, when you want to show a grid of images. For instance, consider
the following figure, which includes images of different faces, an example often used in super-
vised machine learning problems (see, for example, In-Depth: Support Vector Machines):

In [6]: fig, ax = plt.subplots(5, 5, figsize=(5, 5))
fig.subplots_adjust(hspace=0, wspace=0)

# Get some face data from scikit-learn
from sklearn.datasets import fetch_olivetti_faces
faces = fetch_olivetti_faces().images

for i in range(5):
for j in range(5):

ax[i, j].xaxis.set_major_locator(plt.NullLocator())
ax[i, j].yaxis.set_major_locator(plt.NullLocator())
ax[i, j].imshow(faces[10 * i + j], cmap="bone")
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Notice that each image has its own axes, and we’ve set the locators to null because the tick
values (pixel number in this case) do not convey relevant information for this particular visualiza-
tion.

1.3 Reducing or Increasing the Number of Ticks

One common problem with the default settings is that smaller subplots can end up with crowded
labels. We can see this in the plot grid shown here:

In [7]: fig, ax = plt.subplots(4, 4, sharex=True, sharey=True)
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Particularly for the x ticks, the numbers nearly overlap and make them quite difficult to de-
cipher. We can fix this with the plt.MaxNLocator(), which allows us to specify the maximum
number of ticks that will be displayed. Given this maximum number, Matplotlib will use internal
logic to choose the particular tick locations:

In [8]: # For every axis, set the x and y major locator
for axi in ax.flat:

axi.xaxis.set_major_locator(plt.MaxNLocator(3))
axi.yaxis.set_major_locator(plt.MaxNLocator(3))

fig

Out[8]:
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This makes things much cleaner. If you want even more control over the locations of regularly-
spaced ticks, you might also use plt.MultipleLocator, which we’ll discuss in the following sec-
tion.

1.4 Fancy Tick Formats

Matplotlib’s default tick formatting can leave a lot to be desired: it works well as a broad default,
but sometimes you’d like do do something more. Consider this plot of a sine and a cosine:

In [9]: # Plot a sine and cosine curve
fig, ax = plt.subplots()
x = np.linspace(0, 3 * np.pi, 1000)
ax.plot(x, np.sin(x), lw=3, label='Sine')
ax.plot(x, np.cos(x), lw=3, label='Cosine')

# Set up grid, legend, and limits
ax.grid(True)
ax.legend(frameon=False)
ax.axis('equal')
ax.set_xlim(0, 3 * np.pi);
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There are a couple changes we might like to make. First, it’s more natural for this data to space
the ticks and grid lines in multiples of π. We can do this by setting a MultipleLocator, which
locates ticks at a multiple of the number you provide. For good measure, we’ll add both major
and minor ticks in multiples of π/4:

In [10]: ax.xaxis.set_major_locator(plt.MultipleLocator(np.pi / 2))
ax.xaxis.set_minor_locator(plt.MultipleLocator(np.pi / 4))
fig

Out[10]:
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But now these tick labels look a little bit silly: we can see that they are multiples of π,
but the decimal representation does not immediately convey this. To fix this, we can change
the tick formatter. There’s no built-in formatter for what we want to do, so we’ll instead use
plt.FuncFormatter, which accepts a user-defined function giving fine-grained control over the
tick outputs:

In [11]: def format_func(value, tick_number):
# find number of multiples of pi/2
N = int(np.round(2 * value / np.pi))
if N == 0:

return "0"
elif N == 1:

return r"$\pi/2$"
elif N == 2:

return r"$\pi$"
elif N % 2 > 0:

return r"${0}\pi/2$".format(N)
else:

return r"${0}\pi$".format(N // 2)

ax.xaxis.set_major_formatter(plt.FuncFormatter(format_func))
fig

Out[11]:
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This is much better! Notice that we’ve made use of Matplotlib’s LaTeX support, specified
by enclosing the string within dollar signs. This is very convenient for display of mathematical
symbols and formulae: in this case, "$\pi$" is rendered as the Greek character π.

The plt.FuncFormatter() offers extremely fine-grained control over the appearance of your
plot ticks, and comes in very handy when preparing plots for presentation or publication.

1.5 Summary of Formatters and Locators

We’ve mentioned a couple of the available formatters and locators. We’ll conclude this section by
briefly listing all the built-in locator and formatter options. For more information on any of these,
refer to the docstrings or to the Matplotlib online documentaion. Each of the following is available
in the plt namespace:

Locator class Description

NullLocator No ticks
FixedLocator Tick locations are fixed
IndexLocator Locator for index plots (e.g., where x = range(len(y)))
LinearLocator Evenly spaced ticks from min to max
LogLocator Logarithmically ticks from min to max
MultipleLocator Ticks and range are a multiple of base
MaxNLocator Finds up to a max number of ticks at nice locations
AutoLocator (Default.) MaxNLocator with simple defaults.
AutoMinorLocator Locator for minor ticks
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Formatter Class Description

NullFormatter No labels on the ticks
IndexFormatter Set the strings from a list of labels
FixedFormatter Set the strings manually for the labels
FuncFormatter User-defined function sets the labels
FormatStrFormatter Use a format string for each value
ScalarFormatter (Default.) Formatter for scalar values
LogFormatter Default formatter for log axes

We’ll see further examples of these through the remainder of the book.
< Text and Annotation | Contents | Customizing Matplotlib: Configurations and Stylesheets

>
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04.11-Settings-and-Stylesheets

October 29, 2018

This notebook contains an excerpt from the Python Data Science Handbook by Jake VanderPlas; the
content is available on GitHub.

The text is released under the CC-BY-NC-ND license, and code is released under the MIT license. If
you find this content useful, please consider supporting the work by buying the book!

< Customizing Ticks | Contents | Three-Dimensional Plotting in Matplotlib >

1 Customizing Matplotlib: Configurations and Stylesheets

Matplotlib’s default plot settings are often the subject of complaint among its users. While much is
slated to change in the 2.0 Matplotlib release in late 2016, the ability to customize default settings
helps bring the package inline with your own aesthetic preferences.

Here we’ll walk through some of Matplotlib’s runtime configuration (rc) options, and take a
look at the newer stylesheets feature, which contains some nice sets of default configurations.

1.1 Plot Customization by Hand

Through this chapter, we’ve seen how it is possible to tweak individual plot settings to end up with
something that looks a little bit nicer than the default. It’s possible to do these customizations for
each individual plot. For example, here is a fairly drab default histogram:

In [1]: import matplotlib.pyplot as plt
plt.style.use('classic')
import numpy as np

%matplotlib inline

In [2]: x = np.random.randn(1000)
plt.hist(x);
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We can adjust this by hand to make it a much more visually pleasing plot:

In [3]: # use a gray background
ax = plt.axes(axisbg='#E6E6E6')
ax.set_axisbelow(True)

# draw solid white grid lines
plt.grid(color='w', linestyle='solid')

# hide axis spines
for spine in ax.spines.values():

spine.set_visible(False)

# hide top and right ticks
ax.xaxis.tick_bottom()
ax.yaxis.tick_left()

# lighten ticks and labels
ax.tick_params(colors='gray', direction='out')
for tick in ax.get_xticklabels():

tick.set_color('gray')
for tick in ax.get_yticklabels():

tick.set_color('gray')

# control face and edge color of histogram
ax.hist(x, edgecolor='#E6E6E6', color='#EE6666');
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This looks better, and you may recognize the look as inspired by the look of the R language’s
ggplot visualization package. But this took a whole lot of effort! We definitely do not want to
have to do all that tweaking each time we create a plot. Fortunately, there is a way to adjust these
defaults once in a way that will work for all plots.

1.2 Changing the Defaults: rcParams

Each time Matplotlib loads, it defines a runtime configuration (rc) containing the default styles for
every plot element you create. This configuration can be adjusted at any time using the plt.rc
convenience routine. Let’s see what it looks like to modify the rc parameters so that our default
plot will look similar to what we did before.

We’ll start by saving a copy of the current rcParams dictionary, so we can easily reset these
changes in the current session:

In [4]: IPython_default = plt.rcParams.copy()

Now we can use the plt.rc function to change some of these settings:

In [5]: from matplotlib import cycler
colors = cycler('color',

['#EE6666', '#3388BB', '#9988DD',
'#EECC55', '#88BB44', '#FFBBBB'])

plt.rc('axes', facecolor='#E6E6E6', edgecolor='none',
axisbelow=True, grid=True, prop_cycle=colors)

plt.rc('grid', color='w', linestyle='solid')
plt.rc('xtick', direction='out', color='gray')
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plt.rc('ytick', direction='out', color='gray')
plt.rc('patch', edgecolor='#E6E6E6')
plt.rc('lines', linewidth=2)

With these settings defined, we can now create a plot and see our settings in action:

In [6]: plt.hist(x);

Let’s see what simple line plots look like with these rc parameters:

In [7]: for i in range(4):
plt.plot(np.random.rand(10))
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I find this much more aesthetically pleasing than the default styling. If you disagree with my
aesthetic sense, the good news is that you can adjust the rc parameters to suit your own tastes!
These settings can be saved in a .matplotlibrc file, which you can read about in the Matplotlib
documentation. That said, I prefer to customize Matplotlib using its stylesheets instead.

1.3 Stylesheets

The version 1.4 release of Matplotlib in August 2014 added a very convenient style module,
which includes a number of new default stylesheets, as well as the ability to create and package
your own styles. These stylesheets are formatted similarly to the .matplotlibrc files mentioned
earlier, but must be named with a .mplstyle extension.

Even if you don’t create your own style, the stylesheets included by default are extremely
useful. The available styles are listed in plt.style.available—here I’ll list only the first five for
brevity:

In [8]: plt.style.available[:5]

Out[8]: ['fivethirtyeight',
'seaborn-pastel',
'seaborn-whitegrid',
'ggplot',
'grayscale']

The basic way to switch to a stylesheet is to call

plt.style.use('stylename')
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But keep in mind that this will change the style for the rest of the session! Alternatively, you
can use the style context manager, which sets a style temporarily:

with plt.style.context('stylename'):
make_a_plot()

Let’s create a function that will make two basic types of plot:

In [9]: def hist_and_lines():
np.random.seed(0)
fig, ax = plt.subplots(1, 2, figsize=(11, 4))
ax[0].hist(np.random.randn(1000))
for i in range(3):

ax[1].plot(np.random.rand(10))
ax[1].legend(['a', 'b', 'c'], loc='lower left')

We’ll use this to explore how these plots look using the various built-in styles.

1.3.1 Default style

The default style is what we’ve been seeing so far throughout the book; we’ll start with that. First,
let’s reset our runtime configuration to the notebook default:

In [10]: # reset rcParams
plt.rcParams.update(IPython_default);

Now let’s see how it looks:

In [11]: hist_and_lines()
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1.3.2 FiveThiryEight style

The fivethirtyeight style mimics the graphics found on the popular FiveThirtyEight website.
As you can see here, it is typified by bold colors, thick lines, and transparent axes:

In [12]: with plt.style.context('fivethirtyeight'):
hist_and_lines()

1.3.3 ggplot

The ggplot package in the R language is a very popular visualization tool. Matplotlib’s ggplot
style mimics the default styles from that package:

In [13]: with plt.style.context('ggplot'):
hist_and_lines()
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1.3.4 *Bayesian Methods for Hackers( style

There is a very nice short online book called Probabilistic Programming and Bayesian Methods for
Hackers; it features figures created with Matplotlib, and uses a nice set of rc parameters to create a
consistent and visually-appealing style throughout the book. This style is reproduced in the bmh
stylesheet:

In [14]: with plt.style.context('bmh'):
hist_and_lines()

1.3.5 Dark background

For figures used within presentations, it is often useful to have a dark rather than light back-
ground. The dark_background style provides this:

In [15]: with plt.style.context('dark_background'):
hist_and_lines()
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1.3.6 Grayscale

Sometimes you might find yourself preparing figures for a print publication that does not accept
color figures. For this, the grayscale style, shown here, can be very useful:

In [16]: with plt.style.context('grayscale'):
hist_and_lines()

1.3.7 Seaborn style

Matplotlib also has stylesheets inspired by the Seaborn library (discussed more fully in Visual-
ization With Seaborn). As we will see, these styles are loaded automatically when Seaborn is
imported into a notebook. I’ve found these settings to be very nice, and tend to use them as
defaults in my own data exploration.

In [17]: import seaborn
hist_and_lines()
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With all of these built-in options for various plot styles, Matplotlib becomes much more useful
for both interactive visualization and creation of figures for publication. Throughout this book, I
will generally use one or more of these style conventions when creating plots.

< Customizing Ticks | Contents | Three-Dimensional Plotting in Matplotlib >
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04.12-Three-Dimensional-Plotting

October 29, 2018

This notebook contains an excerpt from the Python Data Science Handbook by Jake VanderPlas; the
content is available on GitHub.

The text is released under the CC-BY-NC-ND license, and code is released under the MIT license. If
you find this content useful, please consider supporting the work by buying the book!

< Customizing Matplotlib: Configurations and Stylesheets | Contents | Geographic Data with
Basemap >

1 Three-Dimensional Plotting in Matplotlib

Matplotlib was initially designed with only two-dimensional plotting in mind. Around the time
of the 1.0 release, some three-dimensional plotting utilities were built on top of Matplotlib’s two-
dimensional display, and the result is a convenient (if somewhat limited) set of tools for three-
dimensional data visualization. three-dimensional plots are enabled by importing the mplot3d
toolkit, included with the main Matplotlib installation:

In [1]: from mpl_toolkits import mplot3d

Once this submodule is imported, a three-dimensional axes can be created by passing the
keyword projection='3d' to any of the normal axes creation routines:

In [2]: %matplotlib inline
import numpy as np
import matplotlib.pyplot as plt

In [3]: fig = plt.figure()
ax = plt.axes(projection='3d')
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With this three-dimensional axes enabled, we can now plot a variety of three-dimensional
plot types. Three-dimensional plotting is one of the functionalities that benefits immensely from
viewing figures interactively rather than statically in the notebook; recall that to use interactive
figures, you can use %matplotlib notebook rather than %matplotlib inline when running this
code.

1.1 Three-dimensional Points and Lines

The most basic three-dimensional plot is a line or collection of scatter plot created from sets of
(x, y, z) triples. In analogy with the more common two-dimensional plots discussed earlier, these
can be created using the ax.plot3D and ax.scatter3D functions. The call signature for these is
nearly identical to that of their two-dimensional counterparts, so you can refer to Simple Line
Plots and Simple Scatter Plots for more information on controlling the output. Here we’ll plot a
trigonometric spiral, along with some points drawn randomly near the line:

In [4]: ax = plt.axes(projection='3d')

# Data for a three-dimensional line
zline = np.linspace(0, 15, 1000)
xline = np.sin(zline)
yline = np.cos(zline)
ax.plot3D(xline, yline, zline, 'gray')

# Data for three-dimensional scattered points
zdata = 15 * np.random.random(100)
xdata = np.sin(zdata) + 0.1 * np.random.randn(100)
ydata = np.cos(zdata) + 0.1 * np.random.randn(100)
ax.scatter3D(xdata, ydata, zdata, c=zdata, cmap='Greens');
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Notice that by default, the scatter points have their transparency adjusted to give a sense of
depth on the page. While the three-dimensional effect is sometimes difficult to see within a static
image, an interactive view can lead to some nice intuition about the layout of the points.

1.2 Three-dimensional Contour Plots

Analogous to the contour plots we explored in Density and Contour Plots, mplot3d contains tools
to create three-dimensional relief plots using the same inputs. Like two-dimensional ax.contour
plots, ax.contour3D requires all the input data to be in the form of two-dimensional regular grids,
with the Z data evaluated at each point. Here we’ll show a three-dimensional contour diagram of
a three-dimensional sinusoidal function:

In [5]: def f(x, y):
return np.sin(np.sqrt(x ** 2 + y ** 2))

x = np.linspace(-6, 6, 30)
y = np.linspace(-6, 6, 30)

X, Y = np.meshgrid(x, y)
Z = f(X, Y)

In [6]: fig = plt.figure()
ax = plt.axes(projection='3d')
ax.contour3D(X, Y, Z, 50, cmap='binary')
ax.set_xlabel('x')
ax.set_ylabel('y')
ax.set_zlabel('z');
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Sometimes the default viewing angle is not optimal, in which case we can use the view_init
method to set the elevation and azimuthal angles. In the following example, we’ll use an elevation
of 60 degrees (that is, 60 degrees above the x-y plane) and an azimuth of 35 degrees (that is, rotated
35 degrees counter-clockwise about the z-axis):

In [7]: ax.view_init(60, 35)
fig

Out[7]:
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Again, note that this type of rotation can be accomplished interactively by clicking and drag-
ging when using one of Matplotlib’s interactive backends.

1.3 Wireframes and Surface Plots

Two other types of three-dimensional plots that work on gridded data are wireframes and surface
plots. These take a grid of values and project it onto the specified three-dimensional surface, and
can make the resulting three-dimensional forms quite easy to visualize. Here’s an example of
using a wireframe:

In [8]: fig = plt.figure()
ax = plt.axes(projection='3d')
ax.plot_wireframe(X, Y, Z, color='black')
ax.set_title('wireframe');

A surface plot is like a wireframe plot, but each face of the wireframe is a filled polygon.
Adding a colormap to the filled polygons can aid perception of the topology of the surface being
visualized:

In [9]: ax = plt.axes(projection='3d')
ax.plot_surface(X, Y, Z, rstride=1, cstride=1,

cmap='viridis', edgecolor='none')
ax.set_title('surface');
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Note that though the grid of values for a surface plot needs to be two-dimensional, it need
not be rectilinear. Here is an example of creating a partial polar grid, which when used with the
surface3D plot can give us a slice into the function we’re visualizing:

In [10]: r = np.linspace(0, 6, 20)
theta = np.linspace(-0.9 * np.pi, 0.8 * np.pi, 40)
r, theta = np.meshgrid(r, theta)

X = r * np.sin(theta)
Y = r * np.cos(theta)
Z = f(X, Y)

ax = plt.axes(projection='3d')
ax.plot_surface(X, Y, Z, rstride=1, cstride=1,

cmap='viridis', edgecolor='none');
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1.4 Surface Triangulations

For some applications, the evenly sampled grids required by the above routines is overly restric-
tive and inconvenient. In these situations, the triangulation-based plots can be very useful. What
if rather than an even draw from a Cartesian or a polar grid, we instead have a set of random
draws?

In [11]: theta = 2 * np.pi * np.random.random(1000)
r = 6 * np.random.random(1000)
x = np.ravel(r * np.sin(theta))
y = np.ravel(r * np.cos(theta))
z = f(x, y)

We could create a scatter plot of the points to get an idea of the surface we’re sampling from:

In [12]: ax = plt.axes(projection='3d')
ax.scatter(x, y, z, c=z, cmap='viridis', linewidth=0.5);
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This leaves a lot to be desired. The function that will help us in this case is ax.plot_trisurf,
which creates a surface by first finding a set of triangles formed between adjacent points (remem-
ber that x, y, and z here are one-dimensional arrays):

In [13]: ax = plt.axes(projection='3d')
ax.plot_trisurf(x, y, z,

cmap='viridis', edgecolor='none');
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The result is certainly not as clean as when it is plotted with a grid, but the flexibility of such a
triangulation allows for some really interesting three-dimensional plots. For example, it is actually
possible to plot a three-dimensional Möbius strip using this, as we’ll see next.

1.4.1 Example: Visualizing a Möbius strip

A Möbius strip is similar to a strip of paper glued into a loop with a half-twist. Topologically, it’s
quite interesting because despite appearances it has only a single side! Here we will visualize such
an object using Matplotlib’s three-dimensional tools. The key to creating the Möbius strip is to
think about it’s parametrization: it’s a two-dimensional strip, so we need two intrinsic dimensions.
Let’s call them θ, which ranges from 0 to 2π around the loop, and w which ranges from -1 to 1
across the width of the strip:

In [14]: theta = np.linspace(0, 2 * np.pi, 30)
w = np.linspace(-0.25, 0.25, 8)
w, theta = np.meshgrid(w, theta)

Now from this parametrization, we must determine the (x, y, z) positions of the embedded
strip.

Thinking about it, we might realize that there are two rotations happening: one is the position
of the loop about its center (what we’ve called θ), while the other is the twisting of the strip about
its axis (we’ll call this ϕ). For a Möbius strip, we must have the strip makes half a twist during a
full loop, or ∆ϕ = ∆θ/2.

In [15]: phi = 0.5 * theta

Now we use our recollection of trigonometry to derive the three-dimensional embedding.
We’ll define r, the distance of each point from the center, and use this to find the embedded (x, y, z)
coordinates:

In [16]: # radius in x-y plane
r = 1 + w * np.cos(phi)

x = np.ravel(r * np.cos(theta))
y = np.ravel(r * np.sin(theta))
z = np.ravel(w * np.sin(phi))

Finally, to plot the object, we must make sure the triangulation is correct. The best way to
do this is to define the triangulation within the underlying parametrization, and then let Matplotlib
project this triangulation into the three-dimensional space of the Möbius strip. This can be accom-
plished as follows:

In [17]: # triangulate in the underlying parametrization
from matplotlib.tri import Triangulation
tri = Triangulation(np.ravel(w), np.ravel(theta))

ax = plt.axes(projection='3d')
ax.plot_trisurf(x, y, z, triangles=tri.triangles,

cmap='viridis', linewidths=0.2);

ax.set_xlim(-1, 1); ax.set_ylim(-1, 1); ax.set_zlim(-1, 1);
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Combining all of these techniques, it is possible to create and display a wide variety of three-
dimensional objects and patterns in Matplotlib.

< Customizing Matplotlib: Configurations and Stylesheets | Contents | Geographic Data with
Basemap >
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04.13-Geographic-Data-With-Basemap

October 29, 2018

This notebook contains an excerpt from the Python Data Science Handbook by Jake VanderPlas; the
content is available on GitHub.

The text is released under the CC-BY-NC-ND license, and code is released under the MIT license. If
you find this content useful, please consider supporting the work by buying the book!

< Three-Dimensional Plotting in Matplotlib | Contents | Visualization with Seaborn >

1 Geographic Data with Basemap

One common type of visualization in data science is that of geographic data. Matplotlib’s main
tool for this type of visualization is the Basemap toolkit, which is one of several Matplotlib toolkits
which lives under the mpl_toolkits namespace. Admittedly, Basemap feels a bit clunky to use,
and often even simple visualizations take much longer to render than you might hope. More
modern solutions such as leaflet or the Google Maps API may be a better choice for more intensive
map visualizations. Still, Basemap is a useful tool for Python users to have in their virtual toolbelts.
In this section, we’ll show several examples of the type of map visualization that is possible with
this toolkit.

Installation of Basemap is straightforward; if you’re using conda you can type this and the
package will be downloaded:

$ conda install basemap

We add just a single new import to our standard boilerplate:

In [1]: %matplotlib inline
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.basemap import Basemap

Once you have the Basemap toolkit installed and imported, geographic plots are just a few
lines away (the graphics in the following also requires the PIL package in Python 2, or the pillow
package in Python 3):

In [2]: plt.figure(figsize=(8, 8))
m = Basemap(projection='ortho', resolution=None, lat_0=50, lon_0=-100)
m.bluemarble(scale=0.5);
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The meaning of the arguments to Basemap will be discussed momentarily.
The useful thing is that the globe shown here is not a mere image; it is a fully-functioning

Matplotlib axes that understands spherical coordinates and which allows us to easily overplot
data on the map! For example, we can use a different map projection, zoom-in to North America
and plot the location of Seattle. We’ll use an etopo image (which shows topographical features
both on land and under the ocean) as the map background:

In [3]: fig = plt.figure(figsize=(8, 8))
m = Basemap(projection='lcc', resolution=None,

width=8E6, height=8E6,
lat_0=45, lon_0=-100,)

m.etopo(scale=0.5, alpha=0.5)

# Map (long, lat) to (x, y) for plotting
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x, y = m(-122.3, 47.6)
plt.plot(x, y, 'ok', markersize=5)
plt.text(x, y, ' Seattle', fontsize=12);

This gives you a brief glimpse into the sort of geographic visualizations that are possible with
just a few lines of Python. We’ll now discuss the features of Basemap in more depth, and provide
several examples of visualizing map data. Using these brief examples as building blocks, you
should be able to create nearly any map visualization that you desire.

1.1 Map Projections

The first thing to decide when using maps is what projection to use. You’re probably familiar with
the fact that it is impossible to project a spherical map, such as that of the Earth, onto a flat surface
without somehow distorting it or breaking its continuity. These projections have been developed
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over the course of human history, and there are a lot of choices! Depending on the intended use of
the map projection, there are certain map features (e.g., direction, area, distance, shape, or other
considerations) that are useful to maintain.

The Basemap package implements several dozen such projections, all referenced by a short
format code. Here we’ll briefly demonstrate some of the more common ones.

We’ll start by defining a convenience routine to draw our world map along with the longitude
and latitude lines:

In [4]: from itertools import chain

def draw_map(m, scale=0.2):
# draw a shaded-relief image
m.shadedrelief(scale=scale)

# lats and longs are returned as a dictionary
lats = m.drawparallels(np.linspace(-90, 90, 13))
lons = m.drawmeridians(np.linspace(-180, 180, 13))

# keys contain the plt.Line2D instances
lat_lines = chain(*(tup[1][0] for tup in lats.items()))
lon_lines = chain(*(tup[1][0] for tup in lons.items()))
all_lines = chain(lat_lines, lon_lines)

# cycle through these lines and set the desired style
for line in all_lines:

line.set(linestyle='-', alpha=0.3, color='w')

1.1.1 Cylindrical projections

The simplest of map projections are cylindrical projections, in which lines of constant latitude and
longitude are mapped to horizontal and vertical lines, respectively. This type of mapping repre-
sents equatorial regions quite well, but results in extreme distortions near the poles. The spacing
of latitude lines varies between different cylindrical projections, leading to different conservation
properties, and different distortion near the poles. In the following figure we show an example of
the equidistant cylindrical projection, which chooses a latitude scaling that preserves distances along
meridians. Other cylindrical projections are the Mercator (projection='merc') and the cylindri-
cal equal area (projection='cea') projections.

In [5]: fig = plt.figure(figsize=(8, 6), edgecolor='w')
m = Basemap(projection='cyl', resolution=None,

llcrnrlat=-90, urcrnrlat=90,
llcrnrlon=-180, urcrnrlon=180, )

draw_map(m)
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The additional arguments to Basemap for this view specify the latitude (lat) and longitude
(lon) of the lower-left corner (llcrnr) and upper-right corner (urcrnr) for the desired map, in
units of degrees.

1.1.2 Pseudo-cylindrical projections

Pseudo-cylindrical projections relax the requirement that meridians (lines of constant longitude)
remain vertical; this can give better properties near the poles of the projection. The Mollweide
projection (projection='moll') is one common example of this, in which all meridians are ellip-
tical arcs. It is constructed so as to preserve area across the map: though there are distortions near
the poles, the area of small patches reflects the true area. Other pseudo-cylindrical projections are
the sinusoidal (projection='sinu') and Robinson (projection='robin') projections.

In [6]: fig = plt.figure(figsize=(8, 6), edgecolor='w')
m = Basemap(projection='moll', resolution=None,

lat_0=0, lon_0=0)
draw_map(m)
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The extra arguments to Basemap here refer to the central latitude (lat_0) and longitude
(lon_0) for the desired map.

1.1.3 Perspective projections

Perspective projections are constructed using a particular choice of perspective point, similar to
if you photographed the Earth from a particular point in space (a point which, for some pro-
jections, technically lies within the Earth!). One common example is the orthographic projec-
tion (projection='ortho'), which shows one side of the globe as seen from a viewer at a very
long distance. As such, it can show only half the globe at a time. Other perspective-based
projections include the gnomonic projection (projection='gnom') and stereographic projection
(projection='stere'). These are often the most useful for showing small portions of the map.

Here is an example of the orthographic projection:

In [7]: fig = plt.figure(figsize=(8, 8))
m = Basemap(projection='ortho', resolution=None,

lat_0=50, lon_0=0)
draw_map(m);
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1.1.4 Conic projections

A Conic projection projects the map onto a single cone, which is then unrolled. This can lead
to very good local properties, but regions far from the focus point of the cone may become very
distorted. One example of this is the Lambert Conformal Conic projection (projection='lcc'),
which we saw earlier in the map of North America. It projects the map onto a cone arranged
in such a way that two standard parallels (specified in Basemap by lat_1 and lat_2) have well-
represented distances, with scale decreasing between them and increasing outside of them. Other
useful conic projections are the equidistant conic projection (projection='eqdc') and the Albers
equal-area projection (projection='aea'). Conic projections, like perspective projections, tend to
be good choices for representing small to medium patches of the globe.

In [8]: fig = plt.figure(figsize=(8, 8))
m = Basemap(projection='lcc', resolution=None,
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lon_0=0, lat_0=50, lat_1=45, lat_2=55,
width=1.6E7, height=1.2E7)

draw_map(m)

1.1.5 Other projections

If you’re going to do much with map-based visualizations, I encourage you to read up on other
available projections, along with their properties, advantages, and disadvantages. Most likely,
they are available in the Basemap package. If you dig deep enough into this topic, you’ll find an
incredible subculture of geo-viz geeks who will be ready to argue fervently in support of their
favorite projection for any given application!

1.2 Drawing a Map Background

Earlier we saw the bluemarble() and shadedrelief() methods for projecting global images on
the map, as well as the drawparallels() and drawmeridians() methods for drawing lines of
constant latitude and longitude. The Basemap package contains a range of useful functions for
drawing borders of physical features like continents, oceans, lakes, and rivers, as well as political
boundaries such as countries and US states and counties. The following are some of the available
drawing functions that you may wish to explore using IPython’s help features:
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• Physical boundaries and bodies of water

– drawcoastlines(): Draw continental coast lines
– drawlsmask(): Draw a mask between the land and sea, for use with projecting images

on one or the other
– drawmapboundary(): Draw the map boundary, including the fill color for oceans.
– drawrivers(): Draw rivers on the map
– fillcontinents(): Fill the continents with a given color; optionally fill lakes with

another color

• Political boundaries

– drawcountries(): Draw country boundaries
– drawstates(): Draw US state boundaries
– drawcounties(): Draw US county boundaries

• Map features

– drawgreatcircle(): Draw a great circle between two points
– drawparallels(): Draw lines of constant latitude
– drawmeridians(): Draw lines of constant longitude
– drawmapscale(): Draw a linear scale on the map

• Whole-globe images

– bluemarble(): Project NASA’s blue marble image onto the map
– shadedrelief(): Project a shaded relief image onto the map
– etopo(): Draw an etopo relief image onto the map
– warpimage(): Project a user-provided image onto the map

For the boundary-based features, you must set the desired resolution when creating a Basemap
image. The resolution argument of the Basemap class sets the level of detail in boundaries, either
'c' (crude), 'l' (low), 'i' (intermediate), 'h' (high), 'f' (full), or None if no boundaries will be
used. This choice is important: setting high-resolution boundaries on a global map, for example,
can be very slow.

Here’s an example of drawing land/sea boundaries, and the effect of the resolution parameter.
We’ll create both a low- and high-resolution map of Scotland’s beautiful Isle of Skye. It’s located
at 57.3řN, 6.2řW, and a map of 90,000 Œ 120,000 kilometers shows it well:

In [9]: fig, ax = plt.subplots(1, 2, figsize=(12, 8))

for i, res in enumerate(['l', 'h']):
m = Basemap(projection='gnom', lat_0=57.3, lon_0=-6.2,

width=90000, height=120000, resolution=res, ax=ax[i])
m.fillcontinents(color="#FFDDCC", lake_color='#DDEEFF')
m.drawmapboundary(fill_color="#DDEEFF")
m.drawcoastlines()
ax[i].set_title("resolution='{0}'".format(res));
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Notice that the low-resolution coastlines are not suitable for this level of zoom, while high-
resolution works just fine. The low level would work just fine for a global view, however, and
would be much faster than loading the high-resolution border data for the entire globe! It might
require some experimentation to find the correct resolution parameter for a given view: the best
route is to start with a fast, low-resolution plot and increase the resolution as needed.

1.3 Plotting Data on Maps

Perhaps the most useful piece of the Basemap toolkit is the ability to over-plot a variety of data
onto a map background. For simple plotting and text, any plt function works on the map; you
can use the Basemap instance to project latitude and longitude coordinates to (x, y) coordinates
for plotting with plt, as we saw earlier in the Seattle example.

In addition to this, there are many map-specific functions available as methods of the Basemap
instance. These work very similarly to their standard Matplotlib counterparts, but have an ad-
ditional Boolean argument latlon, which if set to True allows you to pass raw latitudes and
longitudes to the method, rather than projected (x, y) coordinates.

Some of these map-specific methods are:

• contour()/contourf() : Draw contour lines or filled contours
• imshow(): Draw an image
• pcolor()/pcolormesh() : Draw a pseudocolor plot for irregular/regular meshes
• plot(): Draw lines and/or markers.
• scatter(): Draw points with markers.
• quiver(): Draw vectors.
• barbs(): Draw wind barbs.
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• drawgreatcircle(): Draw a great circle.

We’ll see some examples of a few of these as we continue. For more information on these
functions, including several example plots, see the online Basemap documentation.

1.4 Example: California Cities

Recall that in Customizing Plot Legends, we demonstrated the use of size and color in a scatter
plot to convey information about the location, size, and population of California cities. Here, we’ll
create this plot again, but using Basemap to put the data in context.

We start with loading the data, as we did before:

In [10]: import pandas as pd
cities = pd.read_csv('data/california_cities.csv')

# Extract the data we're interested in
lat = cities['latd'].values
lon = cities['longd'].values
population = cities['population_total'].values
area = cities['area_total_km2'].values

Next, we set up the map projection, scatter the data, and then create a colorbar and legend:

In [11]: # 1. Draw the map background
fig = plt.figure(figsize=(8, 8))
m = Basemap(projection='lcc', resolution='h',

lat_0=37.5, lon_0=-119,
width=1E6, height=1.2E6)

m.shadedrelief()
m.drawcoastlines(color='gray')
m.drawcountries(color='gray')
m.drawstates(color='gray')

# 2. scatter city data, with color reflecting population
# and size reflecting area
m.scatter(lon, lat, latlon=True,

c=np.log10(population), s=area,
cmap='Reds', alpha=0.5)

# 3. create colorbar and legend
plt.colorbar(label=r'$\log_{10}({\rm population})$')
plt.clim(3, 7)

# make legend with dummy points
for a in [100, 300, 500]:

plt.scatter([], [], c='k', alpha=0.5, s=a,
label=str(a) + ' km$^2$')

plt.legend(scatterpoints=1, frameon=False,
labelspacing=1, loc='lower left');
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This shows us roughly where larger populations of people have settled in California: they
are clustered near the coast in the Los Angeles and San Francisco areas, stretched along the high-
ways in the flat central valley, and avoiding almost completely the mountainous regions along the
borders of the state.

1.5 Example: Surface Temperature Data

As an example of visualizing some more continuous geographic data, let’s consider the “polar
vortex” that hit the eastern half of the United States in January of 2014. A great source for any
sort of climatic data is NASA’s Goddard Institute for Space Studies. Here we’ll use the GIS 250
temperature data, which we can download using shell commands (these commands may have to
be modified on Windows machines). The data used here was downloaded on 6/12/2016, and the
file size is approximately 9MB:
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In [12]: # !curl -O http://data.giss.nasa.gov/pub/gistemp/gistemp250.nc.gz
# !gunzip gistemp250.nc.gz

The data comes in NetCDF format, which can be read in Python by the netCDF4 library. You
can install this library as shown here

$ conda install netcdf4

We read the data as follows:

In [13]: from netCDF4 import Dataset
data = Dataset('gistemp250.nc')

The file contains many global temperature readings on a variety of dates; we need to select the
index of the date we’re interested in—in this case, January 15, 2014:

In [14]: from netCDF4 import date2index
from datetime import datetime
timeindex = date2index(datetime(2014, 1, 15),

data.variables['time'])

Now we can load the latitude and longitude data, as well as the temperature anomaly for this
index:

In [15]: lat = data.variables['lat'][:]
lon = data.variables['lon'][:]
lon, lat = np.meshgrid(lon, lat)
temp_anomaly = data.variables['tempanomaly'][timeindex]

Finally, we’ll use the pcolormesh() method to draw a color mesh of the data. We’ll look at
North America, and use a shaded relief map in the background. Note that for this data we specif-
ically chose a divergent colormap, which has a neutral color at zero and two contrasting colors at
negative and positive values. We’ll also lightly draw the coastlines over the colors for reference:

In [16]: fig = plt.figure(figsize=(10, 8))
m = Basemap(projection='lcc', resolution='c',

width=8E6, height=8E6,
lat_0=45, lon_0=-100,)

m.shadedrelief(scale=0.5)
m.pcolormesh(lon, lat, temp_anomaly,

latlon=True, cmap='RdBu_r')
plt.clim(-8, 8)
m.drawcoastlines(color='lightgray')

plt.title('January 2014 Temperature Anomaly')
plt.colorbar(label='temperature anomaly (řC)');
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The data paints a picture of the localized, extreme temperature anomalies that happened dur-
ing that month. The eastern half of the United States was much colder than normal, while the
western half and Alaska were much warmer. Regions with no recorded temperature show the
map background.

< Three-Dimensional Plotting in Matplotlib | Contents | Visualization with Seaborn >
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04.14-Visualization-With-Seaborn

October 29, 2018

This notebook contains an excerpt from the Python Data Science Handbook by Jake VanderPlas; the
content is available on GitHub.

The text is released under the CC-BY-NC-ND license, and code is released under the MIT license. If
you find this content useful, please consider supporting the work by buying the book!

< Geographic Data with Basemap | Contents | Further Resources >

1 Visualization with Seaborn

Matplotlib has proven to be an incredibly useful and popular visualization tool, but even avid
users will admit it often leaves much to be desired. There are several valid complaints about
Matplotlib that often come up:

• Prior to version 2.0, Matplotlib’s defaults are not exactly the best choices. It was based off of
MATLAB circa 1999, and this often shows.

• Matplotlib’s API is relatively low level. Doing sophisticated statistical visualization is possi-
ble, but often requires a lot of boilerplate code.

• Matplotlib predated Pandas by more than a decade, and thus is not designed for use with
Pandas DataFrames. In order to visualize data from a Pandas DataFrame, you must extract
each Series and often concatenate them together into the right format. It would be nicer to
have a plotting library that can intelligently use the DataFrame labels in a plot.

An answer to these problems is Seaborn. Seaborn provides an API on top of Matplotlib that of-
fers sane choices for plot style and color defaults, defines simple high-level functions for common
statistical plot types, and integrates with the functionality provided by Pandas DataFrames.

To be fair, the Matplotlib team is addressing this: it has recently added the plt.style tools
discussed in Customizing Matplotlib: Configurations and Style Sheets, and is starting to handle
Pandas data more seamlessly. The 2.0 release of the library will include a new default stylesheet
that will improve on the current status quo. But for all the reasons just discussed, Seaborn remains
an extremely useful addon.

1.1 Seaborn Versus Matplotlib

Here is an example of a simple random-walk plot in Matplotlib, using its classic plot formatting
and colors. We start with the typical imports:

In [1]: import matplotlib.pyplot as plt
plt.style.use('classic')
%matplotlib inline
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import numpy as np
import pandas as pd

Now we create some random walk data:

In [2]: # Create some data
rng = np.random.RandomState(0)
x = np.linspace(0, 10, 500)
y = np.cumsum(rng.randn(500, 6), 0)

And do a simple plot:

In [3]: # Plot the data with Matplotlib defaults
plt.plot(x, y)
plt.legend('ABCDEF', ncol=2, loc='upper left');

Although the result contains all the information we’d like it to convey, it does so in a way that is
not all that aesthetically pleasing, and even looks a bit old-fashioned in the context of 21st-century
data visualization.

Now let’s take a look at how it works with Seaborn. As we will see, Seaborn has many of its
own high-level plotting routines, but it can also overwrite Matplotlib’s default parameters and in
turn get even simple Matplotlib scripts to produce vastly superior output. We can set the style by
calling Seaborn’s set() method. By convention, Seaborn is imported as sns:

In [4]: import seaborn as sns
sns.set()
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Now let’s rerun the same two lines as before:

In [5]: # same plotting code as above!
plt.plot(x, y)
plt.legend('ABCDEF', ncol=2, loc='upper left');

Ah, much better!

1.2 Exploring Seaborn Plots

The main idea of Seaborn is that it provides high-level commands to create a variety of plot types
useful for statistical data exploration, and even some statistical model fitting.

Let’s take a look at a few of the datasets and plot types available in Seaborn. Note that all of
the following could be done using raw Matplotlib commands (this is, in fact, what Seaborn does
under the hood) but the Seaborn API is much more convenient.

1.2.1 Histograms, KDE, and densities

Often in statistical data visualization, all you want is to plot histograms and joint distributions of
variables. We have seen that this is relatively straightforward in Matplotlib:

In [6]: data = np.random.multivariate_normal([0, 0], [[5, 2], [2, 2]], size=2000)
data = pd.DataFrame(data, columns=['x', 'y'])
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for col in 'xy':
plt.hist(data[col], normed=True, alpha=0.5)

Rather than a histogram, we can get a smooth estimate of the distribution using a kernel den-
sity estimation, which Seaborn does with sns.kdeplot:

In [7]: for col in 'xy':
sns.kdeplot(data[col], shade=True)
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Histograms and KDE can be combined using distplot:

In [8]: sns.distplot(data['x'])
sns.distplot(data['y']);
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If we pass the full two-dimensional dataset to kdeplot, we will get a two-dimensional visual-
ization of the data:

In [9]: sns.kdeplot(data);

6



We can see the joint distribution and the marginal distributions together using sns.jointplot.
For this plot, we’ll set the style to a white background:

In [10]: with sns.axes_style('white'):
sns.jointplot("x", "y", data, kind='kde');
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There are other parameters that can be passed to jointplot—for example, we can use a hexag-
onally based histogram instead:

In [11]: with sns.axes_style('white'):
sns.jointplot("x", "y", data, kind='hex')

8



1.2.2 Pair plots

When you generalize joint plots to datasets of larger dimensions, you end up with pair plots. This
is very useful for exploring correlations between multidimensional data, when you’d like to plot
all pairs of values against each other.

We’ll demo this with the well-known Iris dataset, which lists measurements of petals and
sepals of three iris species:

In [12]: iris = sns.load_dataset("iris")
iris.head()

Out[12]: sepal_length sepal_width petal_length petal_width species
0 5.1 3.5 1.4 0.2 setosa
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1 4.9 3.0 1.4 0.2 setosa
2 4.7 3.2 1.3 0.2 setosa
3 4.6 3.1 1.5 0.2 setosa
4 5.0 3.6 1.4 0.2 setosa

Visualizing the multidimensional relationships among the samples is as easy as calling
sns.pairplot:

In [13]: sns.pairplot(iris, hue='species', size=2.5);

1.2.3 Faceted histograms

Sometimes the best way to view data is via histograms of subsets. Seaborn’s FacetGrid makes
this extremely simple. We’ll take a look at some data that shows the amount that restaurant staff
receive in tips based on various indicator data:

In [14]: tips = sns.load_dataset('tips')
tips.head()
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Out[14]: total_bill tip sex smoker day time size
0 16.99 1.01 Female No Sun Dinner 2
1 10.34 1.66 Male No Sun Dinner 3
2 21.01 3.50 Male No Sun Dinner 3
3 23.68 3.31 Male No Sun Dinner 2
4 24.59 3.61 Female No Sun Dinner 4

In [15]: tips['tip_pct'] = 100 * tips['tip'] / tips['total_bill']

grid = sns.FacetGrid(tips, row="sex", col="time", margin_titles=True)
grid.map(plt.hist, "tip_pct", bins=np.linspace(0, 40, 15));
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1.2.4 Factor plots

Factor plots can be useful for this kind of visualization as well. This allows you to view the
distribution of a parameter within bins defined by any other parameter:

In [16]: with sns.axes_style(style='ticks'):
g = sns.factorplot("day", "total_bill", "sex", data=tips, kind="box")
g.set_axis_labels("Day", "Total Bill");

1.2.5 Joint distributions

Similar to the pairplot we saw earlier, we can use sns.jointplot to show the joint distribution
between different datasets, along with the associated marginal distributions:

In [17]: with sns.axes_style('white'):
sns.jointplot("total_bill", "tip", data=tips, kind='hex')
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The joint plot can even do some automatic kernel density estimation and regression:

In [18]: sns.jointplot("total_bill", "tip", data=tips, kind='reg');

13



1.2.6 Bar plots

Time series can be plotted using sns.factorplot. In the following example, we’ll use the Planets
data that we first saw in Aggregation and Grouping:

In [19]: planets = sns.load_dataset('planets')
planets.head()

Out[19]: method number orbital_period mass distance year
0 Radial Velocity 1 269.300 7.10 77.40 2006
1 Radial Velocity 1 874.774 2.21 56.95 2008
2 Radial Velocity 1 763.000 2.60 19.84 2011
3 Radial Velocity 1 326.030 19.40 110.62 2007
4 Radial Velocity 1 516.220 10.50 119.47 2009
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In [20]: with sns.axes_style('white'):
g = sns.factorplot("year", data=planets, aspect=2,

kind="count", color='steelblue')
g.set_xticklabels(step=5)

We can learn more by looking at the method of discovery of each of these planets:

In [21]: with sns.axes_style('white'):
g = sns.factorplot("year", data=planets, aspect=4.0, kind='count',

hue='method', order=range(2001, 2015))
g.set_ylabels('Number of Planets Discovered')

For more information on plotting with Seaborn, see the Seaborn documentation, a tutorial, and
the Seaborn gallery.

1.3 Example: Exploring Marathon Finishing Times

Here we’ll look at using Seaborn to help visualize and understand finishing results from a
marathon. I’ve scraped the data from sources on the Web, aggregated it and removed any iden-
tifying information, and put it on GitHub where it can be downloaded (if you are interested in
using Python for web scraping, I would recommend Web Scraping with Python by Ryan Mitchell).
We will start by downloading the data from the Web, and loading it into Pandas:
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In [22]: # !curl -O https://raw.githubusercontent.com/jakevdp/marathon-data/master/marathon-data.csv

In [23]: data = pd.read_csv('marathon-data.csv')
data.head()

Out[23]: age gender split final
0 33 M 01:05:38 02:08:51
1 32 M 01:06:26 02:09:28
2 31 M 01:06:49 02:10:42
3 38 M 01:06:16 02:13:45
4 31 M 01:06:32 02:13:59

By default, Pandas loaded the time columns as Python strings (type object); we can see this
by looking at the dtypes attribute of the DataFrame:

In [24]: data.dtypes

Out[24]: age int64
gender object
split object
final object
dtype: object

Let’s fix this by providing a converter for the times:

In [25]: def convert_time(s):
h, m, s = map(int, s.split(':'))
return pd.datetools.timedelta(hours=h, minutes=m, seconds=s)

data = pd.read_csv('marathon-data.csv',
converters={'split':convert_time, 'final':convert_time})

data.head()

Out[25]: age gender split final
0 33 M 01:05:38 02:08:51
1 32 M 01:06:26 02:09:28
2 31 M 01:06:49 02:10:42
3 38 M 01:06:16 02:13:45
4 31 M 01:06:32 02:13:59

In [26]: data.dtypes

Out[26]: age int64
gender object
split timedelta64[ns]
final timedelta64[ns]
dtype: object

That looks much better. For the purpose of our Seaborn plotting utilities, let’s next add
columns that give the times in seconds:
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In [27]: data['split_sec'] = data['split'].astype(int) / 1E9
data['final_sec'] = data['final'].astype(int) / 1E9
data.head()

Out[27]: age gender split final split_sec final_sec
0 33 M 01:05:38 02:08:51 3938.0 7731.0
1 32 M 01:06:26 02:09:28 3986.0 7768.0
2 31 M 01:06:49 02:10:42 4009.0 7842.0
3 38 M 01:06:16 02:13:45 3976.0 8025.0
4 31 M 01:06:32 02:13:59 3992.0 8039.0

To get an idea of what the data looks like, we can plot a jointplot over the data:

In [28]: with sns.axes_style('white'):
g = sns.jointplot("split_sec", "final_sec", data, kind='hex')
g.ax_joint.plot(np.linspace(4000, 16000),

np.linspace(8000, 32000), ':k')
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The dotted line shows where someone’s time would lie if they ran the marathon at a perfectly
steady pace. The fact that the distribution lies above this indicates (as you might expect) that most
people slow down over the course of the marathon. If you have run competitively, you’ll know
that those who do the opposite—run faster during the second half of the race—are said to have
“negative-split” the race.

Let’s create another column in the data, the split fraction, which measures the degree to which
each runner negative-splits or positive-splits the race:

In [29]: data['split_frac'] = 1 - 2 * data['split_sec'] / data['final_sec']
data.head()

Out[29]: age gender split final split_sec final_sec split_frac
0 33 M 01:05:38 02:08:51 3938.0 7731.0 -0.018756
1 32 M 01:06:26 02:09:28 3986.0 7768.0 -0.026262
2 31 M 01:06:49 02:10:42 4009.0 7842.0 -0.022443
3 38 M 01:06:16 02:13:45 3976.0 8025.0 0.009097
4 31 M 01:06:32 02:13:59 3992.0 8039.0 0.006842

Where this split difference is less than zero, the person negative-split the race by that fraction.
Let’s do a distribution plot of this split fraction:

In [30]: sns.distplot(data['split_frac'], kde=False);
plt.axvline(0, color="k", linestyle="--");
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In [31]: sum(data.split_frac < 0)

Out[31]: 251

Out of nearly 40,000 participants, there were only 250 people who negative-split their
marathon.

Let’s see whether there is any correlation between this split fraction and other variables. We’ll
do this using a pairgrid, which draws plots of all these correlations:

In [32]: g = sns.PairGrid(data, vars=['age', 'split_sec', 'final_sec', 'split_frac'],
hue='gender', palette='RdBu_r')

g.map(plt.scatter, alpha=0.8)
g.add_legend();
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It looks like the split fraction does not correlate particularly with age, but does correlate with
the final time: faster runners tend to have closer to even splits on their marathon time. (We see
here that Seaborn is no panacea for Matplotlib’s ills when it comes to plot styles: in particular,
the x-axis labels overlap. Because the output is a simple Matplotlib plot, however, the methods in
Customizing Ticks can be used to adjust such things if desired.)

The difference between men and women here is interesting. Let’s look at the histogram of split
fractions for these two groups:

In [33]: sns.kdeplot(data.split_frac[data.gender=='M'], label='men', shade=True)
sns.kdeplot(data.split_frac[data.gender=='W'], label='women', shade=True)
plt.xlabel('split_frac');

The interesting thing here is that there are many more men than women who are running
close to an even split! This almost looks like some kind of bimodal distribution among the men
and women. Let’s see if we can suss-out what’s going on by looking at the distributions as a
function of age.

A nice way to compare distributions is to use a violin plot

In [34]: sns.violinplot("gender", "split_frac", data=data,
palette=["lightblue", "lightpink"]);
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This is yet another way to compare the distributions between men and women.
Let’s look a little deeper, and compare these violin plots as a function of age. We’ll start by

creating a new column in the array that specifies the decade of age that each person is in:

In [35]: data['age_dec'] = data.age.map(lambda age: 10 * (age // 10))
data.head()

Out[35]: age gender split final split_sec final_sec split_frac age_dec
0 33 M 01:05:38 02:08:51 3938.0 7731.0 -0.018756 30
1 32 M 01:06:26 02:09:28 3986.0 7768.0 -0.026262 30
2 31 M 01:06:49 02:10:42 4009.0 7842.0 -0.022443 30
3 38 M 01:06:16 02:13:45 3976.0 8025.0 0.009097 30
4 31 M 01:06:32 02:13:59 3992.0 8039.0 0.006842 30

In [36]: men = (data.gender == 'M')
women = (data.gender == 'W')

with sns.axes_style(style=None):
sns.violinplot("age_dec", "split_frac", hue="gender", data=data,

split=True, inner="quartile",
palette=["lightblue", "lightpink"]);
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Looking at this, we can see where the distributions of men and women differ: the split dis-
tributions of men in their 20s to 50s show a pronounced over-density toward lower splits when
compared to women of the same age (or of any age, for that matter).

Also surprisingly, the 80-year-old women seem to outperform everyone in terms of their split
time. This is probably due to the fact that we’re estimating the distribution from small numbers,
as there are only a handful of runners in that range:

In [38]: (data.age > 80).sum()

Out[38]: 7

Back to the men with negative splits: who are these runners? Does this split fraction correlate
with finishing quickly? We can plot this very easily. We’ll use regplot, which will automatically
fit a linear regression to the data:

In [37]: g = sns.lmplot('final_sec', 'split_frac', col='gender', data=data,
markers=".", scatter_kws=dict(color='c'))

g.map(plt.axhline, y=0.1, color="k", ls=":");
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Apparently the people with fast splits are the elite runners who are finishing within ~15,000
seconds, or about 4 hours. People slower than that are much less likely to have a fast second split.

< Geographic Data with Basemap | Contents | Further Resources >
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04.15-Further-Resources

October 29, 2018

This notebook contains an excerpt from the Python Data Science Handbook by Jake VanderPlas; the
content is available on GitHub.

The text is released under the CC-BY-NC-ND license, and code is released under the MIT license. If
you find this content useful, please consider supporting the work by buying the book!

< Visualization with Seaborn | Contents | Machine Learning >

1 Further Resources

1.1 Matplotlib Resources

A single chapter in a book can never hope to cover all the available features and plot types avail-
able in Matplotlib. As with other packages we’ve seen, liberal use of IPython’s tab-completion
and help functions (see Help and Documentation in IPython) can be very helpful when exploring
Matplotlib’s API. In addition, Matplotlib’s online documentation can be a helpful reference. See in
particular the Matplotlib gallery linked on that page: it shows thumbnails of hundreds of different
plot types, each one linked to a page with the Python code snippet used to generate it. In this way,
you can visually inspect and learn about a wide range of different plotting styles and visualization
techniques.

For a book-length treatment of Matplotlib, I would recommend Interactive Applications Using
Matplotlib, written by Matplotlib core developer Ben Root.

1.2 Other Python Graphics Libraries

Although Matplotlib is the most prominent Python visualization library, there are other more
modern tools that are worth exploring as well. I’ll mention a few of them briefly here:

• Bokeh is a JavaScript visualization library with a Python frontend that creates highly inter-
active visualizations capable of handling very large and/or streaming datasets. The Python
front-end outputs a JSON data structure that can be interpreted by the Bokeh JS engine.

• Plotly is the eponymous open source product of the Plotly company, and is similar in spirit
to Bokeh. Because Plotly is the main product of a startup, it is receiving a high level of
development effort. Use of the library is entirely free.

• Vispy is an actively developed project focused on dynamic visualizations of very large
datasets. Because it is built to target OpenGL and make use of efficient graphics processors
in your computer, it is able to render some quite large and stunning visualizations.

• Vega and Vega-Lite are declarative graphics representations, and are the product of years
of research into the fundamental language of data visualization. The reference rendering
implementation is JavaScript, but the API is language agnostic. There is a Python API under
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development in the Altair package. Though as of summer 2016 it’s not yet fully mature,
I’m quite excited for the possibilities of this project to provide a common reference point for
visualization in Python and other languages.

The visualization space in the Python community is very dynamic, and I fully expect this list
to be out of date as soon as it is published. Keep an eye out for what’s coming in the future!

< Visualization with Seaborn | Contents | Machine Learning >
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05.00-Machine-Learning

October 29, 2018

This notebook contains an excerpt from the Python Data Science Handbook by Jake VanderPlas; the
content is available on GitHub.

The text is released under the CC-BY-NC-ND license, and code is released under the MIT license. If
you find this content useful, please consider supporting the work by buying the book!

< Further Resources | Contents | What Is Machine Learning? >

1 Machine Learning

In many ways, machine learning is the primary means by which data science manifests itself to
the broader world. Machine learning is where these computational and algorithmic skills of data
science meet the statistical thinking of data science, and the result is a collection of approaches to
inference and data exploration that are not about effective theory so much as effective computa-
tion.

The term “machine learning” is sometimes thrown around as if it is some kind of magic pill:
apply machine learning to your data, and all your problems will be solved! As you might expect, the
reality is rarely this simple. While these methods can be incredibly powerful, to be effective they
must be approached with a firm grasp of the strengths and weaknesses of each method, as well as
a grasp of general concepts such as bias and variance, overfitting and underfitting, and more.

This chapter will dive into practical aspects of machine learning, primarily using Python’s
Scikit-Learn package. This is not meant to be a comprehensive introduction to the field of machine
learning; that is a large subject and necessitates a more technical approach than we take here. Nor
is it meant to be a comprehensive manual for the use of the Scikit-Learn package (for this, you
can refer to the resources listed in Further Machine Learning Resources). Rather, the goals of this
chapter are:

• To introduce the fundamental vocabulary and concepts of machine learning.
• To introduce the Scikit-Learn API and show some examples of its use.
• To take a deeper dive into the details of several of the most important machine learning

approaches, and develop an intuition into how they work and when and where they are
applicable.

Much of this material is drawn from the Scikit-Learn tutorials and workshops I have given on
several occasions at PyCon, SciPy, PyData, and other conferences. Any clarity in the following
pages is likely due to the many workshop participants and co-instructors who have given me
valuable feedback on this material over the years!

Finally, if you are seeking a more comprehensive or technical treatment of any of these subjects,
I’ve listed several resources and references in Further Machine Learning Resources.

< Further Resources | Contents | What Is Machine Learning? >
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05.01-What-Is-Machine-Learning

October 29, 2018

This notebook contains an excerpt from the Python Data Science Handbook by Jake VanderPlas; the
content is available on GitHub.

The text is released under the CC-BY-NC-ND license, and code is released under the MIT license. If
you find this content useful, please consider supporting the work by buying the book!

< Machine Learning | Contents | Introducing Scikit-Learn >

1 What Is Machine Learning?

Before we take a look at the details of various machine learning methods, let’s start by looking at
what machine learning is, and what it isn’t. Machine learning is often categorized as a subfield
of artificial intelligence, but I find that categorization can often be misleading at first brush. The
study of machine learning certainly arose from research in this context, but in the data science
application of machine learning methods, it’s more helpful to think of machine learning as a means
of building models of data.

Fundamentally, machine learning involves building mathematical models to help understand
data. “Learning” enters the fray when we give these models tunable parameters that can be adapted
to observed data; in this way the program can be considered to be “learning” from the data. Once
these models have been fit to previously seen data, they can be used to predict and understand as-
pects of newly observed data. I’ll leave to the reader the more philosophical digression regarding
the extent to which this type of mathematical, model-based “learning” is similar to the “learning”
exhibited by the human brain.

Understanding the problem setting in machine learning is essential to using these tools ef-
fectively, and so we will start with some broad categorizations of the types of approaches we’ll
discuss here.

1.1 Categories of Machine Learning

At the most fundamental level, machine learning can be categorized into two main types: super-
vised learning and unsupervised learning.

Supervised learning involves somehow modeling the relationship between measured features
of data and some label associated with the data; once this model is determined, it can be used
to apply labels to new, unknown data. This is further subdivided into classification tasks and re-
gression tasks: in classification, the labels are discrete categories, while in regression, the labels are
continuous quantities. We will see examples of both types of supervised learning in the following
section.

Unsupervised learning involves modeling the features of a dataset without reference to any label,
and is often described as “letting the dataset speak for itself.” These models include tasks such
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as clustering and dimensionality reduction. Clustering algorithms identify distinct groups of data,
while dimensionality reduction algorithms search for more succinct representations of the data.
We will see examples of both types of unsupervised learning in the following section.

In addition, there are so-called semi-supervised learning methods, which falls somewhere be-
tween supervised learning and unsupervised learning. Semi-supervised learning methods are
often useful when only incomplete labels are available.

1.2 Qualitative Examples of Machine Learning Applications

To make these ideas more concrete, let’s take a look at a few very simple examples of a machine
learning task. These examples are meant to give an intuitive, non-quantitative overview of the
types of machine learning tasks we will be looking at in this chapter. In later sections, we will go
into more depth regarding the particular models and how they are used. For a preview of these
more technical aspects, you can find the Python source that generates the following figures in the
Appendix: Figure Code.

1.2.1 Classification: Predicting discrete labels

We will first take a look at a simple classification task, in which you are given a set of labeled points
and want to use these to classify some unlabeled points.

Imagine that we have the data shown in this figure:

figure source in
Appendix

Here we have two-dimensional data: that is, we have two features for each point, represented
by the (x,y) positions of the points on the plane. In addition, we have one of two class labels for each
point, here represented by the colors of the points. From these features and labels, we would like
to create a model that will let us decide whether a new point should be labeled “blue” or “red.”
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There are a number of possible models for such a classification task, but here we will use an
extremely simple one. We will make the assumption that the two groups can be separated by
drawing a straight line through the plane between them, such that points on each side of the
line fall in the same group. Here the model is a quantitative version of the statement “a straight
line separates the classes”, while the model parameters are the particular numbers describing the
location and orientation of that line for our data. The optimal values for these model parameters
are learned from the data (this is the “learning” in machine learning), which is often called training
the model.

The following figure shows a visual representation of what the trained model looks like for
this data:

figure source in
Appendix

Now that this model has been trained, it can be generalized to new, unlabeled data. In other
words, we can take a new set of data, draw this model line through it, and assign labels to the new
points based on this model. This stage is usually called prediction. See the following figure:

figure source in
Appendix

This is the basic idea of a classification task in machine learning, where “classification” indi-
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cates that the data has discrete class labels. At first glance this may look fairly trivial: it would
be relatively easy to simply look at this data and draw such a discriminatory line to accomplish
this classification. A benefit of the machine learning approach, however, is that it can generalize
to much larger datasets in many more dimensions.

For example, this is similar to the task of automated spam detection for email; in this case, we
might use the following features and labels:

• feature 1, feature 2, etc. → normalized counts of important words or phrases (“Viagra”, “Nige-
rian prince”, etc.)

• label → “spam” or “not spam”

For the training set, these labels might be determined by individual inspection of a small rep-
resentative sample of emails; for the remaining emails, the label would be determined using the
model. For a suitably trained classification algorithm with enough well-constructed features (typ-
ically thousands or millions of words or phrases), this type of approach can be very effective. We
will see an example of such text-based classification in In Depth: Naive Bayes Classification.

Some important classification algorithms that we will discuss in more detail are Gaussian naive
Bayes (see In Depth: Naive Bayes Classification), support vector machines (see In-Depth: Support
Vector Machines), and random forest classification (see In-Depth: Decision Trees and Random
Forests).

1.2.2 Regression: Predicting continuous labels

In contrast with the discrete labels of a classification algorithm, we will next look at a simple
regression task in which the labels are continuous quantities.

Consider the data shown in the following figure, which consists of a set of points each with a
continuous label:

figure source in
Appendix
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As with the classification example, we have two-dimensional data: that is, there are two fea-
tures describing each data point. The color of each point represents the continuous label for that
point.

There are a number of possible regression models we might use for this type of data, but here
we will use a simple linear regression to predict the points. This simple linear regression model
assumes that if we treat the label as a third spatial dimension, we can fit a plane to the data.
This is a higher-level generalization of the well-known problem of fitting a line to data with two
coordinates.

We can visualize this setup as shown in the following figure:

figure source in
Appendix

Notice that the feature 1-feature 2 plane here is the same as in the two-dimensional plot
from before; in this case, however, we have represented the labels by both color and three-
dimensional axis position. From this view, it seems reasonable that fitting a plane through this
three-dimensional data would allow us to predict the expected label for any set of input param-
eters. Returning to the two-dimensional projection, when we fit such a plane we get the result
shown in the following figure:
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figure source in
Appendix

This plane of fit gives us what we need to predict labels for new points. Visually, we find the
results shown in the following figure:

figure source in
Appendix

As with the classification example, this may seem rather trivial in a low number of dimensions.
But the power of these methods is that they can be straightforwardly applied and evaluated in the
case of data with many, many features.

For example, this is similar to the task of computing the distance to galaxies observed through
a telescope—in this case, we might use the following features and labels:

• feature 1, feature 2, etc. → brightness of each galaxy at one of several wave lengths or colors
• label → distance or redshift of the galaxy

The distances for a small number of these galaxies might be determined through an indepen-
dent set of (typically more expensive) observations. Distances to remaining galaxies could then
be estimated using a suitable regression model, without the need to employ the more expensive
observation across the entire set. In astronomy circles, this is known as the “photometric redshift”
problem.
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Some important regression algorithms that we will discuss are linear regression (see In Depth:
Linear Regression), support vector machines (see In-Depth: Support Vector Machines), and ran-
dom forest regression (see In-Depth: Decision Trees and Random Forests).

1.2.3 Clustering: Inferring labels on unlabeled data

The classification and regression illustrations we just looked at are examples of supervised learn-
ing algorithms, in which we are trying to build a model that will predict labels for new data.
Unsupervised learning involves models that describe data without reference to any known labels.

One common case of unsupervised learning is “clustering,” in which data is automatically
assigned to some number of discrete groups. For example, we might have some two-dimensional
data like that shown in the following figure:

figure source in
Appendix

By eye, it is clear that each of these points is part of a distinct group. Given this input, a
clustering model will use the intrinsic structure of the data to determine which points are related.
Using the very fast and intuitive k-means algorithm (see In Depth: K-Means Clustering), we find
the clusters shown in the following figure:
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figure source in
Appendix

k-means fits a model consisting of k cluster centers; the optimal centers are assumed to be
those that minimize the distance of each point from its assigned center. Again, this might seem
like a trivial exercise in two dimensions, but as our data becomes larger and more complex, such
clustering algorithms can be employed to extract useful information from the dataset.

We will discuss the k-means algorithm in more depth in In Depth: K-Means Clustering. Other
important clustering algorithms include Gaussian mixture models (See In Depth: Gaussian Mix-
ture Models) and spectral clustering (See Scikit-Learn’s clustering documentation).

1.2.4 Dimensionality reduction: Inferring structure of unlabeled data

Dimensionality reduction is another example of an unsupervised algorithm, in which labels or
other information are inferred from the structure of the dataset itself. Dimensionality reduction is
a bit more abstract than the examples we looked at before, but generally it seeks to pull out some
low-dimensional representation of data that in some way preserves relevant qualities of the full
dataset. Different dimensionality reduction routines measure these relevant qualities in different
ways, as we will see in In-Depth: Manifold Learning.

As an example of this, consider the data shown in the following figure:
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figure source in
Appendix

Visually, it is clear that there is some structure in this data: it is drawn from a one-dimensional
line that is arranged in a spiral within this two-dimensional space. In a sense, you could say that
this data is “intrinsically” only one dimensional, though this one-dimensional data is embedded
in higher-dimensional space. A suitable dimensionality reduction model in this case would be
sensitive to this nonlinear embedded structure, and be able to pull out this lower-dimensionality
representation.

The following figure shows a visualization of the results of the Isomap algorithm, a manifold
learning algorithm that does exactly this:

figure source in
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Appendix
Notice that the colors (which represent the extracted one-dimensional latent variable) change

uniformly along the spiral, which indicates that the algorithm did in fact detect the structure we
saw by eye. As with the previous examples, the power of dimensionality reduction algorithms
becomes clearer in higher-dimensional cases. For example, we might wish to visualize important
relationships within a dataset that has 100 or 1,000 features. Visualizing 1,000-dimensional data is
a challenge, and one way we can make this more manageable is to use a dimensionality reduction
technique to reduce the data to two or three dimensions.

Some important dimensionality reduction algorithms that we will discuss are principal com-
ponent analysis (see In Depth: Principal Component Analysis) and various manifold learning
algorithms, including Isomap and locally linear embedding (See In-Depth: Manifold Learning).

1.3 Summary

Here we have seen a few simple examples of some of the basic types of machine learning ap-
proaches. Needless to say, there are a number of important practical details that we have glossed
over, but I hope this section was enough to give you a basic idea of what types of problems ma-
chine learning approaches can solve.

In short, we saw the following:

• Supervised learning: Models that can predict labels based on labeled training data

– Classification: Models that predict labels as two or more discrete categories
– Regression: Models that predict continuous labels

• Unsupervised learning: Models that identify structure in unlabeled data

– Clustering: Models that detect and identify distinct groups in the data
– Dimensionality reduction: Models that detect and identify lower-dimensional structure

in higher-dimensional data

In the following sections we will go into much greater depth within these categories, and see
some more interesting examples of where these concepts can be useful.

All of the figures in the preceding discussion are generated based on actual machine learning
computations; the code behind them can be found in Appendix: Figure Code.

< Machine Learning | Contents | Introducing Scikit-Learn >
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05.02-Introducing-Scikit-Learn

October 29, 2018

This notebook contains an excerpt from the Python Data Science Handbook by Jake VanderPlas; the
content is available on GitHub.

The text is released under the CC-BY-NC-ND license, and code is released under the MIT license. If
you find this content useful, please consider supporting the work by buying the book!

< What Is Machine Learning? | Contents | Hyperparameters and Model Validation >

1 Introducing Scikit-Learn

There are several Python libraries which provide solid implementations of a range of machine
learning algorithms. One of the best known is Scikit-Learn, a package that provides efficient ver-
sions of a large number of common algorithms. Scikit-Learn is characterized by a clean, uniform,
and streamlined API, as well as by very useful and complete online documentation. A benefit of
this uniformity is that once you understand the basic use and syntax of Scikit-Learn for one type
of model, switching to a new model or algorithm is very straightforward.

This section provides an overview of the Scikit-Learn API; a solid understanding of these API
elements will form the foundation for understanding the deeper practical discussion of machine
learning algorithms and approaches in the following chapters.

We will start by covering data representation in Scikit-Learn, followed by covering the Estimator
API, and finally go through a more interesting example of using these tools for exploring a set of
images of hand-written digits.

1.1 Data Representation in Scikit-Learn

Machine learning is about creating models from data: for that reason, we’ll start by discussing
how data can be represented in order to be understood by the computer. The best way to think
about data within Scikit-Learn is in terms of tables of data.

1.1.1 Data as table

A basic table is a two-dimensional grid of data, in which the rows represent individual elements of
the dataset, and the columns represent quantities related to each of these elements. For example,
consider the Iris dataset, famously analyzed by Ronald Fisher in 1936. We can download this
dataset in the form of a Pandas DataFrame using the seaborn library:

In [1]: import seaborn as sns
iris = sns.load_dataset('iris')
iris.head()
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Out[1]: sepal_length sepal_width petal_length petal_width species
0 5.1 3.5 1.4 0.2 setosa
1 4.9 3.0 1.4 0.2 setosa
2 4.7 3.2 1.3 0.2 setosa
3 4.6 3.1 1.5 0.2 setosa
4 5.0 3.6 1.4 0.2 setosa

Here each row of the data refers to a single observed flower, and the number of rows is the total
number of flowers in the dataset. In general, we will refer to the rows of the matrix as samples, and
the number of rows as n_samples.

Likewise, each column of the data refers to a particular quantitative piece of information that
describes each sample. In general, we will refer to the columns of the matrix as features, and the
number of columns as n_features.

Features matrix This table layout makes clear that the information can be thought of as a two-
dimensional numerical array or matrix, which we will call the features matrix. By convention, this
features matrix is often stored in a variable named X. The features matrix is assumed to be two-
dimensional, with shape [n_samples, n_features], and is most often contained in a NumPy
array or a Pandas DataFrame, though some Scikit-Learn models also accept SciPy sparse matrices.

The samples (i.e., rows) always refer to the individual objects described by the dataset. For
example, the sample might be a flower, a person, a document, an image, a sound file, a video, an
astronomical object, or anything else you can describe with a set of quantitative measurements.

The features (i.e., columns) always refer to the distinct observations that describe each sample
in a quantitative manner. Features are generally real-valued, but may be Boolean or discrete-
valued in some cases.

Target array In addition to the feature matrix X, we also generally work with a label or tar-
get array, which by convention we will usually call y. The target array is usually one di-
mensional, with length n_samples, and is generally contained in a NumPy array or Pandas
Series. The target array may have continuous numerical values, or discrete classes/labels. While
some Scikit-Learn estimators do handle multiple target values in the form of a two-dimensional,
[n_samples, n_targets] target array, we will primarily be working with the common case of a
one-dimensional target array.

Often one point of confusion is how the target array differs from the other features columns.
The distinguishing feature of the target array is that it is usually the quantity we want to predict
from the data: in statistical terms, it is the dependent variable. For example, in the preceding
data we may wish to construct a model that can predict the species of flower based on the other
measurements; in this case, the species column would be considered the target array.

With this target array in mind, we can use Seaborn (see Visualization With Seaborn) to conve-
niently visualize the data:

In [2]: %matplotlib inline
import seaborn as sns; sns.set()
sns.pairplot(iris, hue='species', size=1.5);
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For use in Scikit-Learn, we will extract the features matrix and target array from the DataFrame,
which we can do using some of the Pandas DataFrame operations discussed in the Chapter 3:

In [3]: X_iris = iris.drop('species', axis=1)
X_iris.shape

Out[3]: (150, 4)

In [4]: y_iris = iris['species']
y_iris.shape

Out[4]: (150,)

To summarize, the expected layout of features and target values is visualized in the following
diagram:

3

03.00-Introduction-to-Pandas.ipynb


figure source in Ap-
pendix

With this data properly formatted, we can move on to consider the estimator API of Scikit-
Learn:

1.2 Scikit-Learn’s Estimator API

The Scikit-Learn API is designed with the following guiding principles in mind, as outlined in the
Scikit-Learn API paper:

• Consistency: All objects share a common interface drawn from a limited set of methods, with
consistent documentation.

• Inspection: All specified parameter values are exposed as public attributes.

• Limited object hierarchy: Only algorithms are represented by Python classes; datasets are rep-
resented in standard formats (NumPy arrays, Pandas DataFrames, SciPy sparse matrices)
and parameter names use standard Python strings.

• Composition: Many machine learning tasks can be expressed as sequences of more funda-
mental algorithms, and Scikit-Learn makes use of this wherever possible.

• Sensible defaults: When models require user-specified parameters, the library defines an ap-
propriate default value.

In practice, these principles make Scikit-Learn very easy to use, once the basic principles are
understood. Every machine learning algorithm in Scikit-Learn is implemented via the Estimator
API, which provides a consistent interface for a wide range of machine learning applications.

1.2.1 Basics of the API

Most commonly, the steps in using the Scikit-Learn estimator API are as follows (we will step
through a handful of detailed examples in the sections that follow).

4

06.00-Figure-Code.ipynb#Features-and-Labels-Grid
06.00-Figure-Code.ipynb#Features-and-Labels-Grid
http://arxiv.org/abs/1309.0238


1. Choose a class of model by importing the appropriate estimator class from Scikit-Learn.
2. Choose model hyperparameters by instantiating this class with desired values.
3. Arrange data into a features matrix and target vector following the discussion above.
4. Fit the model to your data by calling the fit() method of the model instance.
5. Apply the Model to new data:

• For supervised learning, often we predict labels for unknown data using the predict()
method.

• For unsupervised learning, we often transform or infer properties of the data using the
transform() or predict() method.

We will now step through several simple examples of applying supervised and unsupervised
learning methods.

1.2.2 Supervised learning example: Simple linear regression

As an example of this process, let’s consider a simple linear regression—that is, the common case
of fitting a line to (x, y) data. We will use the following simple data for our regression example:

In [5]: import matplotlib.pyplot as plt
import numpy as np

rng = np.random.RandomState(42)
x = 10 * rng.rand(50)
y = 2 * x - 1 + rng.randn(50)
plt.scatter(x, y);
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With this data in place, we can use the recipe outlined earlier. Let’s walk through the process:

1. Choose a class of model In Scikit-Learn, every class of model is represented by a Python class.
So, for example, if we would like to compute a simple linear regression model, we can import the
linear regression class:

In [6]: from sklearn.linear_model import LinearRegression

Note that other more general linear regression models exist as well; you can read more about
them in the sklearn.linear_model module documentation.

2. Choose model hyperparameters An important point is that a class of model is not the same as an
instance of a model.

Once we have decided on our model class, there are still some options open to us. Depending
on the model class we are working with, we might need to answer one or more questions like the
following:

• Would we like to fit for the offset (i.e., y-intercept)?
• Would we like the model to be normalized?
• Would we like to preprocess our features to add model flexibility?
• What degree of regularization would we like to use in our model?
• How many model components would we like to use?

These are examples of the important choices that must be made once the model class is selected.
These choices are often represented as hyperparameters, or parameters that must be set before the
model is fit to data. In Scikit-Learn, hyperparameters are chosen by passing values at model
instantiation. We will explore how you can quantitatively motivate the choice of hyperparameters
in Hyperparameters and Model Validation.

For our linear regression example, we can instantiate the LinearRegression class and specify
that we would like to fit the intercept using the fit_intercept hyperparameter:

In [7]: model = LinearRegression(fit_intercept=True)
model

Out[7]: LinearRegression(copy_X=True, fit_intercept=True, n_jobs=1, normalize=False)

Keep in mind that when the model is instantiated, the only action is the storing of these hyper-
parameter values. In particular, we have not yet applied the model to any data: the Scikit-Learn
API makes very clear the distinction between choice of model and application of model to data.

3. Arrange data into a features matrix and target vector Previously we detailed the Scikit-Learn
data representation, which requires a two-dimensional features matrix and a one-dimensional
target array. Here our target variable y is already in the correct form (a length-n_samples array),
but we need to massage the data x to make it a matrix of size [n_samples, n_features]. In this
case, this amounts to a simple reshaping of the one-dimensional array:

In [8]: X = x[:, np.newaxis]
X.shape

Out[8]: (50, 1)
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4. Fit the model to your data Now it is time to apply our model to data. This can be done with
the fit() method of the model:

In [9]: model.fit(X, y)

Out[9]: LinearRegression(copy_X=True, fit_intercept=True, n_jobs=1, normalize=False)

This fit() command causes a number of model-dependent internal computations to take
place, and the results of these computations are stored in model-specific attributes that the user
can explore. In Scikit-Learn, by convention all model parameters that were learned during the
fit() process have trailing underscores; for example in this linear model, we have the following:

In [10]: model.coef_

Out[10]: array([ 1.9776566])

In [11]: model.intercept_

Out[11]: -0.90331072553111635

These two parameters represent the slope and intercept of the simple linear fit to the data.
Comparing to the data definition, we see that they are very close to the input slope of 2 and
intercept of -1.

One question that frequently comes up regards the uncertainty in such internal model param-
eters. In general, Scikit-Learn does not provide tools to draw conclusions from internal model
parameters themselves: interpreting model parameters is much more a statistical modeling ques-
tion than a machine learning question. Machine learning rather focuses on what the model predicts.
If you would like to dive into the meaning of fit parameters within the model, other tools are
available, including the Statsmodels Python package.

5. Predict labels for unknown data Once the model is trained, the main task of supervised
machine learning is to evaluate it based on what it says about new data that was not part of the
training set. In Scikit-Learn, this can be done using the predict() method. For the sake of this
example, our “new data” will be a grid of x values, and we will ask what y values the model
predicts:

In [12]: xfit = np.linspace(-1, 11)

As before, we need to coerce these x values into a [n_samples, n_features] features matrix,
after which we can feed it to the model:

In [13]: Xfit = xfit[:, np.newaxis]
yfit = model.predict(Xfit)

Finally, let’s visualize the results by plotting first the raw data, and then this model fit:

In [14]: plt.scatter(x, y)
plt.plot(xfit, yfit);
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Typically the efficacy of the model is evaluated by comparing its results to some known base-
line, as we will see in the next example

1.2.3 Supervised learning example: Iris classification

Let’s take a look at another example of this process, using the Iris dataset we discussed earlier.
Our question will be this: given a model trained on a portion of the Iris data, how well can we
predict the remaining labels?

For this task, we will use an extremely simple generative model known as Gaussian naive
Bayes, which proceeds by assuming each class is drawn from an axis-aligned Gaussian distri-
bution (see In Depth: Naive Bayes Classification for more details). Because it is so fast and has
no hyperparameters to choose, Gaussian naive Bayes is often a good model to use as a baseline
classification, before exploring whether improvements can be found through more sophisticated
models.

We would like to evaluate the model on data it has not seen before, and so we will split the
data into a training set and a testing set. This could be done by hand, but it is more convenient to
use the train_test_split utility function:

In [15]: from sklearn.cross_validation import train_test_split
Xtrain, Xtest, ytrain, ytest = train_test_split(X_iris, y_iris,

random_state=1)

With the data arranged, we can follow our recipe to predict the labels:
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In [16]: from sklearn.naive_bayes import GaussianNB # 1. choose model class
model = GaussianNB() # 2. instantiate model
model.fit(Xtrain, ytrain) # 3. fit model to data
y_model = model.predict(Xtest) # 4. predict on new data

Finally, we can use the accuracy_score utility to see the fraction of predicted labels that match
their true value:

In [17]: from sklearn.metrics import accuracy_score
accuracy_score(ytest, y_model)

Out[17]: 0.97368421052631582

With an accuracy topping 97%, we see that even this very naive classification algorithm is
effective for this particular dataset!

1.2.4 Unsupervised learning example: Iris dimensionality

As an example of an unsupervised learning problem, let’s take a look at reducing the dimension-
ality of the Iris data so as to more easily visualize it. Recall that the Iris data is four dimensional:
there are four features recorded for each sample.

The task of dimensionality reduction is to ask whether there is a suitable lower-dimensional
representation that retains the essential features of the data. Often dimensionality reduction is
used as an aid to visualizing data: after all, it is much easier to plot data in two dimensions than
in four dimensions or higher!

Here we will use principal component analysis (PCA; see In Depth: Principal Component
Analysis), which is a fast linear dimensionality reduction technique. We will ask the model to
return two components—that is, a two-dimensional representation of the data.

Following the sequence of steps outlined earlier, we have:

In [18]: from sklearn.decomposition import PCA # 1. Choose the model class
model = PCA(n_components=2) # 2. Instantiate the model with hyperparameters
model.fit(X_iris) # 3. Fit to data. Notice y is not specified!
X_2D = model.transform(X_iris) # 4. Transform the data to two dimensions

Now let’s plot the results. A quick way to do this is to insert the results into the original Iris
DataFrame, and use Seaborn’s lmplot to show the results:

In [19]: iris['PCA1'] = X_2D[:, 0]
iris['PCA2'] = X_2D[:, 1]
sns.lmplot("PCA1", "PCA2", hue='species', data=iris, fit_reg=False);
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We see that in the two-dimensional representation, the species are fairly well separated, even
though the PCA algorithm had no knowledge of the species labels! This indicates to us that a
relatively straightforward classification will probably be effective on the dataset, as we saw before.

1.2.5 Unsupervised learning: Iris clustering

Let’s next look at applying clustering to the Iris data. A clustering algorithm attempts to find
distinct groups of data without reference to any labels. Here we will use a powerful clustering
method called a Gaussian mixture model (GMM), discussed in more detail in In Depth: Gaussian
Mixture Models. A GMM attempts to model the data as a collection of Gaussian blobs.

We can fit the Gaussian mixture model as follows:

In [20]: from sklearn.mixture import GMM # 1. Choose the model class
model = GMM(n_components=3,

covariance_type='full') # 2. Instantiate the model with hyperparameters
model.fit(X_iris) # 3. Fit to data. Notice y is not specified!
y_gmm = model.predict(X_iris) # 4. Determine cluster labels

As before, we will add the cluster label to the Iris DataFrame and use Seaborn to plot the results:
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In [21]: iris['cluster'] = y_gmm
sns.lmplot("PCA1", "PCA2", data=iris, hue='species',

col='cluster', fit_reg=False);

By splitting the data by cluster number, we see exactly how well the GMM algorithm has
recovered the underlying label: the setosa species is separated perfectly within cluster 0, while
there remains a small amount of mixing between versicolor and virginica. This means that even
without an expert to tell us the species labels of the individual flowers, the measurements of these
flowers are distinct enough that we could automatically identify the presence of these different
groups of species with a simple clustering algorithm! This sort of algorithm might further give
experts in the field clues as to the relationship between the samples they are observing.

1.3 Application: Exploring Hand-written Digits

To demonstrate these principles on a more interesting problem, let’s consider one piece of the
optical character recognition problem: the identification of hand-written digits. In the wild, this
problem involves both locating and identifying characters in an image. Here we’ll take a shortcut
and use Scikit-Learn’s set of pre-formatted digits, which is built into the library.

1.3.1 Loading and visualizing the digits data

We’ll use Scikit-Learn’s data access interface and take a look at this data:

In [22]: from sklearn.datasets import load_digits
digits = load_digits()
digits.images.shape

Out[22]: (1797, 8, 8)

The images data is a three-dimensional array: 1,797 samples each consisting of an 8 Œ 8 grid
of pixels. Let’s visualize the first hundred of these:

In [23]: import matplotlib.pyplot as plt

fig, axes = plt.subplots(10, 10, figsize=(8, 8),
subplot_kw={'xticks':[], 'yticks':[]},
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gridspec_kw=dict(hspace=0.1, wspace=0.1))

for i, ax in enumerate(axes.flat):
ax.imshow(digits.images[i], cmap='binary', interpolation='nearest')
ax.text(0.05, 0.05, str(digits.target[i]),

transform=ax.transAxes, color='green')

In order to work with this data within Scikit-Learn, we need a two-dimensional, [n_samples,
n_features] representation. We can accomplish this by treating each pixel in the image as a fea-
ture: that is, by flattening out the pixel arrays so that we have a length-64 array of pixel values
representing each digit. Additionally, we need the target array, which gives the previously deter-
mined label for each digit. These two quantities are built into the digits dataset under the data
and target attributes, respectively:
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In [24]: X = digits.data
X.shape

Out[24]: (1797, 64)

In [25]: y = digits.target
y.shape

Out[25]: (1797,)

We see here that there are 1,797 samples and 64 features.

1.3.2 Unsupervised learning: Dimensionality reduction

We’d like to visualize our points within the 64-dimensional parameter space, but it’s difficult to
effectively visualize points in such a high-dimensional space. Instead we’ll reduce the dimensions
to 2, using an unsupervised method. Here, we’ll make use of a manifold learning algorithm called
Isomap (see In-Depth: Manifold Learning), and transform the data to two dimensions:

In [26]: from sklearn.manifold import Isomap
iso = Isomap(n_components=2)
iso.fit(digits.data)
data_projected = iso.transform(digits.data)
data_projected.shape

Out[26]: (1797, 2)

We see that the projected data is now two-dimensional. Let’s plot this data to see if we can
learn anything from its structure:

In [27]: plt.scatter(data_projected[:, 0], data_projected[:, 1], c=digits.target,
edgecolor='none', alpha=0.5,
cmap=plt.cm.get_cmap('spectral', 10))

plt.colorbar(label='digit label', ticks=range(10))
plt.clim(-0.5, 9.5);
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This plot gives us some good intuition into how well various numbers are separated in the
larger 64-dimensional space. For example, zeros (in black) and ones (in purple) have very little
overlap in parameter space. Intuitively, this makes sense: a zero is empty in the middle of the
image, while a one will generally have ink in the middle. On the other hand, there seems to be a
more or less continuous spectrum between ones and fours: we can understand this by realizing
that some people draw ones with “hats” on them, which cause them to look similar to fours.

Overall, however, the different groups appear to be fairly well separated in the parameter
space: this tells us that even a very straightforward supervised classification algorithm should
perform suitably on this data. Let’s give it a try.

1.3.3 Classification on digits

Let’s apply a classification algorithm to the digits. As with the Iris data previously, we will split
the data into a training and testing set, and fit a Gaussian naive Bayes model:

In [28]: Xtrain, Xtest, ytrain, ytest = train_test_split(X, y, random_state=0)

In [29]: from sklearn.naive_bayes import GaussianNB
model = GaussianNB()
model.fit(Xtrain, ytrain)
y_model = model.predict(Xtest)

Now that we have predicted our model, we can gauge its accuracy by comparing the true
values of the test set to the predictions:
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In [30]: from sklearn.metrics import accuracy_score
accuracy_score(ytest, y_model)

Out[30]: 0.83333333333333337

With even this extremely simple model, we find about 80% accuracy for classification of the
digits! However, this single number doesn’t tell us where we’ve gone wrong—one nice way to do
this is to use the confusion matrix, which we can compute with Scikit-Learn and plot with Seaborn:

In [31]: from sklearn.metrics import confusion_matrix

mat = confusion_matrix(ytest, y_model)

sns.heatmap(mat, square=True, annot=True, cbar=False)
plt.xlabel('predicted value')
plt.ylabel('true value');

This shows us where the mis-labeled points tend to be: for example, a large number of twos
here are mis-classified as either ones or eights. Another way to gain intuition into the characteris-
tics of the model is to plot the inputs again, with their predicted labels. We’ll use green for correct
labels, and red for incorrect labels:
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In [32]: fig, axes = plt.subplots(10, 10, figsize=(8, 8),
subplot_kw={'xticks':[], 'yticks':[]},
gridspec_kw=dict(hspace=0.1, wspace=0.1))

test_images = Xtest.reshape(-1, 8, 8)

for i, ax in enumerate(axes.flat):
ax.imshow(test_images[i], cmap='binary', interpolation='nearest')
ax.text(0.05, 0.05, str(y_model[i]),

transform=ax.transAxes,
color='green' if (ytest[i] == y_model[i]) else 'red')

Examining this subset of the data, we can gain insight regarding where the algorithm might be
not performing optimally. To go beyond our 80% classification rate, we might move to a more so-
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phisticated algorithm such as support vector machines (see In-Depth: Support Vector Machines),
random forests (see In-Depth: Decision Trees and Random Forests) or another classification ap-
proach.

1.4 Summary

In this section we have covered the essential features of the Scikit-Learn data representation, and
the estimator API. Regardless of the type of estimator, the same import/instantiate/fit/predict
pattern holds. Armed with this information about the estimator API, you can explore the Scikit-
Learn documentation and begin trying out various models on your data.

In the next section, we will explore perhaps the most important topic in machine learning: how
to select and validate your model.

< What Is Machine Learning? | Contents | Hyperparameters and Model Validation >
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05.03-Hyperparameters-and-Model-Validation

October 29, 2018

This notebook contains an excerpt from the Python Data Science Handbook by Jake VanderPlas; the
content is available on GitHub.

The text is released under the CC-BY-NC-ND license, and code is released under the MIT license. If
you find this content useful, please consider supporting the work by buying the book!

< Introducing Scikit-Learn | Contents | Feature Engineering >

1 Hyperparameters and Model Validation

In the previous section, we saw the basic recipe for applying a supervised machine learning model:

1. Choose a class of model
2. Choose model hyperparameters
3. Fit the model to the training data
4. Use the model to predict labels for new data

The first two pieces of this—the choice of model and choice of hyperparameters—are perhaps
the most important part of using these tools and techniques effectively. In order to make an in-
formed choice, we need a way to validate that our model and our hyperparameters are a good fit
to the data. While this may sound simple, there are some pitfalls that you must avoid to do this
effectively.

1.1 Thinking about Model Validation

In principle, model validation is very simple: after choosing a model and its hyperparameters,
we can estimate how effective it is by applying it to some of the training data and comparing the
prediction to the known value.

The following sections first show a naive approach to model validation and why it fails, before
exploring the use of holdout sets and cross-validation for more robust model evaluation.

1.1.1 Model validation the wrong way

Let’s demonstrate the naive approach to validation using the Iris data, which we saw in the pre-
vious section. We will start by loading the data:

In [1]: from sklearn.datasets import load_iris
iris = load_iris()
X = iris.data
y = iris.target
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Next we choose a model and hyperparameters. Here we’ll use a k-neighbors classifier with
n_neighbors=1. This is a very simple and intuitive model that says “the label of an unknown
point is the same as the label of its closest training point:”

In [2]: from sklearn.neighbors import KNeighborsClassifier
model = KNeighborsClassifier(n_neighbors=1)

Then we train the model, and use it to predict labels for data we already know:

In [3]: model.fit(X, y)
y_model = model.predict(X)

Finally, we compute the fraction of correctly labeled points:

In [4]: from sklearn.metrics import accuracy_score
accuracy_score(y, y_model)

Out[4]: 1.0

We see an accuracy score of 1.0, which indicates that 100% of points were correctly labeled by
our model! But is this truly measuring the expected accuracy? Have we really come upon a model
that we expect to be correct 100% of the time?

As you may have gathered, the answer is no. In fact, this approach contains a fundamental
flaw: it trains and evaluates the model on the same data. Furthermore, the nearest neighbor model is
an instance-based estimator that simply stores the training data, and predicts labels by comparing
new data to these stored points: except in contrived cases, it will get 100% accuracy every time!

1.1.2 Model validation the right way: Holdout sets

So what can be done? A better sense of a model’s performance can be found using what’s known
as a holdout set: that is, we hold back some subset of the data from the training of the model, and
then use this holdout set to check the model performance. This splitting can be done using the
train_test_split utility in Scikit-Learn:

In [5]: from sklearn.cross_validation import train_test_split
# split the data with 50% in each set
X1, X2, y1, y2 = train_test_split(X, y, random_state=0,

train_size=0.5)

# fit the model on one set of data
model.fit(X1, y1)

# evaluate the model on the second set of data
y2_model = model.predict(X2)
accuracy_score(y2, y2_model)

Out[5]: 0.90666666666666662

We see here a more reasonable result: the nearest-neighbor classifier is about 90% accurate on
this hold-out set. The hold-out set is similar to unknown data, because the model has not “seen”
it before.
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1.1.3 Model validation via cross-validation

One disadvantage of using a holdout set for model validation is that we have lost a portion of our
data to the model training. In the above case, half the dataset does not contribute to the training
of the model! This is not optimal, and can cause problems – especially if the initial set of training
data is small.

One way to address this is to use cross-validation; that is, to do a sequence of fits where each
subset of the data is used both as a training set and as a validation set. Visually, it might look
something like this:

figure source in
Appendix

Here we do two validation trials, alternately using each half of the data as a holdout set. Using
the split data from before, we could implement it like this:

In [6]: y2_model = model.fit(X1, y1).predict(X2)
y1_model = model.fit(X2, y2).predict(X1)
accuracy_score(y1, y1_model), accuracy_score(y2, y2_model)

Out[6]: (0.95999999999999996, 0.90666666666666662)

What comes out are two accuracy scores, which we could combine (by, say, taking the mean)
to get a better measure of the global model performance. This particular form of cross-validation
is a two-fold cross-validation—that is, one in which we have split the data into two sets and used
each in turn as a validation set.

We could expand on this idea to use even more trials, and more folds in the data—for example,
here is a visual depiction of five-fold cross-validation:
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figure source in
Appendix

Here we split the data into five groups, and use each of them in turn to evaluate the model
fit on the other 4/5 of the data. This would be rather tedious to do by hand, and so we can use
Scikit-Learn’s cross_val_score convenience routine to do it succinctly:

In [7]: from sklearn.cross_validation import cross_val_score
cross_val_score(model, X, y, cv=5)

Out[7]: array([ 0.96666667, 0.96666667, 0.93333333, 0.93333333, 1. ])

Repeating the validation across different subsets of the data gives us an even better idea of the
performance of the algorithm.

Scikit-Learn implements a number of useful cross-validation schemes that are useful in partic-
ular situations; these are implemented via iterators in the cross_validation module. For exam-
ple, we might wish to go to the extreme case in which our number of folds is equal to the number
of data points: that is, we train on all points but one in each trial. This type of cross-validation is
known as leave-one-out cross validation, and can be used as follows:

In [8]: from sklearn.cross_validation import LeaveOneOut
scores = cross_val_score(model, X, y, cv=LeaveOneOut(len(X)))
scores

Out[8]: array([ 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,
1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,
1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,
1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,
1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,
1., 1., 1., 1., 1., 0., 1., 0., 1., 1., 1., 1., 1.,
1., 1., 1., 1., 1., 0., 1., 1., 1., 1., 1., 1., 1.,

4

06.00-Figure-Code.ipynb#5-Fold-Cross-Validation
06.00-Figure-Code.ipynb#5-Fold-Cross-Validation


1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,
1., 1., 0., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,
1., 1., 0., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,
1., 1., 1., 0., 1., 1., 1., 1., 1., 1., 1., 1., 1.,
1., 1., 1., 1., 1., 1., 1.])

Because we have 150 samples, the leave one out cross-validation yields scores for 150 trials,
and the score indicates either successful (1.0) or unsuccessful (0.0) prediction. Taking the mean of
these gives an estimate of the error rate:

In [9]: scores.mean()

Out[9]: 0.95999999999999996

Other cross-validation schemes can be used similarly. For a description of what is available in
Scikit-Learn, use IPython to explore the sklearn.cross_validation submodule, or take a look at
Scikit-Learn’s online cross-validation documentation.

1.2 Selecting the Best Model

Now that we’ve seen the basics of validation and cross-validation, we will go into a litte more
depth regarding model selection and selection of hyperparameters. These issues are some of the
most important aspects of the practice of machine learning, and I find that this information is often
glossed over in introductory machine learning tutorials.

Of core importance is the following question: if our estimator is underperforming, how should we
move forward? There are several possible answers:

• Use a more complicated/more flexible model
• Use a less complicated/less flexible model
• Gather more training samples
• Gather more data to add features to each sample

The answer to this question is often counter-intuitive. In particular, sometimes using a more
complicated model will give worse results, and adding more training samples may not improve
your results! The ability to determine what steps will improve your model is what separates the
successful machine learning practitioners from the unsuccessful.

1.2.1 The Bias-variance trade-off

Fundamentally, the question of “the best model” is about finding a sweet spot in the tradeoff
between bias and variance. Consider the following figure, which presents two regression fits to the
same dataset:
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figure source in
Appendix

It is clear that neither of these models is a particularly good fit to the data, but they fail in
different ways.

The model on the left attempts to find a straight-line fit through the data. Because the data
are intrinsically more complicated than a straight line, the straight-line model will never be able
to describe this dataset well. Such a model is said to underfit the data: that is, it does not have
enough model flexibility to suitably account for all the features in the data; another way of saying
this is that the model has high bias.

The model on the right attempts to fit a high-order polynomial through the data. Here the
model fit has enough flexibility to nearly perfectly account for the fine features in the data, but
even though it very accurately describes the training data, its precise form seems to be more reflec-
tive of the particular noise properties of the data rather than the intrinsic properties of whatever
process generated that data. Such a model is said to overfit the data: that is, it has so much model
flexibility that the model ends up accounting for random errors as well as the underlying data
distribution; another way of saying this is that the model has high variance.

To look at this in another light, consider what happens if we use these two models to predict
the y-value for some new data. In the following diagrams, the red/lighter points indicate data
that is omitted from the training set:

figure source in
Appendix

The score here is the R2 score, or coefficient of determination, which measures how well a
model performs relative to a simple mean of the target values. R2 = 1 indicates a perfect match,
R2 = 0 indicates the model does no better than simply taking the mean of the data, and negative
values mean even worse models. From the scores associated with these two models, we can make
an observation that holds more generally:

• For high-bias models, the performance of the model on the validation set is similar to the
performance on the training set.
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• For high-variance models, the performance of the model on the validation set is far worse
than the performance on the training set.

If we imagine that we have some ability to tune the model complexity, we would expect the
training score and validation score to behave as illustrated in the following figure:

figure source in
Appendix

The diagram shown here is often called a validation curve, and we see the following essential
features:

• The training score is everywhere higher than the validation score. This is generally the case:
the model will be a better fit to data it has seen than to data it has not seen.

• For very low model complexity (a high-bias model), the training data is under-fit, which
means that the model is a poor predictor both for the training data and for any previously
unseen data.

• For very high model complexity (a high-variance model), the training data is over-fit, which
means that the model predicts the training data very well, but fails for any previously unseen
data.

• For some intermediate value, the validation curve has a maximum. This level of complexity
indicates a suitable trade-off between bias and variance.

The means of tuning the model complexity varies from model to model; when we discuss
individual models in depth in later sections, we will see how each model allows for such tuning.

1.2.2 Validation curves in Scikit-Learn

Let’s look at an example of using cross-validation to compute the validation curve for a class of
models. Here we will use a polynomial regression model: this is a generalized linear model in
which the degree of the polynomial is a tunable parameter. For example, a degree-1 polynomial
fits a straight line to the data; for model parameters a and b:
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y = ax + b

A degree-3 polynomial fits a cubic curve to the data; for model parameters a, b, c, d:

y = ax3 + bx2 + cx + d

We can generalize this to any number of polynomial features. In Scikit-Learn, we can imple-
ment this with a simple linear regression combined with the polynomial preprocessor. We will use
a pipeline to string these operations together (we will discuss polynomial features and pipelines
more fully in Feature Engineering):

In [10]: from sklearn.preprocessing import PolynomialFeatures
from sklearn.linear_model import LinearRegression
from sklearn.pipeline import make_pipeline

def PolynomialRegression(degree=2, **kwargs):
return make_pipeline(PolynomialFeatures(degree),

LinearRegression(**kwargs))

Now let’s create some data to which we will fit our model:

In [11]: import numpy as np

def make_data(N, err=1.0, rseed=1):
# randomly sample the data
rng = np.random.RandomState(rseed)
X = rng.rand(N, 1) ** 2
y = 10 - 1. / (X.ravel() + 0.1)
if err > 0:

y += err * rng.randn(N)
return X, y

X, y = make_data(40)

We can now visualize our data, along with polynomial fits of several degrees:

In [12]: %matplotlib inline
import matplotlib.pyplot as plt
import seaborn; seaborn.set() # plot formatting

X_test = np.linspace(-0.1, 1.1, 500)[:, None]

plt.scatter(X.ravel(), y, color='black')
axis = plt.axis()
for degree in [1, 3, 5]:

y_test = PolynomialRegression(degree).fit(X, y).predict(X_test)
plt.plot(X_test.ravel(), y_test, label='degree={0}'.format(degree))

plt.xlim(-0.1, 1.0)
plt.ylim(-2, 12)
plt.legend(loc='best');
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The knob controlling model complexity in this case is the degree of the polynomial, which
can be any non-negative integer. A useful question to answer is this: what degree of polynomial
provides a suitable trade-off between bias (under-fitting) and variance (over-fitting)?

We can make progress in this by visualizing the validation curve for this particular data and
model; this can be done straightforwardly using the validation_curve convenience routine pro-
vided by Scikit-Learn. Given a model, data, parameter name, and a range to explore, this function
will automatically compute both the training score and validation score across the range:

In [13]: from sklearn.learning_curve import validation_curve
degree = np.arange(0, 21)
train_score, val_score = validation_curve(PolynomialRegression(), X, y,

'polynomialfeatures__degree', degree, cv=7)

plt.plot(degree, np.median(train_score, 1), color='blue', label='training score')
plt.plot(degree, np.median(val_score, 1), color='red', label='validation score')
plt.legend(loc='best')
plt.ylim(0, 1)
plt.xlabel('degree')
plt.ylabel('score');
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This shows precisely the qualitative behavior we expect: the training score is everywhere
higher than the validation score; the training score is monotonically improving with increased
model complexity; and the validation score reaches a maximum before dropping off as the model
becomes over-fit.

From the validation curve, we can read-off that the optimal trade-off between bias and variance
is found for a third-order polynomial; we can compute and display this fit over the original data
as follows:

In [14]: plt.scatter(X.ravel(), y)
lim = plt.axis()
y_test = PolynomialRegression(3).fit(X, y).predict(X_test)
plt.plot(X_test.ravel(), y_test);
plt.axis(lim);
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Notice that finding this optimal model did not actually require us to compute the training
score, but examining the relationship between the training score and validation score can give us
useful insight into the performance of the model.

1.3 Learning Curves

One important aspect of model complexity is that the optimal model will generally depend on the
size of your training data. For example, let’s generate a new dataset with a factor of five more
points:

In [15]: X2, y2 = make_data(200)
plt.scatter(X2.ravel(), y2);
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We will duplicate the preceding code to plot the validation curve for this larger dataset; for
reference let’s over-plot the previous results as well:

In [16]: degree = np.arange(21)
train_score2, val_score2 = validation_curve(PolynomialRegression(), X2, y2,

'polynomialfeatures__degree', degree, cv=7)

plt.plot(degree, np.median(train_score2, 1), color='blue', label='training score')
plt.plot(degree, np.median(val_score2, 1), color='red', label='validation score')
plt.plot(degree, np.median(train_score, 1), color='blue', alpha=0.3, linestyle='dashed')
plt.plot(degree, np.median(val_score, 1), color='red', alpha=0.3, linestyle='dashed')
plt.legend(loc='lower center')
plt.ylim(0, 1)
plt.xlabel('degree')
plt.ylabel('score');
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The solid lines show the new results, while the fainter dashed lines show the results of the
previous smaller dataset. It is clear from the validation curve that the larger dataset can support
a much more complicated model: the peak here is probably around a degree of 6, but even a
degree-20 model is not seriously over-fitting the data—the validation and training scores remain
very close.

Thus we see that the behavior of the validation curve has not one but two important inputs: the
model complexity and the number of training points. It is often useful to to explore the behavior
of the model as a function of the number of training points, which we can do by using increasingly
larger subsets of the data to fit our model. A plot of the training/validation score with respect to
the size of the training set is known as a learning curve.

The general behavior we would expect from a learning curve is this:

• A model of a given complexity will overfit a small dataset: this means the training score will
be relatively high, while the validation score will be relatively low.

• A model of a given complexity will underfit a large dataset: this means that the training score
will decrease, but the validation score will increase.

• A model will never, except by chance, give a better score to the validation set than the train-
ing set: this means the curves should keep getting closer together but never cross.

With these features in mind, we would expect a learning curve to look qualitatively like that
shown in the following figure:
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figure source in
Appendix

The notable feature of the learning curve is the convergence to a particular score as the number
of training samples grows. In particular, once you have enough points that a particular model has
converged, adding more training data will not help you! The only way to increase model performance
in this case is to use another (often more complex) model.

1.3.1 Learning curves in Scikit-Learn

Scikit-Learn offers a convenient utility for computing such learning curves from your models; here
we will compute a learning curve for our original dataset with a second-order polynomial model
and a ninth-order polynomial:

In [17]: from sklearn.learning_curve import learning_curve

fig, ax = plt.subplots(1, 2, figsize=(16, 6))
fig.subplots_adjust(left=0.0625, right=0.95, wspace=0.1)

for i, degree in enumerate([2, 9]):
N, train_lc, val_lc = learning_curve(PolynomialRegression(degree),

X, y, cv=7,
train_sizes=np.linspace(0.3, 1, 25))

ax[i].plot(N, np.mean(train_lc, 1), color='blue', label='training score')
ax[i].plot(N, np.mean(val_lc, 1), color='red', label='validation score')
ax[i].hlines(np.mean([train_lc[-1], val_lc[-1]]), N[0], N[-1],

color='gray', linestyle='dashed')

ax[i].set_ylim(0, 1)
ax[i].set_xlim(N[0], N[-1])
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ax[i].set_xlabel('training size')
ax[i].set_ylabel('score')
ax[i].set_title('degree = {0}'.format(degree), size=14)
ax[i].legend(loc='best')

This is a valuable diagnostic, because it gives us a visual depiction of how our model responds
to increasing training data. In particular, when your learning curve has already converged (i.e.,
when the training and validation curves are already close to each other) adding more training data
will not significantly improve the fit! This situation is seen in the left panel, with the learning curve
for the degree-2 model.

The only way to increase the converged score is to use a different (usually more complicated)
model. We see this in the right panel: by moving to a much more complicated model, we in-
crease the score of convergence (indicated by the dashed line), but at the expense of higher model
variance (indicated by the difference between the training and validation scores). If we were to
add even more data points, the learning curve for the more complicated model would eventually
converge.

Plotting a learning curve for your particular choice of model and dataset can help you to make
this type of decision about how to move forward in improving your analysis.

1.4 Validation in Practice: Grid Search

The preceding discussion is meant to give you some intuition into the trade-off between bias
and variance, and its dependence on model complexity and training set size. In practice, models
generally have more than one knob to turn, and thus plots of validation and learning curves
change from lines to multi-dimensional surfaces. In these cases, such visualizations are difficult
and we would rather simply find the particular model that maximizes the validation score.

Scikit-Learn provides automated tools to do this in the grid search module. Here is an example
of using grid search to find the optimal polynomial model. We will explore a three-dimensional
grid of model features; namely the polynomial degree, the flag telling us whether to fit the inter-
cept, and the flag telling us whether to normalize the problem. This can be set up using Scikit-
Learn’s GridSearchCV meta-estimator:

In [18]: from sklearn.grid_search import GridSearchCV
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param_grid = {'polynomialfeatures__degree': np.arange(21),
'linearregression__fit_intercept': [True, False],
'linearregression__normalize': [True, False]}

grid = GridSearchCV(PolynomialRegression(), param_grid, cv=7)

Notice that like a normal estimator, this has not yet been applied to any data. Calling the fit()
method will fit the model at each grid point, keeping track of the scores along the way:

In [19]: grid.fit(X, y);

Now that this is fit, we can ask for the best parameters as follows:

In [20]: grid.best_params_

Out[20]: {'linearregression__fit_intercept': False,
'linearregression__normalize': True,
'polynomialfeatures__degree': 4}

Finally, if we wish, we can use the best model and show the fit to our data using code from
before:

In [21]: model = grid.best_estimator_

plt.scatter(X.ravel(), y)
lim = plt.axis()
y_test = model.fit(X, y).predict(X_test)
plt.plot(X_test.ravel(), y_test, hold=True);
plt.axis(lim);

16



The grid search provides many more options, including the ability to specify a custom scoring
function, to parallelize the computations, to do randomized searches, and more. For information,
see the examples in In-Depth: Kernel Density Estimation and Feature Engineering: Working with
Images, or refer to Scikit-Learn’s grid search documentation.

1.5 Summary

In this section, we have begun to explore the concept of model validation and hyperparameter
optimization, focusing on intuitive aspects of the bias–variance trade-off and how it comes into
play when fitting models to data. In particular, we found that the use of a validation set or cross-
validation approach is vital when tuning parameters in order to avoid over-fitting for more com-
plex/flexible models.

In later sections, we will discuss the details of particularly useful models, and throughout will
talk about what tuning is available for these models and how these free parameters affect model
complexity. Keep the lessons of this section in mind as you read on and learn about these machine
learning approaches!

< Introducing Scikit-Learn | Contents | Feature Engineering >
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05.04-Feature-Engineering

October 29, 2018

This notebook contains an excerpt from the Python Data Science Handbook by Jake VanderPlas; the
content is available on GitHub.

The text is released under the CC-BY-NC-ND license, and code is released under the MIT license. If
you find this content useful, please consider supporting the work by buying the book!

< Hyperparameters and Model Validation | Contents | In Depth: Naive Bayes Classification
>

1 Feature Engineering

The previous sections outline the fundamental ideas of machine learning, but all of the examples
assume that you have numerical data in a tidy, [n_samples, n_features] format. In the real
world, data rarely comes in such a form. With this in mind, one of the more important steps
in using machine learning in practice is feature engineering: that is, taking whatever information
you have about your problem and turning it into numbers that you can use to build your feature
matrix.

In this section, we will cover a few common examples of feature engineering tasks: features
for representing categorical data, features for representing text, and features for representing images.
Additionally, we will discuss derived features for increasing model complexity and imputation of
missing data. Often this process is known as vectorization, as it involves converting arbitrary data
into well-behaved vectors.

1.1 Categorical Features

One common type of non-numerical data is categorical data. For example, imagine you are explor-
ing some data on housing prices, and along with numerical features like “price” and “rooms”, you
also have “neighborhood” information. For example, your data might look something like this:

In [1]: data = [
{'price': 850000, 'rooms': 4, 'neighborhood': 'Queen Anne'},
{'price': 700000, 'rooms': 3, 'neighborhood': 'Fremont'},
{'price': 650000, 'rooms': 3, 'neighborhood': 'Wallingford'},
{'price': 600000, 'rooms': 2, 'neighborhood': 'Fremont'}

]

You might be tempted to encode this data with a straightforward numerical mapping:

In [2]: {'Queen Anne': 1, 'Fremont': 2, 'Wallingford': 3};
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It turns out that this is not generally a useful approach in Scikit-Learn: the package’s mod-
els make the fundamental assumption that numerical features reflect algebraic quantities. Thus
such a mapping would imply, for example, that Queen Anne < Fremont < Wallingford, or even that
Wallingford - Queen Anne = Fremont, which (niche demographic jokes aside) does not make much
sense.

In this case, one proven technique is to use one-hot encoding, which effectively creates extra
columns indicating the presence or absence of a category with a value of 1 or 0, respectively. When
your data comes as a list of dictionaries, Scikit-Learn’s DictVectorizer will do this for you:

In [3]: from sklearn.feature_extraction import DictVectorizer
vec = DictVectorizer(sparse=False, dtype=int)
vec.fit_transform(data)

Out[3]: array([[ 0, 1, 0, 850000, 4],
[ 1, 0, 0, 700000, 3],
[ 0, 0, 1, 650000, 3],
[ 1, 0, 0, 600000, 2]], dtype=int64)

Notice that the ‘neighborhood’ column has been expanded into three separate columns, rep-
resenting the three neighborhood labels, and that each row has a 1 in the column associated with
its neighborhood. With these categorical features thus encoded, you can proceed as normal with
fitting a Scikit-Learn model.

To see the meaning of each column, you can inspect the feature names:

In [4]: vec.get_feature_names()

Out[4]: ['neighborhood=Fremont',
'neighborhood=Queen Anne',
'neighborhood=Wallingford',
'price',
'rooms']

There is one clear disadvantage of this approach: if your category has many possible values,
this can greatly increase the size of your dataset. However, because the encoded data contains
mostly zeros, a sparse output can be a very efficient solution:

In [5]: vec = DictVectorizer(sparse=True, dtype=int)
vec.fit_transform(data)

Out[5]: <4x5 sparse matrix of type '<class 'numpy.int64'>'
with 12 stored elements in Compressed Sparse Row format>

Many (though not yet all) of the Scikit-Learn estimators accept such sparse in-
puts when fitting and evaluating models. sklearn.preprocessing.OneHotEncoder and
sklearn.feature_extraction.FeatureHasher are two additional tools that Scikit-Learn includes
to support this type of encoding.
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1.2 Text Features

Another common need in feature engineering is to convert text to a set of representative numerical
values. For example, most automatic mining of social media data relies on some form of encoding
the text as numbers. One of the simplest methods of encoding data is by word counts: you take
each snippet of text, count the occurrences of each word within it, and put the results in a table.

For example, consider the following set of three phrases:

In [6]: sample = ['problem of evil',
'evil queen',
'horizon problem']

For a vectorization of this data based on word count, we could construct a column representing
the word “problem,” the word “evil,” the word “horizon,” and so on. While doing this by hand
would be possible, the tedium can be avoided by using Scikit-Learn’s CountVectorizer:

In [7]: from sklearn.feature_extraction.text import CountVectorizer

vec = CountVectorizer()
X = vec.fit_transform(sample)
X

Out[7]: <3x5 sparse matrix of type '<class 'numpy.int64'>'
with 7 stored elements in Compressed Sparse Row format>

The result is a sparse matrix recording the number of times each word appears; it is easier to
inspect if we convert this to a DataFrame with labeled columns:

In [8]: import pandas as pd
pd.DataFrame(X.toarray(), columns=vec.get_feature_names())

Out[8]: evil horizon of problem queen
0 1 0 1 1 0
1 1 0 0 0 1
2 0 1 0 1 0

There are some issues with this approach, however: the raw word counts lead to features
which put too much weight on words that appear very frequently, and this can be sub-optimal in
some classification algorithms. One approach to fix this is known as term frequency-inverse docu-
ment frequency (TF–IDF) which weights the word counts by a measure of how often they appear in
the documents. The syntax for computing these features is similar to the previous example:

In [9]: from sklearn.feature_extraction.text import TfidfVectorizer
vec = TfidfVectorizer()
X = vec.fit_transform(sample)
pd.DataFrame(X.toarray(), columns=vec.get_feature_names())

Out[9]: evil horizon of problem queen
0 0.517856 0.000000 0.680919 0.517856 0.000000
1 0.605349 0.000000 0.000000 0.000000 0.795961
2 0.000000 0.795961 0.000000 0.605349 0.000000

For an example of using TF-IDF in a classification problem, see In Depth: Naive Bayes Classi-
fication.
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1.3 Image Features

Another common need is to suitably encode images for machine learning analysis. The simplest
approach is what we used for the digits data in Introducing Scikit-Learn: simply using the pixel
values themselves. But depending on the application, such approaches may not be optimal.

A comprehensive summary of feature extraction techniques for images is well beyond the
scope of this section, but you can find excellent implementations of many of the standard ap-
proaches in the Scikit-Image project. For one example of using Scikit-Learn and Scikit-Image to-
gether, see Feature Engineering: Working with Images.

1.4 Derived Features

Another useful type of feature is one that is mathematically derived from some input features. We
saw an example of this in Hyperparameters and Model Validation when we constructed polynomial
features from our input data. We saw that we could convert a linear regression into a polynomial
regression not by changing the model, but by transforming the input! This is sometimes known
as basis function regression, and is explored further in In Depth: Linear Regression.

For example, this data clearly cannot be well described by a straight line:

In [10]: %matplotlib inline
import numpy as np
import matplotlib.pyplot as plt

x = np.array([1, 2, 3, 4, 5])
y = np.array([4, 2, 1, 3, 7])
plt.scatter(x, y);
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Still, we can fit a line to the data using LinearRegression and get the optimal result:

In [11]: from sklearn.linear_model import LinearRegression
X = x[:, np.newaxis]
model = LinearRegression().fit(X, y)
yfit = model.predict(X)
plt.scatter(x, y)
plt.plot(x, yfit);

It’s clear that we need a more sophisticated model to describe the relationship between x and
y.

One approach to this is to transform the data, adding extra columns of features to drive more
flexibility in the model. For example, we can add polynomial features to the data this way:

In [12]: from sklearn.preprocessing import PolynomialFeatures
poly = PolynomialFeatures(degree=3, include_bias=False)
X2 = poly.fit_transform(X)
print(X2)

[[ 1. 1. 1.]
[ 2. 4. 8.]
[ 3. 9. 27.]
[ 4. 16. 64.]
[ 5. 25. 125.]]
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The derived feature matrix has one column representing x, and a second column representing
x2, and a third column representing x3. Computing a linear regression on this expanded input
gives a much closer fit to our data:

In [13]: model = LinearRegression().fit(X2, y)
yfit = model.predict(X2)
plt.scatter(x, y)
plt.plot(x, yfit);

This idea of improving a model not by changing the model, but by transforming the inputs,
is fundamental to many of the more powerful machine learning methods. We explore this idea
further in In Depth: Linear Regression in the context of basis function regression. More generally,
this is one motivational path to the powerful set of techniques known as kernel methods, which we
will explore in In-Depth: Support Vector Machines.

1.5 Imputation of Missing Data

Another common need in feature engineering is handling of missing data. We discussed the han-
dling of missing data in DataFrames in Handling Missing Data, and saw that often the NaN value
is used to mark missing values. For example, we might have a dataset that looks like this:

In [14]: from numpy import nan
X = np.array([[ nan, 0, 3 ],

[ 3, 7, 9 ],
[ 3, 5, 2 ],
[ 4, nan, 6 ],
[ 8, 8, 1 ]])

y = np.array([14, 16, -1, 8, -5])
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When applying a typical machine learning model to such data, we will need to first replace
such missing data with some appropriate fill value. This is known as imputation of missing values,
and strategies range from simple (e.g., replacing missing values with the mean of the column) to
sophisticated (e.g., using matrix completion or a robust model to handle such data).

The sophisticated approaches tend to be very application-specific, and we won’t dive into
them here. For a baseline imputation approach, using the mean, median, or most frequent value,
Scikit-Learn provides the Imputer class:

In [15]: from sklearn.preprocessing import Imputer
imp = Imputer(strategy='mean')
X2 = imp.fit_transform(X)
X2

Out[15]: array([[ 4.5, 0. , 3. ],
[ 3. , 7. , 9. ],
[ 3. , 5. , 2. ],
[ 4. , 5. , 6. ],
[ 8. , 8. , 1. ]])

We see that in the resulting data, the two missing values have been replaced with the mean of
the remaining values in the column. This imputed data can then be fed directly into, for example,
a LinearRegression estimator:

In [16]: model = LinearRegression().fit(X2, y)
model.predict(X2)

Out[16]: array([ 13.14869292, 14.3784627 , -1.15539732, 10.96606197, -5.33782027])

1.6 Feature Pipelines

With any of the preceding examples, it can quickly become tedious to do the transformations by
hand, especially if you wish to string together multiple steps. For example, we might want a
processing pipeline that looks something like this:

1. Impute missing values using the mean
2. Transform features to quadratic
3. Fit a linear regression

To streamline this type of processing pipeline, Scikit-Learn provides a Pipeline object, which
can be used as follows:

In [17]: from sklearn.pipeline import make_pipeline

model = make_pipeline(Imputer(strategy='mean'),
PolynomialFeatures(degree=2),
LinearRegression())

This pipeline looks and acts like a standard Scikit-Learn object, and will apply all the specified
steps to any input data.
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In [18]: model.fit(X, y) # X with missing values, from above
print(y)
print(model.predict(X))

[14 16 -1 8 -5]
[ 14. 16. -1. 8. -5.]

All the steps of the model are applied automatically. Notice that for the simplicity of this
demonstration, we’ve applied the model to the data it was trained on; this is why it was able
to perfectly predict the result (refer back to Hyperparameters and Model Validation for further
discussion of this).

For some examples of Scikit-Learn pipelines in action, see the following section on naive Bayes
classification, as well as In Depth: Linear Regression, and In-Depth: Support Vector Machines.

< Hyperparameters and Model Validation | Contents | In Depth: Naive Bayes Classification
>
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05.05-Naive-Bayes

October 29, 2018

This notebook contains an excerpt from the Python Data Science Handbook by Jake VanderPlas; the
content is available on GitHub.

The text is released under the CC-BY-NC-ND license, and code is released under the MIT license. If
you find this content useful, please consider supporting the work by buying the book!

< Feature Engineering | Contents | In Depth: Linear Regression >

1 In Depth: Naive Bayes Classification

The previous four sections have given a general overview of the concepts of machine learning. In
this section and the ones that follow, we will be taking a closer look at several specific algorithms
for supervised and unsupervised learning, starting here with naive Bayes classification.

Naive Bayes models are a group of extremely fast and simple classification algorithms that
are often suitable for very high-dimensional datasets. Because they are so fast and have so few
tunable parameters, they end up being very useful as a quick-and-dirty baseline for a classification
problem. This section will focus on an intuitive explanation of how naive Bayes classifiers work,
followed by a couple examples of them in action on some datasets.

1.1 Bayesian Classification

Naive Bayes classifiers are built on Bayesian classification methods. These rely on Bayes’s the-
orem, which is an equation describing the relationship of conditional probabilities of statistical
quantities. In Bayesian classification, we’re interested in finding the probability of a label given
some observed features, which we can write as P(L | features). Bayes’s theorem tells us how to
express this in terms of quantities we can compute more directly:

P(L | features) =
P(features | L)P(L)

P(features)

If we are trying to decide between two labels—let’s call them L1 and L2—then one way to
make this decision is to compute the ratio of the posterior probabilities for each label:

P(L1 | features)
P(L2 | features)

=
P(features | L1)

P(features | L2)

P(L1)

P(L2)

All we need now is some model by which we can compute P(features | Li) for each label.
Such a model is called a generative model because it specifies the hypothetical random process that
generates the data. Specifying this generative model for each label is the main piece of the training
of such a Bayesian classifier. The general version of such a training step is a very difficult task, but
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we can make it simpler through the use of some simplifying assumptions about the form of this
model.

This is where the “naive” in “naive Bayes” comes in: if we make very naive assumptions about
the generative model for each label, we can find a rough approximation of the generative model
for each class, and then proceed with the Bayesian classification. Different types of naive Bayes
classifiers rest on different naive assumptions about the data, and we will examine a few of these
in the following sections.

We begin with the standard imports:

In [1]: %matplotlib inline
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns; sns.set()

1.2 Gaussian Naive Bayes

Perhaps the easiest naive Bayes classifier to understand is Gaussian naive Bayes. In this classifier,
the assumption is that data from each label is drawn from a simple Gaussian distribution. Imagine that
you have the following data:

In [2]: from sklearn.datasets import make_blobs
X, y = make_blobs(100, 2, centers=2, random_state=2, cluster_std=1.5)
plt.scatter(X[:, 0], X[:, 1], c=y, s=50, cmap='RdBu');
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One extremely fast way to create a simple model is to assume that the data is described by a
Gaussian distribution with no covariance between dimensions. This model can be fit by simply
finding the mean and standard deviation of the points within each label, which is all you need to
define such a distribution. The result of this naive Gaussian assumption is shown in the following
figure:

figure source in
Appendix

The ellipses here represent the Gaussian generative model for each label, with larger probabil-
ity toward the center of the ellipses. With this generative model in place for each class, we have
a simple recipe to compute the likelihood P(features | L1) for any data point, and thus we can
quickly compute the posterior ratio and determine which label is the most probable for a given
point.

This procedure is implemented in Scikit-Learn’s sklearn.naive_bayes.GaussianNB estima-
tor:

In [3]: from sklearn.naive_bayes import GaussianNB
model = GaussianNB()
model.fit(X, y);

Now let’s generate some new data and predict the label:

In [4]: rng = np.random.RandomState(0)
Xnew = [-6, -14] + [14, 18] * rng.rand(2000, 2)
ynew = model.predict(Xnew)

Now we can plot this new data to get an idea of where the decision boundary is:

In [5]: plt.scatter(X[:, 0], X[:, 1], c=y, s=50, cmap='RdBu')
lim = plt.axis()
plt.scatter(Xnew[:, 0], Xnew[:, 1], c=ynew, s=20, cmap='RdBu', alpha=0.1)
plt.axis(lim);

3

06.00-Figure-Code.ipynb#Gaussian-Naive-Bayes
06.00-Figure-Code.ipynb#Gaussian-Naive-Bayes


We see a slightly curved boundary in the classifications—in general, the boundary in Gaussian
naive Bayes is quadratic.

A nice piece of this Bayesian formalism is that it naturally allows for probabilistic classification,
which we can compute using the predict_proba method:

In [6]: yprob = model.predict_proba(Xnew)
yprob[-8:].round(2)

Out[6]: array([[ 0.89, 0.11],
[ 1. , 0. ],
[ 1. , 0. ],
[ 1. , 0. ],
[ 1. , 0. ],
[ 1. , 0. ],
[ 0. , 1. ],
[ 0.15, 0.85]])

The columns give the posterior probabilities of the first and second label, respectively. If you
are looking for estimates of uncertainty in your classification, Bayesian approaches like this can be
a useful approach.

Of course, the final classification will only be as good as the model assumptions that lead to
it, which is why Gaussian naive Bayes often does not produce very good results. Still, in many
cases—especially as the number of features becomes large—this assumption is not detrimental
enough to prevent Gaussian naive Bayes from being a useful method.
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1.3 Multinomial Naive Bayes

The Gaussian assumption just described is by no means the only simple assumption that could be
used to specify the generative distribution for each label. Another useful example is multinomial
naive Bayes, where the features are assumed to be generated from a simple multinomial distribu-
tion. The multinomial distribution describes the probability of observing counts among a number
of categories, and thus multinomial naive Bayes is most appropriate for features that represent
counts or count rates.

The idea is precisely the same as before, except that instead of modeling the data distribution
with the best-fit Gaussian, we model the data distribuiton with a best-fit multinomial distribution.

1.3.1 Example: Classifying Text

One place where multinomial naive Bayes is often used is in text classification, where the features
are related to word counts or frequencies within the documents to be classified. We discussed
the extraction of such features from text in Feature Engineering; here we will use the sparse word
count features from the 20 Newsgroups corpus to show how we might classify these short docu-
ments into categories.

Let’s download the data and take a look at the target names:

In [7]: from sklearn.datasets import fetch_20newsgroups

data = fetch_20newsgroups()
data.target_names

Out[7]: ['alt.atheism',
'comp.graphics',
'comp.os.ms-windows.misc',
'comp.sys.ibm.pc.hardware',
'comp.sys.mac.hardware',
'comp.windows.x',
'misc.forsale',
'rec.autos',
'rec.motorcycles',
'rec.sport.baseball',
'rec.sport.hockey',
'sci.crypt',
'sci.electronics',
'sci.med',
'sci.space',
'soc.religion.christian',
'talk.politics.guns',
'talk.politics.mideast',
'talk.politics.misc',
'talk.religion.misc']

For simplicity here, we will select just a few of these categories, and download the training
and testing set:
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In [8]: categories = ['talk.religion.misc', 'soc.religion.christian',
'sci.space', 'comp.graphics']

train = fetch_20newsgroups(subset='train', categories=categories)
test = fetch_20newsgroups(subset='test', categories=categories)

Here is a representative entry from the data:

In [9]: print(train.data[5])

From: dmcgee@uluhe.soest.hawaii.edu (Don McGee)
Subject: Federal Hearing
Originator: dmcgee@uluhe
Organization: School of Ocean and Earth Science and Technology
Distribution: usa
Lines: 10

Fact or rumor...? Madalyn Murray O'Hare an atheist who eliminated the
use of the bible reading and prayer in public schools 15 years ago is now
going to appear before the FCC with a petition to stop the reading of the
Gospel on the airways of America. And she is also campaigning to remove
Christmas programs, songs, etc from the public schools. If it is true
then mail to Federal Communications Commission 1919 H Street Washington DC
20054 expressing your opposition to her request. Reference Petition number

2493.

In order to use this data for machine learning, we need to be able to convert the content of each
string into a vector of numbers. For this we will use the TF-IDF vectorizer (discussed in Feature
Engineering), and create a pipeline that attaches it to a multinomial naive Bayes classifier:

In [10]: from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.naive_bayes import MultinomialNB
from sklearn.pipeline import make_pipeline

model = make_pipeline(TfidfVectorizer(), MultinomialNB())

With this pipeline, we can apply the model to the training data, and predict labels for the test
data:

In [11]: model.fit(train.data, train.target)
labels = model.predict(test.data)

Now that we have predicted the labels for the test data, we can evaluate them to learn about
the performance of the estimator. For example, here is the confusion matrix between the true and
predicted labels for the test data:
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In [12]: from sklearn.metrics import confusion_matrix
mat = confusion_matrix(test.target, labels)
sns.heatmap(mat.T, square=True, annot=True, fmt='d', cbar=False,

xticklabels=train.target_names, yticklabels=train.target_names)
plt.xlabel('true label')
plt.ylabel('predicted label');

Evidently, even this very simple classifier can successfully separate space talk from computer
talk, but it gets confused between talk about religion and talk about Christianity. This is perhaps
an expected area of confusion!

The very cool thing here is that we now have the tools to determine the category for any string,
using the predict() method of this pipeline. Here’s a quick utility function that will return the
prediction for a single string:
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In [13]: def predict_category(s, train=train, model=model):
pred = model.predict([s])
return train.target_names[pred[0]]

Let’s try it out:

In [14]: predict_category('sending a payload to the ISS')

Out[14]: 'sci.space'

In [15]: predict_category('discussing islam vs atheism')

Out[15]: 'soc.religion.christian'

In [16]: predict_category('determining the screen resolution')

Out[16]: 'comp.graphics'

Remember that this is nothing more sophisticated than a simple probability model for the
(weighted) frequency of each word in the string; nevertheless, the result is striking. Even a very
naive algorithm, when used carefully and trained on a large set of high-dimensional data, can be
surprisingly effective.

1.4 When to Use Naive Bayes

Because naive Bayesian classifiers make such stringent assumptions about data, they will gener-
ally not perform as well as a more complicated model. That said, they have several advantages:

• They are extremely fast for both training and prediction
• They provide straightforward probabilistic prediction
• They are often very easily interpretable
• They have very few (if any) tunable parameters

These advantages mean a naive Bayesian classifier is often a good choice as an initial baseline
classification. If it performs suitably, then congratulations: you have a very fast, very interpretable
classifier for your problem. If it does not perform well, then you can begin exploring more sophis-
ticated models, with some baseline knowledge of how well they should perform.

Naive Bayes classifiers tend to perform especially well in one of the following situations:

• When the naive assumptions actually match the data (very rare in practice)
• For very well-separated categories, when model complexity is less important
• For very high-dimensional data, when model complexity is less important

The last two points seem distinct, but they actually are related: as the dimension of a dataset
grows, it is much less likely for any two points to be found close together (after all, they must be
close in every single dimension to be close overall). This means that clusters in high dimensions tend
to be more separated, on average, than clusters in low dimensions, assuming the new dimensions
actually add information. For this reason, simplistic classifiers like naive Bayes tend to work
as well or better than more complicated classifiers as the dimensionality grows: once you have
enough data, even a simple model can be very powerful.

< Feature Engineering | Contents | In Depth: Linear Regression >
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05.06-Linear-Regression

October 29, 2018

This notebook contains an excerpt from the Python Data Science Handbook by Jake VanderPlas; the
content is available on GitHub.

The text is released under the CC-BY-NC-ND license, and code is released under the MIT license. If
you find this content useful, please consider supporting the work by buying the book!

< In Depth: Naive Bayes Classification | Contents | In-Depth: Support Vector Machines >

1 In Depth: Linear Regression

Just as naive Bayes (discussed earlier in In Depth: Naive Bayes Classification) is a good starting
point for classification tasks, linear regression models are a good starting point for regression
tasks. Such models are popular because they can be fit very quickly, and are very interpretable.
You are probably familiar with the simplest form of a linear regression model (i.e., fitting a straight
line to data) but such models can be extended to model more complicated data behavior.

In this section we will start with a quick intuitive walk-through of the mathematics behind
this well-known problem, before seeing how before moving on to see how linear models can be
generalized to account for more complicated patterns in data.

We begin with the standard imports:

In [1]: %matplotlib inline
import matplotlib.pyplot as plt
import seaborn as sns; sns.set()
import numpy as np

1.1 Simple Linear Regression

We will start with the most familiar linear regression, a straight-line fit to data. A straight-line fit
is a model of the form

y = ax + b

where a is commonly known as the slope, and b is commonly known as the intercept.
Consider the following data, which is scattered about a line with a slope of 2 and an intercept

of -5:

In [2]: rng = np.random.RandomState(1)
x = 10 * rng.rand(50)
y = 2 * x - 5 + rng.randn(50)
plt.scatter(x, y);
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We can use Scikit-Learn’s LinearRegression estimator to fit this data and construct the best-fit
line:

In [3]: from sklearn.linear_model import LinearRegression
model = LinearRegression(fit_intercept=True)

model.fit(x[:, np.newaxis], y)

xfit = np.linspace(0, 10, 1000)
yfit = model.predict(xfit[:, np.newaxis])

plt.scatter(x, y)
plt.plot(xfit, yfit);
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The slope and intercept of the data are contained in the model’s fit parameters, which in Scikit-
Learn are always marked by a trailing underscore. Here the relevant parameters are coef_ and
intercept_:

In [4]: print("Model slope: ", model.coef_[0])
print("Model intercept:", model.intercept_)

Model slope: 2.02720881036
Model intercept: -4.99857708555

We see that the results are very close to the inputs, as we might hope.
The LinearRegression estimator is much more capable than this, however—in addition to

simple straight-line fits, it can also handle multidimensional linear models of the form

y = a0 + a1x1 + a2x2 + · · ·

where there are multiple x values. Geometrically, this is akin to fitting a plane to points in three
dimensions, or fitting a hyper-plane to points in higher dimensions.

The multidimensional nature of such regressions makes them more difficult to visualize, but
we can see one of these fits in action by building some example data, using NumPy’s matrix
multiplication operator:

In [5]: rng = np.random.RandomState(1)
X = 10 * rng.rand(100, 3)
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y = 0.5 + np.dot(X, [1.5, -2., 1.])

model.fit(X, y)
print(model.intercept_)
print(model.coef_)

0.5
[ 1.5 -2. 1. ]

Here the y data is constructed from three random x values, and the linear regression recovers
the coefficients used to construct the data.

In this way, we can use the single LinearRegression estimator to fit lines, planes, or hyper-
planes to our data. It still appears that this approach would be limited to strictly linear relation-
ships between variables, but it turns out we can relax this as well.

1.2 Basis Function Regression

One trick you can use to adapt linear regression to nonlinear relationships between variables is
to transform the data according to basis functions. We have seen one version of this before, in
the PolynomialRegression pipeline used in Hyperparameters and Model Validation and Feature
Engineering. The idea is to take our multidimensional linear model:

y = a0 + a1x1 + a2x2 + a3x3 + · · ·

and build the x1, x2, x3, and so on, from our single-dimensional input x. That is, we let xn = fn(x),
where fn() is some function that transforms our data.

For example, if fn(x) = xn, our model becomes a polynomial regression:

y = a0 + a1x + a2x2 + a3x3 + · · ·

Notice that this is still a linear model—the linearity refers to the fact that the coefficients an never
multiply or divide each other. What we have effectively done is taken our one-dimensional x
values and projected them into a higher dimension, so that a linear fit can fit more complicated
relationships between x and y.

1.2.1 Polynomial basis functions

This polynomial projection is useful enough that it is built into Scikit-Learn, using the
PolynomialFeatures transformer:

In [6]: from sklearn.preprocessing import PolynomialFeatures
x = np.array([2, 3, 4])
poly = PolynomialFeatures(3, include_bias=False)
poly.fit_transform(x[:, None])

Out[6]: array([[ 2., 4., 8.],
[ 3., 9., 27.],
[ 4., 16., 64.]])
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We see here that the transformer has converted our one-dimensional array into a three-
dimensional array by taking the exponent of each value. This new, higher-dimensional data rep-
resentation can then be plugged into a linear regression.

As we saw in Feature Engineering, the cleanest way to accomplish this is to use a pipeline.
Let’s make a 7th-degree polynomial model in this way:

In [7]: from sklearn.pipeline import make_pipeline
poly_model = make_pipeline(PolynomialFeatures(7),

LinearRegression())

With this transform in place, we can use the linear model to fit much more complicated rela-
tionships between x and y. For example, here is a sine wave with noise:

In [8]: rng = np.random.RandomState(1)
x = 10 * rng.rand(50)
y = np.sin(x) + 0.1 * rng.randn(50)

poly_model.fit(x[:, np.newaxis], y)
yfit = poly_model.predict(xfit[:, np.newaxis])

plt.scatter(x, y)
plt.plot(xfit, yfit);

Our linear model, through the use of 7th-order polynomial basis functions, can provide an
excellent fit to this non-linear data!

5

05.04-Feature-Engineering.ipynb


1.2.2 Gaussian basis functions

Of course, other basis functions are possible. For example, one useful pattern is to fit a model that
is not a sum of polynomial bases, but a sum of Gaussian bases. The result might look something
like the following figure:

Section ??
The shaded regions in the plot are the scaled basis functions, and when added together they

reproduce the smooth curve through the data. These Gaussian basis functions are not built into
Scikit-Learn, but we can write a custom transformer that will create them, as shown here and
illustrated in the following figure (Scikit-Learn transformers are implemented as Python classes;
reading Scikit-Learn’s source is a good way to see how they can be created):

In [9]: from sklearn.base import BaseEstimator, TransformerMixin

class GaussianFeatures(BaseEstimator, TransformerMixin):
"""Uniformly spaced Gaussian features for one-dimensional input"""

def __init__(self, N, width_factor=2.0):
self.N = N
self.width_factor = width_factor

@staticmethod
def _gauss_basis(x, y, width, axis=None):

arg = (x - y) / width
return np.exp(-0.5 * np.sum(arg ** 2, axis))

def fit(self, X, y=None):
# create N centers spread along the data range
self.centers_ = np.linspace(X.min(), X.max(), self.N)
self.width_ = self.width_factor * (self.centers_[1] - self.centers_[0])
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return self

def transform(self, X):
return self._gauss_basis(X[:, :, np.newaxis], self.centers_,

self.width_, axis=1)

gauss_model = make_pipeline(GaussianFeatures(20),
LinearRegression())

gauss_model.fit(x[:, np.newaxis], y)
yfit = gauss_model.predict(xfit[:, np.newaxis])

plt.scatter(x, y)
plt.plot(xfit, yfit)
plt.xlim(0, 10);

We put this example here just to make clear that there is nothing magic about polynomial basis
functions: if you have some sort of intuition into the generating process of your data that makes
you think one basis or another might be appropriate, you can use them as well.

1.3 Regularization

The introduction of basis functions into our linear regression makes the model much more flex-
ible, but it also can very quickly lead to over-fitting (refer back to Hyperparameters and Model

7

05.03-Hyperparameters-and-Model-Validation.ipynb
05.03-Hyperparameters-and-Model-Validation.ipynb


Validation for a discussion of this). For example, if we choose too many Gaussian basis functions,
we end up with results that don’t look so good:

In [10]: model = make_pipeline(GaussianFeatures(30),
LinearRegression())

model.fit(x[:, np.newaxis], y)

plt.scatter(x, y)
plt.plot(xfit, model.predict(xfit[:, np.newaxis]))

plt.xlim(0, 10)
plt.ylim(-1.5, 1.5);

With the data projected to the 30-dimensional basis, the model has far too much flexibility and
goes to extreme values between locations where it is constrained by data. We can see the reason
for this if we plot the coefficients of the Gaussian bases with respect to their locations:

In [11]: def basis_plot(model, title=None):
fig, ax = plt.subplots(2, sharex=True)
model.fit(x[:, np.newaxis], y)
ax[0].scatter(x, y)
ax[0].plot(xfit, model.predict(xfit[:, np.newaxis]))
ax[0].set(xlabel='x', ylabel='y', ylim=(-1.5, 1.5))
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if title:
ax[0].set_title(title)

ax[1].plot(model.steps[0][1].centers_,
model.steps[1][1].coef_)

ax[1].set(xlabel='basis location',
ylabel='coefficient',
xlim=(0, 10))

model = make_pipeline(GaussianFeatures(30), LinearRegression())
basis_plot(model)

The lower panel of this figure shows the amplitude of the basis function at each location. This
is typical over-fitting behavior when basis functions overlap: the coefficients of adjacent basis
functions blow up and cancel each other out. We know that such behavior is problematic, and it
would be nice if we could limit such spikes expliticly in the model by penalizing large values of
the model parameters. Such a penalty is known as regularization, and comes in several forms.

1.3.1 Ridge regression (L2 Regularization)

Perhaps the most common form of regularization is known as ridge regression or L2 regularization,
sometimes also called Tikhonov regularization. This proceeds by penalizing the sum of squares
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(2-norms) of the model coefficients; in this case, the penalty on the model fit would be

P = α
N

∑
n=1

θ2
n

where α is a free parameter that controls the strength of the penalty. This type of penalized model
is built into Scikit-Learn with the Ridge estimator:

In [12]: from sklearn.linear_model import Ridge
model = make_pipeline(GaussianFeatures(30), Ridge(alpha=0.1))
basis_plot(model, title='Ridge Regression')

The α parameter is essentially a knob controlling the complexity of the resulting model. In
the limit α → 0, we recover the standard linear regression result; in the limit α → ∞, all model
responses will be suppressed. One advantage of ridge regression in particular is that it can be
computed very efficiently—at hardly more computational cost than the original linear regression
model.

1.3.2 Lasso regression (L1 regularization)

Another very common type of regularization is known as lasso, and involves penalizing the sum
of absolute values (1-norms) of regression coefficients:

P = α
N

∑
n=1

|θn|
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Though this is conceptually very similar to ridge regression, the results can differ surprisingly: for
example, due to geometric reasons lasso regression tends to favor sparse models where possible:
that is, it preferentially sets model coefficients to exactly zero.

We can see this behavior in duplicating the ridge regression figure, but using L1-normalized
coefficients:

In [13]: from sklearn.linear_model import Lasso
model = make_pipeline(GaussianFeatures(30), Lasso(alpha=0.001))
basis_plot(model, title='Lasso Regression')

With the lasso regression penalty, the majority of the coefficients are exactly zero, with the
functional behavior being modeled by a small subset of the available basis functions. As with
ridge regularization, the α parameter tunes the strength of the penalty, and should be determined
via, for example, cross-validation (refer back to Hyperparameters and Model Validation for a dis-
cussion of this).

1.4 Example: Predicting Bicycle Traffic

As an example, let’s take a look at whether we can predict the number of bicycle trips across
Seattle’s Fremont Bridge based on weather, season, and other factors. We have seen this data
already in Working With Time Series.

In this section, we will join the bike data with another dataset, and try to determine the extent
to which weather and seasonal factors—temperature, precipitation, and daylight hours—affect
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the volume of bicycle traffic through this corridor. Fortunately, the NOAA makes available their
daily weather station data (I used station ID USW00024233) and we can easily use Pandas to join
the two data sources. We will perform a simple linear regression to relate weather and other
information to bicycle counts, in order to estimate how a change in any one of these parameters
affects the number of riders on a given day.

In particular, this is an example of how the tools of Scikit-Learn can be used in a statistical
modeling framework, in which the parameters of the model are assumed to have interpretable
meaning. As discussed previously, this is not a standard approach within machine learning, but
such interpretation is possible for some models.

Let’s start by loading the two datasets, indexing by date:

In [14]: # !curl -o FremontBridge.csv https://data.seattle.gov/api/views/65db-xm6k/rows.csv?accessType=DOWNLOAD

In [15]: import pandas as pd
counts = pd.read_csv('FremontBridge.csv', index_col='Date', parse_dates=True)
weather = pd.read_csv('data/BicycleWeather.csv', index_col='DATE', parse_dates=True)

Next we will compute the total daily bicycle traffic, and put this in its own dataframe:

In [16]: daily = counts.resample('d').sum()
daily['Total'] = daily.sum(axis=1)
daily = daily[['Total']] # remove other columns

We saw previously that the patterns of use generally vary from day to day; let’s account for
this in our data by adding binary columns that indicate the day of the week:

In [17]: days = ['Mon', 'Tue', 'Wed', 'Thu', 'Fri', 'Sat', 'Sun']
for i in range(7):

daily[days[i]] = (daily.index.dayofweek == i).astype(float)

Similarly, we might expect riders to behave differently on holidays; let’s add an indicator of
this as well:

In [18]: from pandas.tseries.holiday import USFederalHolidayCalendar
cal = USFederalHolidayCalendar()
holidays = cal.holidays('2012', '2016')
daily = daily.join(pd.Series(1, index=holidays, name='holiday'))
daily['holiday'].fillna(0, inplace=True)

We also might suspect that the hours of daylight would affect how many people ride; let’s use
the standard astronomical calculation to add this information:

In [19]: def hours_of_daylight(date, axis=23.44, latitude=47.61):
"""Compute the hours of daylight for the given date"""
days = (date - pd.datetime(2000, 12, 21)).days
m = (1. - np.tan(np.radians(latitude))

* np.tan(np.radians(axis) * np.cos(days * 2 * np.pi / 365.25)))
return 24. * np.degrees(np.arccos(1 - np.clip(m, 0, 2))) / 180.

daily['daylight_hrs'] = list(map(hours_of_daylight, daily.index))
daily[['daylight_hrs']].plot()
plt.ylim(8, 17)
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Out[19]: (8, 17)

We can also add the average temperature and total precipitation to the data. In addition to the
inches of precipitation, let’s add a flag that indicates whether a day is dry (has zero precipitation):

In [20]: # temperatures are in 1/10 deg C; convert to C
weather['TMIN'] /= 10
weather['TMAX'] /= 10
weather['Temp (C)'] = 0.5 * (weather['TMIN'] + weather['TMAX'])

# precip is in 1/10 mm; convert to inches
weather['PRCP'] /= 254
weather['dry day'] = (weather['PRCP'] == 0).astype(int)

daily = daily.join(weather[['PRCP', 'Temp (C)', 'dry day']])

Finally, let’s add a counter that increases from day 1, and measures how many years have
passed. This will let us measure any observed annual increase or decrease in daily crossings:

In [21]: daily['annual'] = (daily.index - daily.index[0]).days / 365.

Now our data is in order, and we can take a look at it:
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In [22]: daily.head()

Out[22]: Total Mon Tue Wed Thu Fri Sat Sun holiday daylight_hrs \
Date
2012-10-03 3521.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 11.277359
2012-10-04 3475.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 11.219142
2012-10-05 3148.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 11.161038
2012-10-06 2006.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 11.103056
2012-10-07 2142.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 11.045208

PRCP Temp (C) dry day annual
Date
2012-10-03 0.0 13.35 1.0 0.000000
2012-10-04 0.0 13.60 1.0 0.002740
2012-10-05 0.0 15.30 1.0 0.005479
2012-10-06 0.0 15.85 1.0 0.008219
2012-10-07 0.0 15.85 1.0 0.010959

With this in place, we can choose the columns to use, and fit a linear regression model to our
data. We will set fit_intercept = False, because the daily flags essentially operate as their own
day-specific intercepts:

In [23]: # Drop any rows with null values
daily.dropna(axis=0, how='any', inplace=True)

column_names = ['Mon', 'Tue', 'Wed', 'Thu', 'Fri', 'Sat', 'Sun', 'holiday',
'daylight_hrs', 'PRCP', 'dry day', 'Temp (C)', 'annual']

X = daily[column_names]
y = daily['Total']

model = LinearRegression(fit_intercept=False)
model.fit(X, y)
daily['predicted'] = model.predict(X)

Finally, we can compare the total and predicted bicycle traffic visually:

In [24]: daily[['Total', 'predicted']].plot(alpha=0.5);
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It is evident that we have missed some key features, especially during the summer time. Either
our features are not complete (i.e., people decide whether to ride to work based on more than just
these) or there are some nonlinear relationships that we have failed to take into account (e.g., per-
haps people ride less at both high and low temperatures). Nevertheless, our rough approximation
is enough to give us some insights, and we can take a look at the coefficients of the linear model
to estimate how much each feature contributes to the daily bicycle count:

In [25]: params = pd.Series(model.coef_, index=X.columns)
params

Out[25]: Mon 504.882756
Tue 610.233936
Wed 592.673642
Thu 482.358115
Fri 177.980345
Sat -1103.301710
Sun -1133.567246
holiday -1187.401381
daylight_hrs 128.851511
PRCP -664.834882
dry day 547.698592
Temp (C) 65.162791
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annual 26.942713
dtype: float64

These numbers are difficult to interpret without some measure of their uncertainty. We can
compute these uncertainties quickly using bootstrap resamplings of the data:

In [26]: from sklearn.utils import resample
np.random.seed(1)
err = np.std([model.fit(*resample(X, y)).coef_

for i in range(1000)], 0)

With these errors estimated, let’s again look at the results:

In [27]: print(pd.DataFrame({'effect': params.round(0),
'error': err.round(0)}))

effect error
Mon 505.0 86.0
Tue 610.0 83.0
Wed 593.0 83.0
Thu 482.0 85.0
Fri 178.0 81.0
Sat -1103.0 80.0
Sun -1134.0 83.0
holiday -1187.0 163.0
daylight_hrs 129.0 9.0
PRCP -665.0 62.0
dry day 548.0 33.0
Temp (C) 65.0 4.0
annual 27.0 18.0

We first see that there is a relatively stable trend in the weekly baseline: there are many more
riders on weekdays than on weekends and holidays. We see that for each additional hour of day-
light, 129 ś 9 more people choose to ride; a temperature increase of one degree Celsius encourages
65 ś 4 people to grab their bicycle; a dry day means an average of 548 ś 33 more riders, and each
inch of precipitation means 665 ś 62 more people leave their bike at home. Once all these effects
are accounted for, we see a modest increase of 27 ś 18 new daily riders each year.

Our model is almost certainly missing some relevant information. For example, nonlinear ef-
fects (such as effects of precipitation and cold temperature) and nonlinear trends within each vari-
able (such as disinclination to ride at very cold and very hot temperatures) cannot be accounted
for in this model. Additionally, we have thrown away some of the finer-grained information (such
as the difference between a rainy morning and a rainy afternoon), and we have ignored correla-
tions between days (such as the possible effect of a rainy Tuesday on Wednesday’s numbers, or the
effect of an unexpected sunny day after a streak of rainy days). These are all potentially interesting
effects, and you now have the tools to begin exploring them if you wish!

< In Depth: Naive Bayes Classification | Contents | In-Depth: Support Vector Machines >
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05.07-Support-Vector-Machines

October 29, 2018

This notebook contains an excerpt from the Python Data Science Handbook by Jake VanderPlas; the
content is available on GitHub.

The text is released under the CC-BY-NC-ND license, and code is released under the MIT license. If
you find this content useful, please consider supporting the work by buying the book!

< In Depth: Linear Regression | Contents | In-Depth: Decision Trees and Random Forests >

1 In-Depth: Support Vector Machines

Support vector machines (SVMs) are a particularly powerful and flexible class of supervised algo-
rithms for both classification and regression. In this section, we will develop the intuition behind
support vector machines and their use in classification problems.

We begin with the standard imports:

In [1]: %matplotlib inline
import numpy as np
import matplotlib.pyplot as plt
from scipy import stats

# use seaborn plotting defaults
import seaborn as sns; sns.set()

1.1 Motivating Support Vector Machines

As part of our disussion of Bayesian classification (see In Depth: Naive Bayes Classification),
we learned a simple model describing the distribution of each underlying class, and used these
generative models to probabilistically determine labels for new points. That was an example
of generative classification; here we will consider instead discriminative classification: rather than
modeling each class, we simply find a line or curve (in two dimensions) or manifold (in multiple
dimensions) that divides the classes from each other.

As an example of this, consider the simple case of a classification task, in which the two classes
of points are well separated:

In [2]: from sklearn.datasets.samples_generator import make_blobs
X, y = make_blobs(n_samples=50, centers=2,

random_state=0, cluster_std=0.60)
plt.scatter(X[:, 0], X[:, 1], c=y, s=50, cmap='autumn');
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A linear discriminative classifier would attempt to draw a straight line separating the two sets
of data, and thereby create a model for classification. For two dimensional data like that shown
here, this is a task we could do by hand. But immediately we see a problem: there is more than
one possible dividing line that can perfectly discriminate between the two classes!

We can draw them as follows:

In [3]: xfit = np.linspace(-1, 3.5)
plt.scatter(X[:, 0], X[:, 1], c=y, s=50, cmap='autumn')
plt.plot([0.6], [2.1], 'x', color='red', markeredgewidth=2, markersize=10)

for m, b in [(1, 0.65), (0.5, 1.6), (-0.2, 2.9)]:
plt.plot(xfit, m * xfit + b, '-k')

plt.xlim(-1, 3.5);
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These are three very different separators which, nevertheless, perfectly discriminate between
these samples. Depending on which you choose, a new data point (e.g., the one marked by the
“X” in this plot) will be assigned a different label! Evidently our simple intuition of “drawing a
line between classes” is not enough, and we need to think a bit deeper.

1.2 Support Vector Machines: Maximizing the Margin

Support vector machines offer one way to improve on this. The intuition is this: rather than simply
drawing a zero-width line between the classes, we can draw around each line a margin of some
width, up to the nearest point. Here is an example of how this might look:

In [4]: xfit = np.linspace(-1, 3.5)
plt.scatter(X[:, 0], X[:, 1], c=y, s=50, cmap='autumn')

for m, b, d in [(1, 0.65, 0.33), (0.5, 1.6, 0.55), (-0.2, 2.9, 0.2)]:
yfit = m * xfit + b
plt.plot(xfit, yfit, '-k')
plt.fill_between(xfit, yfit - d, yfit + d, edgecolor='none',

color='#AAAAAA', alpha=0.4)

plt.xlim(-1, 3.5);
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In support vector machines, the line that maximizes this margin is the one we will choose as
the optimal model. Support vector machines are an example of such a maximum margin estimator.

1.2.1 Fitting a support vector machine

Let’s see the result of an actual fit to this data: we will use Scikit-Learn’s support vector classifier
to train an SVM model on this data. For the time being, we will use a linear kernel and set the C
parameter to a very large number (we’ll discuss the meaning of these in more depth momentarily).

In [5]: from sklearn.svm import SVC # "Support vector classifier"
model = SVC(kernel='linear', C=1E10)
model.fit(X, y)

Out[5]: SVC(C=10000000000.0, cache_size=200, class_weight=None, coef0=0.0,
decision_function_shape=None, degree=3, gamma='auto', kernel='linear',
max_iter=-1, probability=False, random_state=None, shrinking=True,
tol=0.001, verbose=False)

To better visualize what’s happening here, let’s create a quick convenience function that will
plot SVM decision boundaries for us:

In [6]: def plot_svc_decision_function(model, ax=None, plot_support=True):
"""Plot the decision function for a 2D SVC"""
if ax is None:
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ax = plt.gca()
xlim = ax.get_xlim()
ylim = ax.get_ylim()

# create grid to evaluate model
x = np.linspace(xlim[0], xlim[1], 30)
y = np.linspace(ylim[0], ylim[1], 30)
Y, X = np.meshgrid(y, x)
xy = np.vstack([X.ravel(), Y.ravel()]).T
P = model.decision_function(xy).reshape(X.shape)

# plot decision boundary and margins
ax.contour(X, Y, P, colors='k',

levels=[-1, 0, 1], alpha=0.5,
linestyles=['--', '-', '--'])

# plot support vectors
if plot_support:

ax.scatter(model.support_vectors_[:, 0],
model.support_vectors_[:, 1],
s=300, linewidth=1, facecolors='none');

ax.set_xlim(xlim)
ax.set_ylim(ylim)

In [7]: plt.scatter(X[:, 0], X[:, 1], c=y, s=50, cmap='autumn')
plot_svc_decision_function(model);
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This is the dividing line that maximizes the margin between the two sets of points. Notice
that a few of the training points just touch the margin: they are indicated by the black circles in
this figure. These points are the pivotal elements of this fit, and are known as the support vectors,
and give the algorithm its name. In Scikit-Learn, the identity of these points are stored in the
support_vectors_ attribute of the classifier:

In [8]: model.support_vectors_

Out[8]: array([[ 0.44359863, 3.11530945],
[ 2.33812285, 3.43116792],
[ 2.06156753, 1.96918596]])

A key to this classifier’s success is that for the fit, only the position of the support vectors
matter; any points further from the margin which are on the correct side do not modify the fit!
Technically, this is because these points do not contribute to the loss function used to fit the model,
so their position and number do not matter so long as they do not cross the margin.

We can see this, for example, if we plot the model learned from the first 60 points and first 120
points of this dataset:

In [9]: def plot_svm(N=10, ax=None):
X, y = make_blobs(n_samples=200, centers=2,

random_state=0, cluster_std=0.60)
X = X[:N]
y = y[:N]
model = SVC(kernel='linear', C=1E10)
model.fit(X, y)

ax = ax or plt.gca()
ax.scatter(X[:, 0], X[:, 1], c=y, s=50, cmap='autumn')
ax.set_xlim(-1, 4)
ax.set_ylim(-1, 6)
plot_svc_decision_function(model, ax)

fig, ax = plt.subplots(1, 2, figsize=(16, 6))
fig.subplots_adjust(left=0.0625, right=0.95, wspace=0.1)
for axi, N in zip(ax, [60, 120]):

plot_svm(N, axi)
axi.set_title('N = {0}'.format(N))
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In the left panel, we see the model and the support vectors for 60 training points. In the
right panel, we have doubled the number of training points, but the model has not changed: the
three support vectors from the left panel are still the support vectors from the right panel. This
insensitivity to the exact behavior of distant points is one of the strengths of the SVM model.

If you are running this notebook live, you can use IPython’s interactive widgets to view this
feature of the SVM model interactively:

In [10]: from ipywidgets import interact, fixed
interact(plot_svm, N=[10, 200], ax=fixed(None));
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1.2.2 Beyond linear boundaries: Kernel SVM

Where SVM becomes extremely powerful is when it is combined with kernels. We have seen a
version of kernels before, in the basis function regressions of In Depth: Linear Regression. There
we projected our data into higher-dimensional space defined by polynomials and Gaussian basis
functions, and thereby were able to fit for nonlinear relationships with a linear classifier.

In SVM models, we can use a version of the same idea. To motivate the need for kernels, let’s
look at some data that is not linearly separable:

In [11]: from sklearn.datasets.samples_generator import make_circles
X, y = make_circles(100, factor=.1, noise=.1)

clf = SVC(kernel='linear').fit(X, y)

plt.scatter(X[:, 0], X[:, 1], c=y, s=50, cmap='autumn')
plot_svc_decision_function(clf, plot_support=False);

It is clear that no linear discrimination will ever be able to separate this data. But we can draw a
lesson from the basis function regressions in In Depth: Linear Regression, and think about how we
might project the data into a higher dimension such that a linear separator would be sufficient. For
example, one simple projection we could use would be to compute a radial basis function centered
on the middle clump:

In [12]: r = np.exp(-(X ** 2).sum(1))

8

05.06-Linear-Regression.ipynb
05.06-Linear-Regression.ipynb


We can visualize this extra data dimension using a three-dimensional plot—if you are running
this notebook live, you will be able to use the sliders to rotate the plot:

In [13]: from mpl_toolkits import mplot3d

def plot_3D(elev=30, azim=30, X=X, y=y):
ax = plt.subplot(projection='3d')
ax.scatter3D(X[:, 0], X[:, 1], r, c=y, s=50, cmap='autumn')
ax.view_init(elev=elev, azim=azim)
ax.set_xlabel('x')
ax.set_ylabel('y')
ax.set_zlabel('r')

interact(plot_3D, elev=[-90, 90], azip=(-180, 180),
X=fixed(X), y=fixed(y));

We can see that with this additional dimension, the data becomes trivially linearly separable,
by drawing a separating plane at, say, r=0.7.

Here we had to choose and carefully tune our projection: if we had not centered our radial
basis function in the right location, we would not have seen such clean, linearly separable results.
In general, the need to make such a choice is a problem: we would like to somehow automatically
find the best basis functions to use.

One strategy to this end is to compute a basis function centered at every point in the dataset,
and let the SVM algorithm sift through the results. This type of basis function transformation is

9



known as a kernel transformation, as it is based on a similarity relationship (or kernel) between each
pair of points.

A potential problem with this strategy—projecting N points into N dimensions—is that it
might become very computationally intensive as N grows large. However, because of a neat little
procedure known as the kernel trick, a fit on kernel-transformed data can be done implicitly—
that is, without ever building the full N-dimensional representation of the kernel projection! This
kernel trick is built into the SVM, and is one of the reasons the method is so powerful.

In Scikit-Learn, we can apply kernelized SVM simply by changing our linear kernel to an RBF
(radial basis function) kernel, using the kernel model hyperparameter:

In [14]: clf = SVC(kernel='rbf', C=1E6)
clf.fit(X, y)

Out[14]: SVC(C=1000000.0, cache_size=200, class_weight=None, coef0=0.0,
decision_function_shape=None, degree=3, gamma='auto', kernel='rbf',
max_iter=-1, probability=False, random_state=None, shrinking=True,
tol=0.001, verbose=False)

In [15]: plt.scatter(X[:, 0], X[:, 1], c=y, s=50, cmap='autumn')
plot_svc_decision_function(clf)
plt.scatter(clf.support_vectors_[:, 0], clf.support_vectors_[:, 1],

s=300, lw=1, facecolors='none');

Using this kernelized support vector machine, we learn a suitable nonlinear decision bound-
ary. This kernel transformation strategy is used often in machine learning to turn fast linear meth-
ods into fast nonlinear methods, especially for models in which the kernel trick can be used.
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1.2.3 Tuning the SVM: Softening Margins

Our discussion thus far has centered around very clean datasets, in which a perfect decision
boundary exists. But what if your data has some amount of overlap? For example, you may
have data like this:

In [16]: X, y = make_blobs(n_samples=100, centers=2,
random_state=0, cluster_std=1.2)

plt.scatter(X[:, 0], X[:, 1], c=y, s=50, cmap='autumn');

To handle this case, the SVM implementation has a bit of a fudge-factor which “softens” the
margin: that is, it allows some of the points to creep into the margin if that allows a better fit. The
hardness of the margin is controlled by a tuning parameter, most often known as C. For very large
C, the margin is hard, and points cannot lie in it. For smaller C, the margin is softer, and can grow
to encompass some points.

The plot shown below gives a visual picture of how a changing C parameter affects the final
fit, via the softening of the margin:

In [17]: X, y = make_blobs(n_samples=100, centers=2,
random_state=0, cluster_std=0.8)

fig, ax = plt.subplots(1, 2, figsize=(16, 6))
fig.subplots_adjust(left=0.0625, right=0.95, wspace=0.1)
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for axi, C in zip(ax, [10.0, 0.1]):
model = SVC(kernel='linear', C=C).fit(X, y)
axi.scatter(X[:, 0], X[:, 1], c=y, s=50, cmap='autumn')
plot_svc_decision_function(model, axi)
axi.scatter(model.support_vectors_[:, 0],

model.support_vectors_[:, 1],
s=300, lw=1, facecolors='none');

axi.set_title('C = {0:.1f}'.format(C), size=14)

The optimal value of the C parameter will depend on your dataset, and should be tuned using
cross-validation or a similar procedure (refer back to Hyperparameters and Model Validation).

1.3 Example: Face Recognition

As an example of support vector machines in action, let’s take a look at the facial recognition
problem. We will use the Labeled Faces in the Wild dataset, which consists of several thousand
collated photos of various public figures. A fetcher for the dataset is built into Scikit-Learn:

In [18]: from sklearn.datasets import fetch_lfw_people
faces = fetch_lfw_people(min_faces_per_person=60)
print(faces.target_names)
print(faces.images.shape)

['Ariel Sharon' 'Colin Powell' 'Donald Rumsfeld' 'George W Bush'
'Gerhard Schroeder' 'Hugo Chavez' 'Junichiro Koizumi' 'Tony Blair']

(1348, 62, 47)

Let’s plot a few of these faces to see what we’re working with:

In [19]: fig, ax = plt.subplots(3, 5)
for i, axi in enumerate(ax.flat):

axi.imshow(faces.images[i], cmap='bone')
axi.set(xticks=[], yticks=[],

xlabel=faces.target_names[faces.target[i]])
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Each image contains [62Œ47] or nearly 3,000 pixels. We could proceed by simply using each
pixel value as a feature, but often it is more effective to use some sort of preprocessor to extract
more meaningful features; here we will use a principal component analysis (see In Depth: Princi-
pal Component Analysis) to extract 150 fundamental components to feed into our support vector
machine classifier. We can do this most straightforwardly by packaging the preprocessor and the
classifier into a single pipeline:

In [20]: from sklearn.svm import SVC
from sklearn.decomposition import RandomizedPCA
from sklearn.pipeline import make_pipeline

pca = RandomizedPCA(n_components=150, whiten=True, random_state=42)
svc = SVC(kernel='rbf', class_weight='balanced')
model = make_pipeline(pca, svc)

For the sake of testing our classifier output, we will split the data into a training and testing
set:

In [21]: from sklearn.cross_validation import train_test_split
Xtrain, Xtest, ytrain, ytest = train_test_split(faces.data, faces.target,

random_state=42)
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Finally, we can use a grid search cross-validation to explore combinations of parameters. Here
we will adjust C (which controls the margin hardness) and gamma (which controls the size of the
radial basis function kernel), and determine the best model:

In [22]: from sklearn.grid_search import GridSearchCV
param_grid = {'svc__C': [1, 5, 10, 50],

'svc__gamma': [0.0001, 0.0005, 0.001, 0.005]}
grid = GridSearchCV(model, param_grid)

%time grid.fit(Xtrain, ytrain)
print(grid.best_params_)

CPU times: user 47.8 s, sys: 4.08 s, total: 51.8 s
Wall time: 26 s
{'svc__gamma': 0.001, 'svc__C': 10}

The optimal values fall toward the middle of our grid; if they fell at the edges, we would want
to expand the grid to make sure we have found the true optimum.

Now with this cross-validated model, we can predict the labels for the test data, which the
model has not yet seen:

In [23]: model = grid.best_estimator_
yfit = model.predict(Xtest)

Let’s take a look at a few of the test images along with their predicted values:

In [24]: fig, ax = plt.subplots(4, 6)
for i, axi in enumerate(ax.flat):

axi.imshow(Xtest[i].reshape(62, 47), cmap='bone')
axi.set(xticks=[], yticks=[])
axi.set_ylabel(faces.target_names[yfit[i]].split()[-1],

color='black' if yfit[i] == ytest[i] else 'red')
fig.suptitle('Predicted Names; Incorrect Labels in Red', size=14);
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Out of this small sample, our optimal estimator mislabeled only a single face (Bush’s face in
the bottom row was mislabeled as Blair). We can get a better sense of our estimator’s performance
using the classification report, which lists recovery statistics label by label:

In [25]: from sklearn.metrics import classification_report
print(classification_report(ytest, yfit,

target_names=faces.target_names))

precision recall f1-score support

Ariel Sharon 0.65 0.73 0.69 15
Colin Powell 0.81 0.87 0.84 68

Donald Rumsfeld 0.75 0.87 0.81 31
George W Bush 0.93 0.83 0.88 126

Gerhard Schroeder 0.86 0.78 0.82 23
Hugo Chavez 0.93 0.70 0.80 20

Junichiro Koizumi 0.80 1.00 0.89 12
Tony Blair 0.83 0.93 0.88 42

avg / total 0.85 0.85 0.85 337
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We might also display the confusion matrix between these classes:

In [26]: from sklearn.metrics import confusion_matrix
mat = confusion_matrix(ytest, yfit)
sns.heatmap(mat.T, square=True, annot=True, fmt='d', cbar=False,

xticklabels=faces.target_names,
yticklabels=faces.target_names)

plt.xlabel('true label')
plt.ylabel('predicted label');

This helps us get a sense of which labels are likely to be confused by the estimator.
For a real-world facial recognition task, in which the photos do not come pre-cropped into nice

grids, the only difference in the facial classification scheme is the feature selection: you would need
to use a more sophisticated algorithm to find the faces, and extract features that are independent
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of the pixellation. For this kind of application, one good option is to make use of OpenCV, which,
among other things, includes pre-trained implementations of state-of-the-art feature extraction
tools for images in general and faces in particular.

1.4 Support Vector Machine Summary

We have seen here a brief intuitive introduction to the principals behind support vector machines.
These methods are a powerful classification method for a number of reasons:

• Their dependence on relatively few support vectors means that they are very compact mod-
els, and take up very little memory.

• Once the model is trained, the prediction phase is very fast.
• Because they are affected only by points near the margin, they work well with high-

dimensional data—even data with more dimensions than samples, which is a challenging
regime for other algorithms.

• Their integration with kernel methods makes them very versatile, able to adapt to many
types of data.

However, SVMs have several disadvantages as well:

• The scaling with the number of samples N is O[N3] at worst, or O[N2] for efficient im-
plementations. For large numbers of training samples, this computational cost can be pro-
hibitive.

• The results are strongly dependent on a suitable choice for the softening parameter C. This
must be carefully chosen via cross-validation, which can be expensive as datasets grow in
size.

• The results do not have a direct probabilistic interpretation. This can be estimated via an
internal cross-validation (see the probability parameter of SVC), but this extra estimation is
costly.

With those traits in mind, I generally only turn to SVMs once other simpler, faster, and less
tuning-intensive methods have been shown to be insufficient for my needs. Nevertheless, if you
have the CPU cycles to commit to training and cross-validating an SVM on your data, the method
can lead to excellent results.

< In Depth: Linear Regression | Contents | In-Depth: Decision Trees and Random Forests >
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05.08-Random-Forests

October 29, 2018

This notebook contains an excerpt from the Python Data Science Handbook by Jake VanderPlas; the
content is available on GitHub.

The text is released under the CC-BY-NC-ND license, and code is released under the MIT license. If
you find this content useful, please consider supporting the work by buying the book!

< In-Depth: Support Vector Machines | Contents | In Depth: Principal Component Analysis
>

1 In-Depth: Decision Trees and Random Forests

Previously we have looked in depth at a simple generative classifier (naive Bayes; see In Depth:
Naive Bayes Classification) and a powerful discriminative classifier (support vector machines;
see In-Depth: Support Vector Machines). Here we’ll take a look at motivating another powerful
algorithm—a non-parametric algorithm called random forests. Random forests are an example of
an ensemble method, meaning that it relies on aggregating the results of an ensemble of simpler
estimators. The somewhat surprising result with such ensemble methods is that the sum can be
greater than the parts: that is, a majority vote among a number of estimators can end up being
better than any of the individual estimators doing the voting! We will see examples of this in the
following sections. We begin with the standard imports:

In [1]: %matplotlib inline
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns; sns.set()

1.1 Motivating Random Forests: Decision Trees

Random forests are an example of an ensemble learner built on decision trees. For this reason we’ll
start by discussing decision trees themselves.

Decision trees are extremely intuitive ways to classify or label objects: you simply ask a se-
ries of questions designed to zero-in on the classification. For example, if you wanted to build a
decision tree to classify an animal you come across while on a hike, you might construct the one
shown here:
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figure source in
Appendix

The binary splitting makes this extremely efficient: in a well-constructed tree, each question
will cut the number of options by approximately half, very quickly narrowing the options even
among a large number of classes. The trick, of course, comes in deciding which questions to ask at
each step. In machine learning implementations of decision trees, the questions generally take the
form of axis-aligned splits in the data: that is, each node in the tree splits the data into two groups
using a cutoff value within one of the features. Let’s now look at an example of this.

1.1.1 Creating a decision tree

Consider the following two-dimensional data, which has one of four class labels:

In [2]: from sklearn.datasets import make_blobs

X, y = make_blobs(n_samples=300, centers=4,
random_state=0, cluster_std=1.0)

plt.scatter(X[:, 0], X[:, 1], c=y, s=50, cmap='rainbow');
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A simple decision tree built on this data will iteratively split the data along one or the other
axis according to some quantitative criterion, and at each level assign the label of the new region
according to a majority vote of points within it. This figure presents a visualization of the first four
levels of a decision tree classifier for this data:

figure source in
Appendix

Notice that after the first split, every point in the upper branch remains unchanged, so there
is no need to further subdivide this branch. Except for nodes that contain all of one color, at each
level every region is again split along one of the two features.

This process of fitting a decision tree to our data can be done in Scikit-Learn with the
DecisionTreeClassifier estimator:

In [3]: from sklearn.tree import DecisionTreeClassifier
tree = DecisionTreeClassifier().fit(X, y)

Let’s write a quick utility function to help us visualize the output of the classifier:

In [4]: def visualize_classifier(model, X, y, ax=None, cmap='rainbow'):
ax = ax or plt.gca()
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# Plot the training points
ax.scatter(X[:, 0], X[:, 1], c=y, s=30, cmap=cmap,

clim=(y.min(), y.max()), zorder=3)
ax.axis('tight')
ax.axis('off')
xlim = ax.get_xlim()
ylim = ax.get_ylim()

# fit the estimator
model.fit(X, y)
xx, yy = np.meshgrid(np.linspace(*xlim, num=200),

np.linspace(*ylim, num=200))
Z = model.predict(np.c_[xx.ravel(), yy.ravel()]).reshape(xx.shape)

# Create a color plot with the results
n_classes = len(np.unique(y))
contours = ax.contourf(xx, yy, Z, alpha=0.3,

levels=np.arange(n_classes + 1) - 0.5,
cmap=cmap, clim=(y.min(), y.max()),
zorder=1)

ax.set(xlim=xlim, ylim=ylim)

Now we can examine what the decision tree classification looks like:

In [5]: visualize_classifier(DecisionTreeClassifier(), X, y)
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If you’re running this notebook live, you can use the helpers script included in The Online
Appendix to bring up an interactive visualization of the decision tree building process:

In [6]: # helpers_05_08 is found in the online appendix
import helpers_05_08
helpers_05_08.plot_tree_interactive(X, y);
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Notice that as the depth increases, we tend to get very strangely shaped classification regions;
for example, at a depth of five, there is a tall and skinny purple region between the yellow and
blue regions. It’s clear that this is less a result of the true, intrinsic data distribution, and more a
result of the particular sampling or noise properties of the data. That is, this decision tree, even at
only five levels deep, is clearly over-fitting our data.

1.1.2 Decision trees and over-fitting

Such over-fitting turns out to be a general property of decision trees: it is very easy to go too
deep in the tree, and thus to fit details of the particular data rather than the overall properties of
the distributions they are drawn from. Another way to see this over-fitting is to look at models
trained on different subsets of the data—for example, in this figure we train two different trees,
each on half of the original data:

figure source in
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Appendix
It is clear that in some places, the two trees produce consistent results (e.g., in the four corners),

while in other places, the two trees give very different classifications (e.g., in the regions between
any two clusters). The key observation is that the inconsistencies tend to happen where the classi-
fication is less certain, and thus by using information from both of these trees, we might come up
with a better result!

If you are running this notebook live, the following function will allow you to interactively
display the fits of trees trained on a random subset of the data:

In [7]: # helpers_05_08 is found in the online appendix
import helpers_05_08
helpers_05_08.randomized_tree_interactive(X, y)

Just as using information from two trees improves our results, we might expect that using
information from many trees would improve our results even further.

1.2 Ensembles of Estimators: Random Forests

This notion—that multiple overfitting estimators can be combined to reduce the effect of this
overfitting—is what underlies an ensemble method called bagging. Bagging makes use of an en-
semble (a grab bag, perhaps) of parallel estimators, each of which over-fits the data, and averages
the results to find a better classification. An ensemble of randomized decision trees is known as a
random forest.
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This type of bagging classification can be done manually using Scikit-Learn’s
BaggingClassifier meta-estimator, as shown here:

In [8]: from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import BaggingClassifier

tree = DecisionTreeClassifier()
bag = BaggingClassifier(tree, n_estimators=100, max_samples=0.8,

random_state=1)

bag.fit(X, y)
visualize_classifier(bag, X, y)

In this example, we have randomized the data by fitting each estimator with a random subset
of 80% of the training points. In practice, decision trees are more effectively randomized by inject-
ing some stochasticity in how the splits are chosen: this way all the data contributes to the fit each
time, but the results of the fit still have the desired randomness. For example, when determining
which feature to split on, the randomized tree might select from among the top several features.
You can read more technical details about these randomization strategies in the Scikit-Learn doc-
umentation and references within.

In Scikit-Learn, such an optimized ensemble of randomized decision trees is implemented in
the RandomForestClassifier estimator, which takes care of all the randomization automatically.
All you need to do is select a number of estimators, and it will very quickly (in parallel, if desired)
fit the ensemble of trees:
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In [9]: from sklearn.ensemble import RandomForestClassifier

model = RandomForestClassifier(n_estimators=100, random_state=0)
visualize_classifier(model, X, y);

We see that by averaging over 100 randomly perturbed models, we end up with an overall
model that is much closer to our intuition about how the parameter space should be split.

1.3 Random Forest Regression

In the previous section we considered random forests within the context of classification. Random
forests can also be made to work in the case of regression (that is, continuous rather than categor-
ical variables). The estimator to use for this is the RandomForestRegressor, and the syntax is very
similar to what we saw earlier.

Consider the following data, drawn from the combination of a fast and slow oscillation:

In [10]: rng = np.random.RandomState(42)
x = 10 * rng.rand(200)

def model(x, sigma=0.3):
fast_oscillation = np.sin(5 * x)
slow_oscillation = np.sin(0.5 * x)
noise = sigma * rng.randn(len(x))
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return slow_oscillation + fast_oscillation + noise

y = model(x)
plt.errorbar(x, y, 0.3, fmt='o');

Using the random forest regressor, we can find the best fit curve as follows:

In [11]: from sklearn.ensemble import RandomForestRegressor
forest = RandomForestRegressor(200)
forest.fit(x[:, None], y)

xfit = np.linspace(0, 10, 1000)
yfit = forest.predict(xfit[:, None])
ytrue = model(xfit, sigma=0)

plt.errorbar(x, y, 0.3, fmt='o', alpha=0.5)
plt.plot(xfit, yfit, '-r');
plt.plot(xfit, ytrue, '-k', alpha=0.5);
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Here the true model is shown in the smooth gray curve, while the random forest model is
shown by the jagged red curve. As you can see, the non-parametric random forest model is flexible
enough to fit the multi-period data, without us needing to specifying a multi-period model!

1.4 Example: Random Forest for Classifying Digits

Earlier we took a quick look at the hand-written digits data (see Introducing Scikit-Learn). Let’s
use that again here to see how the random forest classifier can be used in this context.

In [12]: from sklearn.datasets import load_digits
digits = load_digits()
digits.keys()

Out[12]: dict_keys(['target', 'data', 'target_names', 'DESCR', 'images'])

To remind us what we’re looking at, we’ll visualize the first few data points:

In [13]: # set up the figure
fig = plt.figure(figsize=(6, 6)) # figure size in inches
fig.subplots_adjust(left=0, right=1, bottom=0, top=1, hspace=0.05, wspace=0.05)

# plot the digits: each image is 8x8 pixels
for i in range(64):

ax = fig.add_subplot(8, 8, i + 1, xticks=[], yticks=[])
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ax.imshow(digits.images[i], cmap=plt.cm.binary, interpolation='nearest')

# label the image with the target value
ax.text(0, 7, str(digits.target[i]))

We can quickly classify the digits using a random forest as follows:

In [14]: from sklearn.cross_validation import train_test_split

Xtrain, Xtest, ytrain, ytest = train_test_split(digits.data, digits.target,
random_state=0)

model = RandomForestClassifier(n_estimators=1000)
model.fit(Xtrain, ytrain)
ypred = model.predict(Xtest)
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We can take a look at the classification report for this classifier:

In [15]: from sklearn import metrics
print(metrics.classification_report(ypred, ytest))

precision recall f1-score support

0 1.00 0.97 0.99 38
1 1.00 0.98 0.99 44
2 0.95 1.00 0.98 42
3 0.98 0.96 0.97 46
4 0.97 1.00 0.99 37
5 0.98 0.96 0.97 49
6 1.00 1.00 1.00 52
7 1.00 0.96 0.98 50
8 0.94 0.98 0.96 46
9 0.96 0.98 0.97 46

avg / total 0.98 0.98 0.98 450

And for good measure, plot the confusion matrix:

In [16]: from sklearn.metrics import confusion_matrix
mat = confusion_matrix(ytest, ypred)
sns.heatmap(mat.T, square=True, annot=True, fmt='d', cbar=False)
plt.xlabel('true label')
plt.ylabel('predicted label');
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We find that a simple, untuned random forest results in a very accurate classification of the
digits data.

1.5 Summary of Random Forests

This section contained a brief introduction to the concept of ensemble estimators, and in particular
the random forest – an ensemble of randomized decision trees. Random forests are a powerful
method with several advantages:

• Both training and prediction are very fast, because of the simplicity of the underlying deci-
sion trees. In addition, both tasks can be straightforwardly parallelized, because the individ-
ual trees are entirely independent entities.

• The multiple trees allow for a probabilistic classification: a majority vote among estima-
tors gives an estimate of the probability (accessed in Scikit-Learn with the predict_proba()
method).

• The nonparametric model is extremely flexible, and can thus perform well on tasks that are
under-fit by other estimators.

A primary disadvantage of random forests is that the results are not easily interpretable: that
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is, if you would like to draw conclusions about the meaning of the classification model, random
forests may not be the best choice.

< In-Depth: Support Vector Machines | Contents | In Depth: Principal Component Analysis
>
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< In-Depth: Decision Trees and Random Forests | Contents | In-Depth: Manifold Learning >

1 In Depth: Principal Component Analysis

Up until now, we have been looking in depth at supervised learning estimators: those estimators
that predict labels based on labeled training data. Here we begin looking at several unsupervised
estimators, which can highlight interesting aspects of the data without reference to any known
labels.

In this section, we explore what is perhaps one of the most broadly used of unsupervised al-
gorithms, principal component analysis (PCA). PCA is fundamentally a dimensionality reduction
algorithm, but it can also be useful as a tool for visualization, for noise filtering, for feature extrac-
tion and engineering, and much more. After a brief conceptual discussion of the PCA algorithm,
we will see a couple examples of these further applications.

We begin with the standard imports:

In [1]: %matplotlib inline
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns; sns.set()

1.1 Introducing Principal Component Analysis

Principal component analysis is a fast and flexible unsupervised method for dimensionality reduc-
tion in data, which we saw briefly in Introducing Scikit-Learn. Its behavior is easiest to visualize
by looking at a two-dimensional dataset. Consider the following 200 points:

In [2]: rng = np.random.RandomState(1)
X = np.dot(rng.rand(2, 2), rng.randn(2, 200)).T
plt.scatter(X[:, 0], X[:, 1])
plt.axis('equal');
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By eye, it is clear that there is a nearly linear relationship between the x and y variables. This
is reminiscent of the linear regression data we explored in In Depth: Linear Regression, but the
problem setting here is slightly different: rather than attempting to predict the y values from the x
values, the unsupervised learning problem attempts to learn about the relationship between the x
and y values.

In principal component analysis, this relationship is quantified by finding a list of the principal
axes in the data, and using those axes to describe the dataset. Using Scikit-Learn’s PCA estimator,
we can compute this as follows:

In [3]: from sklearn.decomposition import PCA
pca = PCA(n_components=2)
pca.fit(X)

Out[3]: PCA(copy=True, n_components=2, whiten=False)

The fit learns some quantities from the data, most importantly the “components” and “ex-
plained variance”:

In [4]: print(pca.components_)

[[ 0.94446029 0.32862557]
[ 0.32862557 -0.94446029]]

In [5]: print(pca.explained_variance_)
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[ 0.75871884 0.01838551]

To see what these numbers mean, let’s visualize them as vectors over the input data, using
the “components” to define the direction of the vector, and the “explained variance” to define the
squared-length of the vector:

In [6]: def draw_vector(v0, v1, ax=None):
ax = ax or plt.gca()
arrowprops=dict(arrowstyle='->',

linewidth=2,
shrinkA=0, shrinkB=0)

ax.annotate('', v1, v0, arrowprops=arrowprops)

# plot data
plt.scatter(X[:, 0], X[:, 1], alpha=0.2)
for length, vector in zip(pca.explained_variance_, pca.components_):

v = vector * 3 * np.sqrt(length)
draw_vector(pca.mean_, pca.mean_ + v)

plt.axis('equal');

These vectors represent the principal axes of the data, and the length of the vector is an indica-
tion of how “important” that axis is in describing the distribution of the data—more precisely, it
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is a measure of the variance of the data when projected onto that axis. The projection of each data
point onto the principal axes are the “principal components” of the data.

If we plot these principal components beside the original data, we see the plots shown here:

figure source in
Appendix

This transformation from data axes to principal axes is an affine transformation, which basically
means it is composed of a translation, rotation, and uniform scaling.

While this algorithm to find principal components may seem like just a mathematical curiosity,
it turns out to have very far-reaching applications in the world of machine learning and data
exploration.

1.1.1 PCA as dimensionality reduction

Using PCA for dimensionality reduction involves zeroing out one or more of the smallest principal
components, resulting in a lower-dimensional projection of the data that preserves the maximal
data variance.

Here is an example of using PCA as a dimensionality reduction transform:

In [7]: pca = PCA(n_components=1)
pca.fit(X)
X_pca = pca.transform(X)
print("original shape: ", X.shape)
print("transformed shape:", X_pca.shape)

original shape: (200, 2)
transformed shape: (200, 1)

The transformed data has been reduced to a single dimension. To understand the effect of this
dimensionality reduction, we can perform the inverse transform of this reduced data and plot it
along with the original data:

In [8]: X_new = pca.inverse_transform(X_pca)
plt.scatter(X[:, 0], X[:, 1], alpha=0.2)
plt.scatter(X_new[:, 0], X_new[:, 1], alpha=0.8)
plt.axis('equal');
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The light points are the original data, while the dark points are the projected version. This
makes clear what a PCA dimensionality reduction means: the information along the least impor-
tant principal axis or axes is removed, leaving only the component(s) of the data with the highest
variance. The fraction of variance that is cut out (proportional to the spread of points about the
line formed in this figure) is roughly a measure of how much “information” is discarded in this
reduction of dimensionality.

This reduced-dimension dataset is in some senses “good enough” to encode the most impor-
tant relationships between the points: despite reducing the dimension of the data by 50%, the
overall relationship between the data points are mostly preserved.

1.1.2 PCA for visualization: Hand-written digits

The usefulness of the dimensionality reduction may not be entirely apparent in only two dimen-
sions, but becomes much more clear when looking at high-dimensional data. To see this, let’s take
a quick look at the application of PCA to the digits data we saw in In-Depth: Decision Trees and
Random Forests.

We start by loading the data:

In [9]: from sklearn.datasets import load_digits
digits = load_digits()
digits.data.shape

Out[9]: (1797, 64)
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Recall that the data consists of 8Œ8 pixel images, meaning that they are 64-dimensional. To
gain some intuition into the relationships between these points, we can use PCA to project them
to a more manageable number of dimensions, say two:

In [10]: pca = PCA(2) # project from 64 to 2 dimensions
projected = pca.fit_transform(digits.data)
print(digits.data.shape)
print(projected.shape)

(1797, 64)
(1797, 2)

We can now plot the first two principal components of each point to learn about the data:

In [11]: plt.scatter(projected[:, 0], projected[:, 1],
c=digits.target, edgecolor='none', alpha=0.5,
cmap=plt.cm.get_cmap('spectral', 10))

plt.xlabel('component 1')
plt.ylabel('component 2')
plt.colorbar();
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Recall what these components mean: the full data is a 64-dimensional point cloud, and these
points are the projection of each data point along the directions with the largest variance. Essen-
tially, we have found the optimal stretch and rotation in 64-dimensional space that allows us to see
the layout of the digits in two dimensions, and have done this in an unsupervised manner—that
is, without reference to the labels.

1.1.3 What do the components mean?

We can go a bit further here, and begin to ask what the reduced dimensions mean. This meaning
can be understood in terms of combinations of basis vectors. For example, each image in the
training set is defined by a collection of 64 pixel values, which we will call the vector x:

x = [x1, x2, x3 · · · x64]

One way we can think about this is in terms of a pixel basis. That is, to construct the image,
we multiply each element of the vector by the pixel it describes, and then add the results together
to build the image:

image(x) = x1 · (pixel 1) + x2 · (pixel 2) + x3 · (pixel 3) · · · x64 · (pixel 64)

One way we might imagine reducing the dimension of this data is to zero out all but a few of
these basis vectors. For example, if we use only the first eight pixels, we get an eight-dimensional
projection of the data, but it is not very reflective of the whole image: we’ve thrown out nearly
90% of the pixels!

figure source in
Appendix

The upper row of panels shows the individual pixels, and the lower row shows the cumulative
contribution of these pixels to the construction of the image. Using only eight of the pixel-basis
components, we can only construct a small portion of the 64-pixel image. Were we to continue
this sequence and use all 64 pixels, we would recover the original image.

But the pixel-wise representation is not the only choice of basis. We can also use other basis
functions, which each contain some pre-defined contribution from each pixel, and write some-
thing like

image(x) = mean + x1 · (basis 1) + x2 · (basis 2) + x3 · (basis 3) · · ·

PCA can be thought of as a process of choosing optimal basis functions, such that adding to-
gether just the first few of them is enough to suitably reconstruct the bulk of the elements in the
dataset. The principal components, which act as the low-dimensional representation of our data,
are simply the coefficients that multiply each of the elements in this series. This figure shows a
similar depiction of reconstructing this digit using the mean plus the first eight PCA basis func-
tions:

figure source in
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Appendix
Unlike the pixel basis, the PCA basis allows us to recover the salient features of the input

image with just a mean plus eight components! The amount of each pixel in each component is
the corollary of the orientation of the vector in our two-dimensional example. This is the sense
in which PCA provides a low-dimensional representation of the data: it discovers a set of basis
functions that are more efficient than the native pixel-basis of the input data.

1.1.4 Choosing the number of components

A vital part of using PCA in practice is the ability to estimate how many components are needed
to describe the data. This can be determined by looking at the cumulative explained variance ratio
as a function of the number of components:

In [12]: pca = PCA().fit(digits.data)
plt.plot(np.cumsum(pca.explained_variance_ratio_))
plt.xlabel('number of components')
plt.ylabel('cumulative explained variance');

This curve quantifies how much of the total, 64-dimensional variance is contained within the
first N components. For example, we see that with the digits the first 10 components contain
approximately 75% of the variance, while you need around 50 components to describe close to
100% of the variance.
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Here we see that our two-dimensional projection loses a lot of information (as measured by the
explained variance) and that we’d need about 20 components to retain 90% of the variance. Look-
ing at this plot for a high-dimensional dataset can help you understand the level of redundancy
present in multiple observations.

1.2 PCA as Noise Filtering

PCA can also be used as a filtering approach for noisy data. The idea is this: any components with
variance much larger than the effect of the noise should be relatively unaffected by the noise. So
if you reconstruct the data using just the largest subset of principal components, you should be
preferentially keeping the signal and throwing out the noise.

Let’s see how this looks with the digits data. First we will plot several of the input noise-free
data:

In [13]: def plot_digits(data):
fig, axes = plt.subplots(4, 10, figsize=(10, 4),

subplot_kw={'xticks':[], 'yticks':[]},
gridspec_kw=dict(hspace=0.1, wspace=0.1))

for i, ax in enumerate(axes.flat):
ax.imshow(data[i].reshape(8, 8),

cmap='binary', interpolation='nearest',
clim=(0, 16))

plot_digits(digits.data)

Now lets add some random noise to create a noisy dataset, and re-plot it:

In [14]: np.random.seed(42)
noisy = np.random.normal(digits.data, 4)
plot_digits(noisy)
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It’s clear by eye that the images are noisy, and contain spurious pixels. Let’s train a PCA on
the noisy data, requesting that the projection preserve 50% of the variance:

In [15]: pca = PCA(0.50).fit(noisy)
pca.n_components_

Out[15]: 12

Here 50% of the variance amounts to 12 principal components. Now we compute these com-
ponents, and then use the inverse of the transform to reconstruct the filtered digits:

In [16]: components = pca.transform(noisy)
filtered = pca.inverse_transform(components)
plot_digits(filtered)

This signal preserving/noise filtering property makes PCA a very useful feature selection
routine—for example, rather than training a classifier on very high-dimensional data, you might
instead train the classifier on the lower-dimensional representation, which will automatically
serve to filter out random noise in the inputs.
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1.3 Example: Eigenfaces

Earlier we explored an example of using a PCA projection as a feature selector for facial recogni-
tion with a support vector machine (see In-Depth: Support Vector Machines). Here we will take
a look back and explore a bit more of what went into that. Recall that we were using the Labeled
Faces in the Wild dataset made available through Scikit-Learn:

In [17]: from sklearn.datasets import fetch_lfw_people
faces = fetch_lfw_people(min_faces_per_person=60)
print(faces.target_names)
print(faces.images.shape)

['Ariel Sharon' 'Colin Powell' 'Donald Rumsfeld' 'George W Bush'
'Gerhard Schroeder' 'Hugo Chavez' 'Junichiro Koizumi' 'Tony Blair']

(1348, 62, 47)

Let’s take a look at the principal axes that span this dataset. Because this is a large dataset, we
will use RandomizedPCA—it contains a randomized method to approximate the first N principal
components much more quickly than the standard PCA estimator, and thus is very useful for high-
dimensional data (here, a dimensionality of nearly 3,000). We will take a look at the first 150
components:

In [18]: from sklearn.decomposition import RandomizedPCA
pca = RandomizedPCA(150)
pca.fit(faces.data)

Out[18]: RandomizedPCA(copy=True, iterated_power=3, n_components=150,
random_state=None, whiten=False)

In this case, it can be interesting to visualize the images associated with the first several prin-
cipal components (these components are technically known as “eigenvectors,” so these types of
images are often called “eigenfaces”). As you can see in this figure, they are as creepy as they
sound:

In [19]: fig, axes = plt.subplots(3, 8, figsize=(9, 4),
subplot_kw={'xticks':[], 'yticks':[]},
gridspec_kw=dict(hspace=0.1, wspace=0.1))

for i, ax in enumerate(axes.flat):
ax.imshow(pca.components_[i].reshape(62, 47), cmap='bone')
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The results are very interesting, and give us insight into how the images vary: for example,
the first few eigenfaces (from the top left) seem to be associated with the angle of lighting on the
face, and later principal vectors seem to be picking out certain features, such as eyes, noses, and
lips. Let’s take a look at the cumulative variance of these components to see how much of the data
information the projection is preserving:

In [20]: plt.plot(np.cumsum(pca.explained_variance_ratio_))
plt.xlabel('number of components')
plt.ylabel('cumulative explained variance');
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We see that these 150 components account for just over 90% of the variance. That would lead
us to believe that using these 150 components, we would recover most of the essential character-
istics of the data. To make this more concrete, we can compare the input images with the images
reconstructed from these 150 components:

In [21]: # Compute the components and projected faces
pca = RandomizedPCA(150).fit(faces.data)
components = pca.transform(faces.data)
projected = pca.inverse_transform(components)

In [22]: # Plot the results
fig, ax = plt.subplots(2, 10, figsize=(10, 2.5),

subplot_kw={'xticks':[], 'yticks':[]},
gridspec_kw=dict(hspace=0.1, wspace=0.1))

for i in range(10):
ax[0, i].imshow(faces.data[i].reshape(62, 47), cmap='binary_r')
ax[1, i].imshow(projected[i].reshape(62, 47), cmap='binary_r')

ax[0, 0].set_ylabel('full-dim\ninput')
ax[1, 0].set_ylabel('150-dim\nreconstruction');
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The top row here shows the input images, while the bottom row shows the reconstruction of
the images from just 150 of the ~3,000 initial features. This visualization makes clear why the
PCA feature selection used in In-Depth: Support Vector Machines was so successful: although
it reduces the dimensionality of the data by nearly a factor of 20, the projected images contain
enough information that we might, by eye, recognize the individuals in the image. What this
means is that our classification algorithm needs to be trained on 150-dimensional data rather than
3,000-dimensional data, which depending on the particular algorithm we choose, can lead to a
much more efficient classification.

1.4 Principal Component Analysis Summary

In this section we have discussed the use of principal component analysis for dimensionality re-
duction, for visualization of high-dimensional data, for noise filtering, and for feature selection
within high-dimensional data. Because of the versatility and interpretability of PCA, it has been
shown to be effective in a wide variety of contexts and disciplines. Given any high-dimensional
dataset, I tend to start with PCA in order to visualize the relationship between points (as we did
with the digits), to understand the main variance in the data (as we did with the eigenfaces), and
to understand the intrinsic dimensionality (by plotting the explained variance ratio). Certainly
PCA is not useful for every high-dimensional dataset, but it offers a straightforward and efficient
path to gaining insight into high-dimensional data.

PCA’s main weakness is that it tends to be highly affected by outliers in the data. For this
reason, many robust variants of PCA have been developed, many of which act to iteratively
discard data points that are poorly described by the initial components. Scikit-Learn contains
a couple interesting variants on PCA, including RandomizedPCA and SparsePCA, both also in
the sklearn.decomposition submodule. RandomizedPCA, which we saw earlier, uses a non-
deterministic method to quickly approximate the first few principal components in very high-
dimensional data, while SparsePCA introduces a regularization term (see In Depth: Linear Re-
gression) that serves to enforce sparsity of the components.

In the following sections, we will look at other unsupervised learning methods that build on
some of the ideas of PCA.

< In-Depth: Decision Trees and Random Forests | Contents | In-Depth: Manifold Learning >
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05.10-Manifold-Learning

October 29, 2018

This notebook contains an excerpt from the Python Data Science Handbook by Jake VanderPlas; the
content is available on GitHub.

The text is released under the CC-BY-NC-ND license, and code is released under the MIT license. If
you find this content useful, please consider supporting the work by buying the book!

< In Depth: Principal Component Analysis | Contents | In Depth: k-Means Clustering >

1 In-Depth: Manifold Learning

We have seen how principal component analysis (PCA) can be used in the dimensionality reduc-
tion task—reducing the number of features of a dataset while maintaining the essential relation-
ships between the points. While PCA is flexible, fast, and easily interpretable, it does not perform
so well when there are nonlinear relationships within the data; we will see some examples of these
below.

To address this deficiency, we can turn to a class of methods known as manifold learning—a
class of unsupervised estimators that seeks to describe datasets as low-dimensional manifolds
embedded in high-dimensional spaces. When you think of a manifold, I’d suggest imagining a
sheet of paper: this is a two-dimensional object that lives in our familiar three-dimensional world,
and can be bent or rolled in that two dimensions. In the parlance of manifold learning, we can
think of this sheet as a two-dimensional manifold embedded in three-dimensional space.

Rotating, re-orienting, or stretching the piece of paper in three-dimensional space doesn’t
change the flat geometry of the paper: such operations are akin to linear embeddings. If you
bend, curl, or crumple the paper, it is still a two-dimensional manifold, but the embedding into
the three-dimensional space is no longer linear. Manifold learning algorithms would seek to learn
about the fundamental two-dimensional nature of the paper, even as it is contorted to fill the
three-dimensional space.

Here we will demonstrate a number of manifold methods, going most deeply into a couple
techniques: multidimensional scaling (MDS), locally linear embedding (LLE), and isometric map-
ping (IsoMap).

We begin with the standard imports:

In [1]: %matplotlib inline
import matplotlib.pyplot as plt
import seaborn as sns; sns.set()
import numpy as np
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1.1 Manifold Learning: “HELLO”

To make these concepts more clear, let’s start by generating some two-dimensional data that we
can use to define a manifold. Here is a function that will create data in the shape of the word
“HELLO”:

In [2]: def make_hello(N=1000, rseed=42):
# Make a plot with "HELLO" text; save as PNG
fig, ax = plt.subplots(figsize=(4, 1))
fig.subplots_adjust(left=0, right=1, bottom=0, top=1)
ax.axis('off')
ax.text(0.5, 0.4, 'HELLO', va='center', ha='center', weight='bold', size=85)
fig.savefig('hello.png')
plt.close(fig)

# Open this PNG and draw random points from it
from matplotlib.image import imread
data = imread('hello.png')[::-1, :, 0].T
rng = np.random.RandomState(rseed)
X = rng.rand(4 * N, 2)
i, j = (X * data.shape).astype(int).T
mask = (data[i, j] < 1)
X = X[mask]
X[:, 0] *= (data.shape[0] / data.shape[1])
X = X[:N]
return X[np.argsort(X[:, 0])]

Let’s call the function and visualize the resulting data:

In [3]: X = make_hello(1000)
colorize = dict(c=X[:, 0], cmap=plt.cm.get_cmap('rainbow', 5))
plt.scatter(X[:, 0], X[:, 1], **colorize)
plt.axis('equal');
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The output is two dimensional, and consists of points drawn in the shape of the word,
“HELLO”. This data form will help us to see visually what these algorithms are doing.

1.2 Multidimensional Scaling (MDS)

Looking at data like this, we can see that the particular choice of x and y values of the dataset are
not the most fundamental description of the data: we can scale, shrink, or rotate the data, and the
“HELLO” will still be apparent. For example, if we use a rotation matrix to rotate the data, the x
and y values change, but the data is still fundamentally the same:

In [4]: def rotate(X, angle):
theta = np.deg2rad(angle)
R = [[np.cos(theta), np.sin(theta)],

[-np.sin(theta), np.cos(theta)]]
return np.dot(X, R)

X2 = rotate(X, 20) + 5
plt.scatter(X2[:, 0], X2[:, 1], **colorize)
plt.axis('equal');
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This tells us that the x and y values are not necessarily fundamental to the relationships in the
data. What is fundamental, in this case, is the distance between each point and the other points in
the dataset. A common way to represent this is to use a distance matrix: for N points, we construct
an N × N array such that entry (i, j) contains the distance between point i and point j. Let’s use
Scikit-Learn’s efficient pairwise_distances function to do this for our original data:

In [5]: from sklearn.metrics import pairwise_distances
D = pairwise_distances(X)
D.shape

Out[5]: (1000, 1000)

As promised, for our N=1,000 points, we obtain a 1000Œ1000 matrix, which can be visualized
as shown here:

In [6]: plt.imshow(D, zorder=2, cmap='Blues', interpolation='nearest')
plt.colorbar();
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If we similarly construct a distance matrix for our rotated and translated data, we see that it is
the same:

In [7]: D2 = pairwise_distances(X2)
np.allclose(D, D2)

Out[7]: True

This distance matrix gives us a representation of our data that is invariant to rotations and
translations, but the visualization of the matrix above is not entirely intuitive. In the representation
shown in this figure, we have lost any visible sign of the interesting structure in the data: the
“HELLO” that we saw before.

Further, while computing this distance matrix from the (x, y) coordinates is straightforward,
transforming the distances back into x and y coordinates is rather difficult. This is exactly what
the multidimensional scaling algorithm aims to do: given a distance matrix between points, it
recovers a D-dimensional coordinate representation of the data. Let’s see how it works for our
distance matrix, using the precomputed dissimilarity to specify that we are passing a distance
matrix:

In [8]: from sklearn.manifold import MDS
model = MDS(n_components=2, dissimilarity='precomputed', random_state=1)
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out = model.fit_transform(D)
plt.scatter(out[:, 0], out[:, 1], **colorize)
plt.axis('equal');

The MDS algorithm recovers one of the possible two-dimensional coordinate representations
of our data, using only the N × N distance matrix describing the relationship between the data
points.

1.3 MDS as Manifold Learning

The usefulness of this becomes more apparent when we consider the fact that distance matrices
can be computed from data in any dimension. So, for example, instead of simply rotating the data
in the two-dimensional plane, we can project it into three dimensions using the following function
(essentially a three-dimensional generalization of the rotation matrix used earlier):

In [9]: def random_projection(X, dimension=3, rseed=42):
assert dimension >= X.shape[1]
rng = np.random.RandomState(rseed)
C = rng.randn(dimension, dimension)
e, V = np.linalg.eigh(np.dot(C, C.T))
return np.dot(X, V[:X.shape[1]])

X3 = random_projection(X, 3)
X3.shape
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Out[9]: (1000, 3)

Let’s visualize these points to see what we’re working with:

In [10]: from mpl_toolkits import mplot3d
ax = plt.axes(projection='3d')
ax.scatter3D(X3[:, 0], X3[:, 1], X3[:, 2],

**colorize)
ax.view_init(azim=70, elev=50)

We can now ask the MDS estimator to input this three-dimensional data, compute the distance
matrix, and then determine the optimal two-dimensional embedding for this distance matrix. The
result recovers a representation of the original data:

In [11]: model = MDS(n_components=2, random_state=1)
out3 = model.fit_transform(X3)
plt.scatter(out3[:, 0], out3[:, 1], **colorize)
plt.axis('equal');
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This is essentially the goal of a manifold learning estimator: given high-dimensional embed-
ded data, it seeks a low-dimensional representation of the data that preserves certain relationships
within the data. In the case of MDS, the quantity preserved is the distance between every pair of
points.

1.4 Nonlinear Embeddings: Where MDS Fails

Our discussion thus far has considered linear embeddings, which essentially consist of rotations,
translations, and scalings of data into higher-dimensional spaces. Where MDS breaks down is
when the embedding is nonlinear—that is, when it goes beyond this simple set of operations.
Consider the following embedding, which takes the input and contorts it into an “S” shape in
three dimensions:

In [12]: def make_hello_s_curve(X):
t = (X[:, 0] - 2) * 0.75 * np.pi
x = np.sin(t)
y = X[:, 1]
z = np.sign(t) * (np.cos(t) - 1)
return np.vstack((x, y, z)).T

XS = make_hello_s_curve(X)

This is again three-dimensional data, but we can see that the embedding is much more com-
plicated:
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In [13]: from mpl_toolkits import mplot3d
ax = plt.axes(projection='3d')
ax.scatter3D(XS[:, 0], XS[:, 1], XS[:, 2],

**colorize);

The fundamental relationships between the data points are still there, but this time the data
has been transformed in a nonlinear way: it has been wrapped-up into the shape of an “S.”

If we try a simple MDS algorithm on this data, it is not able to “unwrap” this nonlinear em-
bedding, and we lose track of the fundamental relationships in the embedded manifold:

In [14]: from sklearn.manifold import MDS
model = MDS(n_components=2, random_state=2)
outS = model.fit_transform(XS)
plt.scatter(outS[:, 0], outS[:, 1], **colorize)
plt.axis('equal');
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The best two-dimensional linear embeding does not unwrap the S-curve, but instead throws
out the original y-axis.

1.5 Nonlinear Manifolds: Locally Linear Embedding

How can we move forward here? Stepping back, we can see that the source of the problem is that
MDS tries to preserve distances between faraway points when constructing the embedding. But
what if we instead modified the algorithm such that it only preserves distances between nearby
points? The resulting embedding would be closer to what we want.

Visually, we can think of it as illustrated in this figure:

figure source in
Appendix
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Here each faint line represents a distance that should be preserved in the embedding. On the
left is a representation of the model used by MDS: it tries to preserve the distances between each
pair of points in the dataset. On the right is a representation of the model used by a manifold
learning algorithm called locally linear embedding (LLE): rather than preserving all distances, it
instead tries to preserve only the distances between neighboring points: in this case, the nearest 100
neighbors of each point.

Thinking about the left panel, we can see why MDS fails: there is no way to flatten this data
while adequately preserving the length of every line drawn between the two points. For the right
panel, on the other hand, things look a bit more optimistic. We could imagine unrolling the data
in a way that keeps the lengths of the lines approximately the same. This is precisely what LLE
does, through a global optimization of a cost function reflecting this logic.

LLE comes in a number of flavors; here we will use the modified LLE algorithm to recover the
embedded two-dimensional manifold. In general, modified LLE does better than other flavors of
the algorithm at recovering well-defined manifolds with very little distortion:

In [15]: from sklearn.manifold import LocallyLinearEmbedding
model = LocallyLinearEmbedding(n_neighbors=100, n_components=2, method='modified',

eigen_solver='dense')
out = model.fit_transform(XS)

fig, ax = plt.subplots()
ax.scatter(out[:, 0], out[:, 1], **colorize)
ax.set_ylim(0.15, -0.15);
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The result remains somewhat distorted compared to our original manifold, but captures the
essential relationships in the data!

1.6 Some Thoughts on Manifold Methods

Though this story and motivation is compelling, in practice manifold learning techniques tend to
be finicky enough that they are rarely used for anything more than simple qualitative visualization
of high-dimensional data.

The following are some of the particular challenges of manifold learning, which all contrast
poorly with PCA:

• In manifold learning, there is no good framework for handling missing data. In contrast,
there are straightforward iterative approaches for missing data in PCA.

• In manifold learning, the presence of noise in the data can “short-circuit” the manifold and
drastically change the embedding. In contrast, PCA naturally filters noise from the most
important components.

• The manifold embedding result is generally highly dependent on the number of neighbors
chosen, and there is generally no solid quantitative way to choose an optimal number of
neighbors. In contrast, PCA does not involve such a choice.

• In manifold learning, the globally optimal number of output dimensions is difficult to deter-
mine. In contrast, PCA lets you find the output dimension based on the explained variance.

• In manifold learning, the meaning of the embedded dimensions is not always clear. In PCA,
the principal components have a very clear meaning.

• In manifold learning the computational expense of manifold methods scales as O[Nˆ2] or
O[Nˆ3]. For PCA, there exist randomized approaches that are generally much faster (though
see the megaman package for some more scalable implementations of manifold learning).

With all that on the table, the only clear advantage of manifold learning methods over PCA is
their ability to preserve nonlinear relationships in the data; for that reason I tend to explore data
with manifold methods only after first exploring them with PCA.

Scikit-Learn implements several common variants of manifold learning beyond Isomap and
LLE: the Scikit-Learn documentation has a nice discussion and comparison of them. Based on my
own experience, I would give the following recommendations:

• For toy problems such as the S-curve we saw before, locally linear embedding (LLE)
and its variants (especially modified LLE), perform very well. This is implemented in
sklearn.manifold.LocallyLinearEmbedding.

• For high-dimensional data from real-world sources, LLE often produces poor results, and
isometric mapping (IsoMap) seems to generally lead to more meaningful embeddings. This
is implemented in sklearn.manifold.Isomap

• For data that is highly clustered, t-distributed stochastic neighbor embedding (t-SNE) seems to
work very well, though can be very slow compared to other methods. This is implemented
in sklearn.manifold.TSNE.

If you’re interested in getting a feel for how these work, I’d suggest running each of the meth-
ods on the data in this section.
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1.7 Example: Isomap on Faces

One place manifold learning is often used is in understanding the relationship between high-
dimensional data points. A common case of high-dimensional data is images: for example, a set
of images with 1,000 pixels each can be thought of as a collection of points in 1,000 dimensions –
the brightness of each pixel in each image defines the coordinate in that dimension.

Here let’s apply Isomap on some faces data. We will use the Labeled Faces in the Wild dataset,
which we previously saw in In-Depth: Support Vector Machines and In Depth: Principal Compo-
nent Analysis. Running this command will download the data and cache it in your home directory
for later use:

In [16]: from sklearn.datasets import fetch_lfw_people
faces = fetch_lfw_people(min_faces_per_person=30)
faces.data.shape

Out[16]: (2370, 2914)

We have 2,370 images, each with 2,914 pixels. In other words, the images can be thought of as
data points in a 2,914-dimensional space!

Let’s quickly visualize several of these images to see what we’re working with:

In [17]: fig, ax = plt.subplots(4, 8, subplot_kw=dict(xticks=[], yticks=[]))
for i, axi in enumerate(ax.flat):

axi.imshow(faces.images[i], cmap='gray')
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We would like to plot a low-dimensional embedding of the 2,914-dimensional data to learn the
fundamental relationships between the images. One useful way to start is to compute a PCA, and
examine the explained variance ratio, which will give us an idea of how many linear features are
required to describe the data:

In [18]: from sklearn.decomposition import RandomizedPCA
model = RandomizedPCA(100).fit(faces.data)
plt.plot(np.cumsum(model.explained_variance_ratio_))
plt.xlabel('n components')
plt.ylabel('cumulative variance');

We see that for this data, nearly 100 components are required to preserve 90% of the variance:
this tells us that the data is intrinsically very high dimensional—it can’t be described linearly with
just a few components.

When this is the case, nonlinear manifold embeddings like LLE and Isomap can be helpful.
We can compute an Isomap embedding on these faces using the same pattern shown before:

In [19]: from sklearn.manifold import Isomap
model = Isomap(n_components=2)
proj = model.fit_transform(faces.data)
proj.shape

Out[19]: (2370, 2)
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The output is a two-dimensional projection of all the input images. To get a better idea of what
the projection tells us, let’s define a function that will output image thumbnails at the locations of
the projections:

In [20]: from matplotlib import offsetbox

def plot_components(data, model, images=None, ax=None,
thumb_frac=0.05, cmap='gray'):

ax = ax or plt.gca()

proj = model.fit_transform(data)
ax.plot(proj[:, 0], proj[:, 1], '.k')

if images is not None:
min_dist_2 = (thumb_frac * max(proj.max(0) - proj.min(0))) ** 2
shown_images = np.array([2 * proj.max(0)])
for i in range(data.shape[0]):

dist = np.sum((proj[i] - shown_images) ** 2, 1)
if np.min(dist) < min_dist_2:

# don't show points that are too close
continue

shown_images = np.vstack([shown_images, proj[i]])
imagebox = offsetbox.AnnotationBbox(

offsetbox.OffsetImage(images[i], cmap=cmap),
proj[i])

ax.add_artist(imagebox)

Calling this function now, we see the result:

In [21]: fig, ax = plt.subplots(figsize=(10, 10))
plot_components(faces.data,

model=Isomap(n_components=2),
images=faces.images[:, ::2, ::2])
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The result is interesting: the first two Isomap dimensions seem to describe global image fea-
tures: the overall darkness or lightness of the image from left to right, and the general orientation
of the face from bottom to top. This gives us a nice visual indication of some of the fundamental
features in our data.

We could then go on to classify this data (perhaps using manifold features as inputs to the
classification algorithm) as we did in In-Depth: Support Vector Machines.

1.8 Example: Visualizing Structure in Digits

As another example of using manifold learning for visualization, let’s take a look at the MNIST
handwritten digits set. This data is similar to the digits we saw in In-Depth: Decision Trees
and Random Forests, but with many more pixels per image. It can be downloaded from
http://mldata.org/ with the Scikit-Learn utility:

In [22]: from sklearn.datasets import fetch_mldata
mnist = fetch_mldata('MNIST original')
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mnist.data.shape

Out[22]: (70000, 784)

This consists of 70,000 images, each with 784 pixels (i.e. the images are 28Œ28). As before, we
can take a look at the first few images:

In [23]: fig, ax = plt.subplots(6, 8, subplot_kw=dict(xticks=[], yticks=[]))
for i, axi in enumerate(ax.flat):

axi.imshow(mnist.data[1250 * i].reshape(28, 28), cmap='gray_r')

This gives us an idea of the variety of handwriting styles in the dataset.
Let’s compute a manifold learning projection across the data. For speed here, we’ll only use

1/30 of the data, which is about ~2000 points (because of the relatively poor scaling of manifold
learning, I find that a few thousand samples is a good number to start with for relatively quick
exploration before moving to a full calculation):

In [24]: # use only 1/30 of the data: full dataset takes a long time!
data = mnist.data[::30]
target = mnist.target[::30]

model = Isomap(n_components=2)
proj = model.fit_transform(data)
plt.scatter(proj[:, 0], proj[:, 1], c=target, cmap=plt.cm.get_cmap('jet', 10))
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plt.colorbar(ticks=range(10))
plt.clim(-0.5, 9.5);

The resulting scatter plot shows some of the relationships between the data points, but is a bit
crowded. We can gain more insight by looking at just a single number at a time:

In [25]: from sklearn.manifold import Isomap

# Choose 1/4 of the "1" digits to project
data = mnist.data[mnist.target == 1][::4]

fig, ax = plt.subplots(figsize=(10, 10))
model = Isomap(n_neighbors=5, n_components=2, eigen_solver='dense')
plot_components(data, model, images=data.reshape((-1, 28, 28)),

ax=ax, thumb_frac=0.05, cmap='gray_r')
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The result gives you an idea of the variety of forms that the number “1” can take within the
dataset. The data lies along a broad curve in the projected space, which appears to trace the
orientation of the digit. As you move up the plot, you find ones that have hats and/or bases,
though these are very sparse within the dataset. The projection lets us identify outliers that have
data issues: for example, pieces of the neighboring digits that snuck into the extracted images.

Now, this in itself may not be useful for the task of classifying digits, but it does help us get an
understanding of the data, and may give us ideas about how to move forward, such as how we
might want to preprocess the data before building a classification pipeline.

< In Depth: Principal Component Analysis | Contents | In Depth: k-Means Clustering >
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05.11-K-Means

October 29, 2018

This notebook contains an excerpt from the Python Data Science Handbook by Jake VanderPlas; the
content is available on GitHub.

The text is released under the CC-BY-NC-ND license, and code is released under the MIT license. If
you find this content useful, please consider supporting the work by buying the book!

< In-Depth: Manifold Learning | Contents | In Depth: Gaussian Mixture Models >

1 In Depth: k-Means Clustering

In the previous few sections, we have explored one category of unsupervised machine learning
models: dimensionality reduction. Here we will move on to another class of unsupervised ma-
chine learning models: clustering algorithms. Clustering algorithms seek to learn, from the prop-
erties of the data, an optimal division or discrete labeling of groups of points.

Many clustering algorithms are available in Scikit-Learn and elsewhere, but perhaps the
simplest to understand is an algorithm known as k-means clustering, which is implemented in
sklearn.cluster.KMeans.

We begin with the standard imports:

In [1]: %matplotlib inline
import matplotlib.pyplot as plt
import seaborn as sns; sns.set() # for plot styling
import numpy as np

1.1 Introducing k-Means

The k-means algorithm searches for a pre-determined number of clusters within an unlabeled
multidimensional dataset. It accomplishes this using a simple conception of what the optimal
clustering looks like:

• The “cluster center” is the arithmetic mean of all the points belonging to the cluster.
• Each point is closer to its own cluster center than to other cluster centers.

Those two assumptions are the basis of the k-means model. We will soon dive into exactly how
the algorithm reaches this solution, but for now let’s take a look at a simple dataset and see the
k-means result.

First, let’s generate a two-dimensional dataset containing four distinct blobs. To emphasize
that this is an unsupervised algorithm, we will leave the labels out of the visualization
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In [2]: from sklearn.datasets.samples_generator import make_blobs
X, y_true = make_blobs(n_samples=300, centers=4,

cluster_std=0.60, random_state=0)
plt.scatter(X[:, 0], X[:, 1], s=50);

By eye, it is relatively easy to pick out the four clusters. The k-means algorithm does this
automatically, and in Scikit-Learn uses the typical estimator API:

In [3]: from sklearn.cluster import KMeans
kmeans = KMeans(n_clusters=4)
kmeans.fit(X)
y_kmeans = kmeans.predict(X)

Let’s visualize the results by plotting the data colored by these labels. We will also plot the
cluster centers as determined by the k-means estimator:

In [4]: plt.scatter(X[:, 0], X[:, 1], c=y_kmeans, s=50, cmap='viridis')

centers = kmeans.cluster_centers_
plt.scatter(centers[:, 0], centers[:, 1], c='black', s=200, alpha=0.5);
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The good news is that the k-means algorithm (at least in this simple case) assigns the points
to clusters very similarly to how we might assign them by eye. But you might wonder how this
algorithm finds these clusters so quickly! After all, the number of possible combinations of cluster
assignments is exponential in the number of data points—an exhaustive search would be very,
very costly. Fortunately for us, such an exhaustive search is not necessary: instead, the typical
approach to k-means involves an intuitive iterative approach known as expectation–maximization.

1.2 k-Means Algorithm: Expectation–Maximization

Expectation–maximization (E–M) is a powerful algorithm that comes up in a variety of contexts
within data science. k-means is a particularly simple and easy-to-understand application of the
algorithm, and we will walk through it briefly here. In short, the expectation–maximization ap-
proach here consists of the following procedure:

1. Guess some cluster centers
2. Repeat until converged

1. E-Step: assign points to the nearest cluster center
2. M-Step: set the cluster centers to the mean

Here the “E-step” or “Expectation step” is so-named because it involves updating our expecta-
tion of which cluster each point belongs to. The “M-step” or “Maximization step” is so-named be-
cause it involves maximizing some fitness function that defines the location of the cluster centers—
in this case, that maximization is accomplished by taking a simple mean of the data in each cluster.
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The literature about this algorithm is vast, but can be summarized as follows: under typical
circumstances, each repetition of the E-step and M-step will always result in a better estimate of
the cluster characteristics.

We can visualize the algorithm as shown in the following figure. For the particular initializa-
tion shown here, the clusters converge in just three iterations. For an interactive version of this
figure, refer to the code in the Appendix.

figure source in
Appendix

The k-Means algorithm is simple enough that we can write it in a few lines of code. The
following is a very basic implementation:

In [5]: from sklearn.metrics import pairwise_distances_argmin

def find_clusters(X, n_clusters, rseed=2):
# 1. Randomly choose clusters
rng = np.random.RandomState(rseed)
i = rng.permutation(X.shape[0])[:n_clusters]
centers = X[i]

while True:
# 2a. Assign labels based on closest center
labels = pairwise_distances_argmin(X, centers)

# 2b. Find new centers from means of points
new_centers = np.array([X[labels == i].mean(0)

for i in range(n_clusters)])

# 2c. Check for convergence
if np.all(centers == new_centers):

break
centers = new_centers

return centers, labels

centers, labels = find_clusters(X, 4)
plt.scatter(X[:, 0], X[:, 1], c=labels,

s=50, cmap='viridis');
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Most well-tested implementations will do a bit more than this under the hood, but the preced-
ing function gives the gist of the expectation–maximization approach.

1.2.1 Caveats of expectation–maximization

There are a few issues to be aware of when using the expectation–maximization algorithm.

The globally optimal result may not be achieved First, although the E–M procedure is guar-
anteed to improve the result in each step, there is no assurance that it will lead to the global best
solution. For example, if we use a different random seed in our simple procedure, the particular
starting guesses lead to poor results:

In [6]: centers, labels = find_clusters(X, 4, rseed=0)
plt.scatter(X[:, 0], X[:, 1], c=labels,

s=50, cmap='viridis');
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Here the E–M approach has converged, but has not converged to a globally optimal configu-
ration. For this reason, it is common for the algorithm to be run for multiple starting guesses, as
indeed Scikit-Learn does by default (set by the n_init parameter, which defaults to 10).

The number of clusters must be selected beforehand Another common challenge with k-means
is that you must tell it how many clusters you expect: it cannot learn the number of clusters from
the data. For example, if we ask the algorithm to identify six clusters, it will happily proceed and
find the best six clusters:

In [7]: labels = KMeans(6, random_state=0).fit_predict(X)
plt.scatter(X[:, 0], X[:, 1], c=labels,

s=50, cmap='viridis');
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Whether the result is meaningful is a question that is difficult to answer definitively; one ap-
proach that is rather intuitive, but that we won’t discuss further here, is called silhouette analysis.

Alternatively, you might use a more complicated clustering algorithm which has a better quan-
titative measure of the fitness per number of clusters (e.g., Gaussian mixture models; see In Depth:
Gaussian Mixture Models) or which can choose a suitable number of clusters (e.g., DBSCAN,
mean-shift, or affinity propagation, all available in the sklearn.cluster submodule)

k-means is limited to linear cluster boundaries The fundamental model assumptions of k-
means (points will be closer to their own cluster center than to others) means that the algorithm
will often be ineffective if the clusters have complicated geometries.

In particular, the boundaries between k-means clusters will always be linear, which means that
it will fail for more complicated boundaries. Consider the following data, along with the cluster
labels found by the typical k-means approach:

In [8]: from sklearn.datasets import make_moons
X, y = make_moons(200, noise=.05, random_state=0)

In [9]: labels = KMeans(2, random_state=0).fit_predict(X)
plt.scatter(X[:, 0], X[:, 1], c=labels,

s=50, cmap='viridis');
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This situation is reminiscent of the discussion in In-Depth: Support Vector Machines, where
we used a kernel transformation to project the data into a higher dimension where a linear sepa-
ration is possible. We might imagine using the same trick to allow k-means to discover non-linear
boundaries.

One version of this kernelized k-means is implemented in Scikit-Learn within the
SpectralClustering estimator. It uses the graph of nearest neighbors to compute a higher-
dimensional representation of the data, and then assigns labels using a k-means algorithm:

In [10]: from sklearn.cluster import SpectralClustering
model = SpectralClustering(n_clusters=2, affinity='nearest_neighbors',

assign_labels='kmeans')
labels = model.fit_predict(X)
plt.scatter(X[:, 0], X[:, 1], c=labels,

s=50, cmap='viridis');
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We see that with this kernel transform approach, the kernelized k-means is able to find the
more complicated nonlinear boundaries between clusters.

k-means can be slow for large numbers of samples Because each iteration of k-means must
access every point in the dataset, the algorithm can be relatively slow as the number of samples
grows. You might wonder if this requirement to use all data at each iteration can be relaxed;
for example, you might just use a subset of the data to update the cluster centers at each step.
This is the idea behind batch-based k-means algorithms, one form of which is implemented in
sklearn.cluster.MiniBatchKMeans. The interface for this is the same as for standard KMeans; we
will see an example of its use as we continue our discussion.

1.3 Examples

Being careful about these limitations of the algorithm, we can use k-means to our advantage in a
wide variety of situations. We’ll now take a look at a couple examples.

1.3.1 Example 1: k-means on digits

To start, let’s take a look at applying k-means on the same simple digits data that we saw in In-
Depth: Decision Trees and Random Forests and In Depth: Principal Component Analysis. Here
we will attempt to use k-means to try to identify similar digits without using the original label infor-
mation; this might be similar to a first step in extracting meaning from a new dataset about which
you don’t have any a priori label information.
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We will start by loading the digits and then finding the KMeans clusters. Recall that the digits
consist of 1,797 samples with 64 features, where each of the 64 features is the brightness of one
pixel in an 8Œ8 image:

In [11]: from sklearn.datasets import load_digits
digits = load_digits()
digits.data.shape

Out[11]: (1797, 64)

The clustering can be performed as we did before:

In [12]: kmeans = KMeans(n_clusters=10, random_state=0)
clusters = kmeans.fit_predict(digits.data)
kmeans.cluster_centers_.shape

Out[12]: (10, 64)

The result is 10 clusters in 64 dimensions. Notice that the cluster centers themselves are 64-
dimensional points, and can themselves be interpreted as the “typical” digit within the cluster.
Let’s see what these cluster centers look like:

In [13]: fig, ax = plt.subplots(2, 5, figsize=(8, 3))
centers = kmeans.cluster_centers_.reshape(10, 8, 8)
for axi, center in zip(ax.flat, centers):

axi.set(xticks=[], yticks=[])
axi.imshow(center, interpolation='nearest', cmap=plt.cm.binary)

We see that even without the labels, KMeans is able to find clusters whose centers are recognizable
digits, with perhaps the exception of 1 and 8.

Because k-means knows nothing about the identity of the cluster, the 0–9 labels may be per-
muted. We can fix this by matching each learned cluster label with the true labels found in them:
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In [14]: from scipy.stats import mode

labels = np.zeros_like(clusters)
for i in range(10):

mask = (clusters == i)
labels[mask] = mode(digits.target[mask])[0]

Now we can check how accurate our unsupervised clustering was in finding similar digits
within the data:

In [15]: from sklearn.metrics import accuracy_score
accuracy_score(digits.target, labels)

Out[15]: 0.79354479688369506

With just a simple k-means algorithm, we discovered the correct grouping for 80% of the input
digits! Let’s check the confusion matrix for this:

In [16]: from sklearn.metrics import confusion_matrix
mat = confusion_matrix(digits.target, labels)
sns.heatmap(mat.T, square=True, annot=True, fmt='d', cbar=False,

xticklabels=digits.target_names,
yticklabels=digits.target_names)

plt.xlabel('true label')
plt.ylabel('predicted label');
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As we might expect from the cluster centers we visualized before, the main point of confusion
is between the eights and ones. But this still shows that using k-means, we can essentially build a
digit classifier without reference to any known labels!

Just for fun, let’s try to push this even farther. We can use the t-distributed stochastic neighbor
embedding (t-SNE) algorithm (mentioned in In-Depth: Manifold Learning) to pre-process the data
before performing k-means. t-SNE is a nonlinear embedding algorithm that is particularly adept
at preserving points within clusters. Let’s see how it does:

In [17]: from sklearn.manifold import TSNE

# Project the data: this step will take several seconds
tsne = TSNE(n_components=2, init='random', random_state=0)
digits_proj = tsne.fit_transform(digits.data)

# Compute the clusters
kmeans = KMeans(n_clusters=10, random_state=0)
clusters = kmeans.fit_predict(digits_proj)

# Permute the labels
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labels = np.zeros_like(clusters)
for i in range(10):

mask = (clusters == i)
labels[mask] = mode(digits.target[mask])[0]

# Compute the accuracy
accuracy_score(digits.target, labels)

Out[17]: 0.91930996104618812

That’s nearly 92% classification accuracy without using the labels. This is the power of unsuper-
vised learning when used carefully: it can extract information from the dataset that it might be
difficult to do by hand or by eye.

1.3.2 Example 2: k-means for color compression

One interesting application of clustering is in color compression within images. For example,
imagine you have an image with millions of colors. In most images, a large number of the colors
will be unused, and many of the pixels in the image will have similar or even identical colors.

For example, consider the image shown in the following figure, which is from the Scikit-Learn
datasets module (for this to work, you’ll have to have the pillow Python package installed).

In [18]: # Note: this requires the ``pillow`` package to be installed
from sklearn.datasets import load_sample_image
china = load_sample_image("china.jpg")
ax = plt.axes(xticks=[], yticks=[])
ax.imshow(china);
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The image itself is stored in a three-dimensional array of size (height, width, RGB), contain-
ing red/blue/green contributions as integers from 0 to 255:

In [19]: china.shape

Out[19]: (427, 640, 3)

One way we can view this set of pixels is as a cloud of points in a three-dimensional color
space. We will reshape the data to [n_samples x n_features], and rescale the colors so that they
lie between 0 and 1:

In [20]: data = china / 255.0 # use 0...1 scale
data = data.reshape(427 * 640, 3)
data.shape

Out[20]: (273280, 3)

We can visualize these pixels in this color space, using a subset of 10,000 pixels for efficiency:

In [21]: def plot_pixels(data, title, colors=None, N=10000):
if colors is None:

colors = data

# choose a random subset
rng = np.random.RandomState(0)
i = rng.permutation(data.shape[0])[:N]
colors = colors[i]
R, G, B = data[i].T

fig, ax = plt.subplots(1, 2, figsize=(16, 6))
ax[0].scatter(R, G, color=colors, marker='.')
ax[0].set(xlabel='Red', ylabel='Green', xlim=(0, 1), ylim=(0, 1))

ax[1].scatter(R, B, color=colors, marker='.')
ax[1].set(xlabel='Red', ylabel='Blue', xlim=(0, 1), ylim=(0, 1))

fig.suptitle(title, size=20);

In [22]: plot_pixels(data, title='Input color space: 16 million possible colors')

14



Now let’s reduce these 16 million colors to just 16 colors, using a k-means clustering across the
pixel space. Because we are dealing with a very large dataset, we will use the mini batch k-means,
which operates on subsets of the data to compute the result much more quickly than the standard
k-means algorithm:

In [23]: import warnings; warnings.simplefilter('ignore') # Fix NumPy issues.

from sklearn.cluster import MiniBatchKMeans
kmeans = MiniBatchKMeans(16)
kmeans.fit(data)
new_colors = kmeans.cluster_centers_[kmeans.predict(data)]

plot_pixels(data, colors=new_colors,
title="Reduced color space: 16 colors")
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The result is a re-coloring of the original pixels, where each pixel is assigned the color of its
closest cluster center. Plotting these new colors in the image space rather than the pixel space
shows us the effect of this:

In [24]: china_recolored = new_colors.reshape(china.shape)

fig, ax = plt.subplots(1, 2, figsize=(16, 6),
subplot_kw=dict(xticks=[], yticks=[]))

fig.subplots_adjust(wspace=0.05)
ax[0].imshow(china)
ax[0].set_title('Original Image', size=16)
ax[1].imshow(china_recolored)
ax[1].set_title('16-color Image', size=16);

Some detail is certainly lost in the rightmost panel, but the overall image is still easily recog-
nizable. This image on the right achieves a compression factor of around 1 million! While this
is an interesting application of k-means, there are certainly better way to compress information
in images. But the example shows the power of thinking outside of the box with unsupervised
methods like k-means.

< In-Depth: Manifold Learning | Contents | In Depth: Gaussian Mixture Models >
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October 29, 2018

This notebook contains an excerpt from the Python Data Science Handbook by Jake VanderPlas; the
content is available on GitHub.

The text is released under the CC-BY-NC-ND license, and code is released under the MIT license. If
you find this content useful, please consider supporting the work by buying the book!

< In Depth: k-Means Clustering | Contents | In-Depth: Kernel Density Estimation >

1 In Depth: Gaussian Mixture Models

The k-means clustering model explored in the previous section is simple and relatively easy to
understand, but its simplicity leads to practical challenges in its application. In particular, the
non-probabilistic nature of k-means and its use of simple distance-from-cluster-center to assign
cluster membership leads to poor performance for many real-world situations. In this section we
will take a look at Gaussian mixture models (GMMs), which can be viewed as an extension of the
ideas behind k-means, but can also be a powerful tool for estimation beyond simple clustering.

We begin with the standard imports:

In [1]: %matplotlib inline
import matplotlib.pyplot as plt
import seaborn as sns; sns.set()
import numpy as np

1.1 Motivating GMM: Weaknesses of k-Means

Let’s take a look at some of the weaknesses of k-means and think about how we might improve
the cluster model. As we saw in the previous section, given simple, well-separated data, k-means
finds suitable clustering results.

For example, if we have simple blobs of data, the k-means algorithm can quickly label those
clusters in a way that closely matches what we might do by eye:

In [2]: # Generate some data
from sklearn.datasets.samples_generator import make_blobs
X, y_true = make_blobs(n_samples=400, centers=4,

cluster_std=0.60, random_state=0)
X = X[:, ::-1] # flip axes for better plotting

In [3]: # Plot the data with K Means Labels
from sklearn.cluster import KMeans
kmeans = KMeans(4, random_state=0)
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labels = kmeans.fit(X).predict(X)
plt.scatter(X[:, 0], X[:, 1], c=labels, s=40, cmap='viridis');

From an intuitive standpoint, we might expect that the clustering assignment for some points
is more certain than others: for example, there appears to be a very slight overlap between the
two middle clusters, such that we might not have complete confidence in the cluster assigment of
points between them. Unfortunately, the k-means model has no intrinsic measure of probability
or uncertainty of cluster assignments (although it may be possible to use a bootstrap approach to
estimate this uncertainty). For this, we must think about generalizing the model.

One way to think about the k-means model is that it places a circle (or, in higher dimensions, a
hyper-sphere) at the center of each cluster, with a radius defined by the most distant point in the
cluster. This radius acts as a hard cutoff for cluster assignment within the training set: any point
outside this circle is not considered a member of the cluster. We can visualize this cluster model
with the following function:

In [4]: from sklearn.cluster import KMeans
from scipy.spatial.distance import cdist

def plot_kmeans(kmeans, X, n_clusters=4, rseed=0, ax=None):
labels = kmeans.fit_predict(X)

# plot the input data
ax = ax or plt.gca()
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ax.axis('equal')
ax.scatter(X[:, 0], X[:, 1], c=labels, s=40, cmap='viridis', zorder=2)

# plot the representation of the KMeans model
centers = kmeans.cluster_centers_
radii = [cdist(X[labels == i], [center]).max()

for i, center in enumerate(centers)]
for c, r in zip(centers, radii):

ax.add_patch(plt.Circle(c, r, fc='#CCCCCC', lw=3, alpha=0.5, zorder=1))

In [5]: kmeans = KMeans(n_clusters=4, random_state=0)
plot_kmeans(kmeans, X)

An important observation for k-means is that these cluster models must be circular: k-means
has no built-in way of accounting for oblong or elliptical clusters. So, for example, if we take the
same data and transform it, the cluster assignments end up becoming muddled:

In [6]: rng = np.random.RandomState(13)
X_stretched = np.dot(X, rng.randn(2, 2))

kmeans = KMeans(n_clusters=4, random_state=0)
plot_kmeans(kmeans, X_stretched)
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By eye, we recognize that these transformed clusters are non-circular, and thus circular clus-
ters would be a poor fit. Nevertheless, k-means is not flexible enough to account for this, and
tries to force-fit the data into four circular clusters. This results in a mixing of cluster assign-
ments where the resulting circles overlap: see especially the bottom-right of this plot. One might
imagine addressing this particular situation by preprocessing the data with PCA (see In Depth:
Principal Component Analysis), but in practice there is no guarantee that such a global operation
will circularize the individual data.

These two disadvantages of k-means—its lack of flexibility in cluster shape and lack of proba-
bilistic cluster assignment—mean that for many datasets (especially low-dimensional datasets) it
may not perform as well as you might hope.

You might imagine addressing these weaknesses by generalizing the k-means model: for ex-
ample, you could measure uncertainty in cluster assignment by comparing the distances of each
point to all cluster centers, rather than focusing on just the closest. You might also imagine al-
lowing the cluster boundaries to be ellipses rather than circles, so as to account for non-circular
clusters. It turns out these are two essential components of a different type of clustering model,
Gaussian mixture models.

1.2 Generalizing E–M: Gaussian Mixture Models

A Gaussian mixture model (GMM) attempts to find a mixture of multi-dimensional Gaussian
probability distributions that best model any input dataset. In the simplest case, GMMs can be
used for finding clusters in the same manner as k-means:
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In [7]: from sklearn.mixture import GMM
gmm = GMM(n_components=4).fit(X)
labels = gmm.predict(X)
plt.scatter(X[:, 0], X[:, 1], c=labels, s=40, cmap='viridis');

But because GMM contains a probabilistic model under the hood, it is also possible to find
probabilistic cluster assignments—in Scikit-Learn this is done using the predict_proba method.
This returns a matrix of size [n_samples, n_clusters] which measures the probability that any
point belongs to the given cluster:

In [8]: probs = gmm.predict_proba(X)
print(probs[:5].round(3))

[[ 0. 0. 0.475 0.525]
[ 0. 1. 0. 0. ]
[ 0. 1. 0. 0. ]
[ 0. 0. 0. 1. ]
[ 0. 1. 0. 0. ]]

We can visualize this uncertainty by, for example, making the size of each point proportional
to the certainty of its prediction; looking at the following figure, we can see that it is precisely the
points at the boundaries between clusters that reflect this uncertainty of cluster assignment:
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In [9]: size = 50 * probs.max(1) ** 2 # square emphasizes differences
plt.scatter(X[:, 0], X[:, 1], c=labels, cmap='viridis', s=size);

Under the hood, a Gaussian mixture model is very similar to k-means: it uses an expectation–
maximization approach which qualitatively does the following:

1. Choose starting guesses for the location and shape

2. Repeat until converged:

1. E-step: for each point, find weights encoding the probability of membership in each
cluster

2. M-step: for each cluster, update its location, normalization, and shape based on all data
points, making use of the weights

The result of this is that each cluster is associated not with a hard-edged sphere, but with a
smooth Gaussian model. Just as in the k-means expectation–maximization approach, this algo-
rithm can sometimes miss the globally optimal solution, and thus in practice multiple random
initializations are used.

Let’s create a function that will help us visualize the locations and shapes of the GMM clusters
by drawing ellipses based on the GMM output:

In [10]: from matplotlib.patches import Ellipse
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def draw_ellipse(position, covariance, ax=None, **kwargs):
"""Draw an ellipse with a given position and covariance"""
ax = ax or plt.gca()

# Convert covariance to principal axes
if covariance.shape == (2, 2):

U, s, Vt = np.linalg.svd(covariance)
angle = np.degrees(np.arctan2(U[1, 0], U[0, 0]))
width, height = 2 * np.sqrt(s)

else:
angle = 0
width, height = 2 * np.sqrt(covariance)

# Draw the Ellipse
for nsig in range(1, 4):

ax.add_patch(Ellipse(position, nsig * width, nsig * height,
angle, **kwargs))

def plot_gmm(gmm, X, label=True, ax=None):
ax = ax or plt.gca()
labels = gmm.fit(X).predict(X)
if label:

ax.scatter(X[:, 0], X[:, 1], c=labels, s=40, cmap='viridis', zorder=2)
else:

ax.scatter(X[:, 0], X[:, 1], s=40, zorder=2)
ax.axis('equal')

w_factor = 0.2 / gmm.weights_.max()
for pos, covar, w in zip(gmm.means_, gmm.covars_, gmm.weights_):

draw_ellipse(pos, covar, alpha=w * w_factor)

With this in place, we can take a look at what the four-component GMM gives us for our initial
data:

In [11]: gmm = GMM(n_components=4, random_state=42)
plot_gmm(gmm, X)
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Similarly, we can use the GMM approach to fit our stretched dataset; allowing for a full covari-
ance the model will fit even very oblong, stretched-out clusters:

In [12]: gmm = GMM(n_components=4, covariance_type='full', random_state=42)
plot_gmm(gmm, X_stretched)
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This makes clear that GMM addresses the two main practical issues with k-means encountered
before.

1.2.1 Choosing the covariance type

If you look at the details of the preceding fits, you will see that the covariance_type option
was set differently within each. This hyperparameter controls the degrees of freedom in the
shape of each cluster; it is essential to set this carefully for any given problem. The default is
covariance_type="diag", which means that the size of the cluster along each dimension can be
set independently, with the resulting ellipse constrained to align with the axes. A slightly simpler
and faster model is covariance_type="spherical", which constrains the shape of the cluster such
that all dimensions are equal. The resulting clustering will have similar characteristics to that of
k-means, though it is not entirely equivalent. A more complicated and computationally expensive
model (especially as the number of dimensions grows) is to use covariance_type="full", which
allows each cluster to be modeled as an ellipse with arbitrary orientation.

We can see a visual representation of these three choices for a single cluster within the follow-
ing figure:
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figure source in
Appendix

1.3 GMM as Density Estimation

Though GMM is often categorized as a clustering algorithm, fundamentally it is an algorithm for
density estimation. That is to say, the result of a GMM fit to some data is technically not a clustering
model, but a generative probabilistic model describing the distribution of the data.

As an example, consider some data generated from Scikit-Learn’s make_moons function, which
we saw in In Depth: K-Means Clustering:

In [13]: from sklearn.datasets import make_moons
Xmoon, ymoon = make_moons(200, noise=.05, random_state=0)
plt.scatter(Xmoon[:, 0], Xmoon[:, 1]);

If we try to fit this with a two-component GMM viewed as a clustering model, the results are
not particularly useful:
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In [14]: gmm2 = GMM(n_components=2, covariance_type='full', random_state=0)
plot_gmm(gmm2, Xmoon)

But if we instead use many more components and ignore the cluster labels, we find a fit that is
much closer to the input data:

In [15]: gmm16 = GMM(n_components=16, covariance_type='full', random_state=0)
plot_gmm(gmm16, Xmoon, label=False)
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Here the mixture of 16 Gaussians serves not to find separated clusters of data, but rather to
model the overall distribution of the input data. This is a generative model of the distribution,
meaning that the GMM gives us the recipe to generate new random data distributed similarly to
our input. For example, here are 400 new points drawn from this 16-component GMM fit to our
original data:

In [16]: Xnew = gmm16.sample(400, random_state=42)
plt.scatter(Xnew[:, 0], Xnew[:, 1]);
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GMM is convenient as a flexible means of modeling an arbitrary multi-dimensional distribu-
tion of data.

1.3.1 How many components?

The fact that GMM is a generative model gives us a natural means of determining the optimal
number of components for a given dataset. A generative model is inherently a probability distri-
bution for the dataset, and so we can simply evaluate the likelihood of the data under the model,
using cross-validation to avoid over-fitting. Another means of correcting for over-fitting is to ad-
just the model likelihoods using some analytic criterion such as the Akaike information criterion
(AIC) or the Bayesian information criterion (BIC). Scikit-Learn’s GMM estimator actually includes
built-in methods that compute both of these, and so it is very easy to operate on this approach.

Let’s look at the AIC and BIC as a function as the number of GMM components for our moon
dataset:

In [17]: n_components = np.arange(1, 21)
models = [GMM(n, covariance_type='full', random_state=0).fit(Xmoon)

for n in n_components]

plt.plot(n_components, [m.bic(Xmoon) for m in models], label='BIC')
plt.plot(n_components, [m.aic(Xmoon) for m in models], label='AIC')
plt.legend(loc='best')
plt.xlabel('n_components');
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The optimal number of clusters is the value that minimizes the AIC or BIC, depending on
which approximation we wish to use. The AIC tells us that our choice of 16 components above
was probably too many: around 8-12 components would have been a better choice. As is typical
with this sort of problem, the BIC recommends a simpler model.

Notice the important point: this choice of number of components measures how well GMM
works as a density estimator, not how well it works as a clustering algorithm. I’d encourage you to
think of GMM primarily as a density estimator, and use it for clustering only when warranted
within simple datasets.

1.4 Example: GMM for Generating New Data

We just saw a simple example of using GMM as a generative model of data in order to create
new samples from the distribution defined by the input data. Here we will run with this idea and
generate new handwritten digits from the standard digits corpus that we have used before.

To start with, let’s load the digits data using Scikit-Learn’s data tools:

In [18]: from sklearn.datasets import load_digits
digits = load_digits()
digits.data.shape

Out[18]: (1797, 64)

Next let’s plot the first 100 of these to recall exactly what we’re looking at:

14



In [19]: def plot_digits(data):
fig, ax = plt.subplots(10, 10, figsize=(8, 8),

subplot_kw=dict(xticks=[], yticks=[]))
fig.subplots_adjust(hspace=0.05, wspace=0.05)
for i, axi in enumerate(ax.flat):

im = axi.imshow(data[i].reshape(8, 8), cmap='binary')
im.set_clim(0, 16)

plot_digits(digits.data)

We have nearly 1,800 digits in 64 dimensions, and we can build a GMM on top of these to
generate more. GMMs can have difficulty converging in such a high dimensional space, so we
will start with an invertible dimensionality reduction algorithm on the data. Here we will use a
straightforward PCA, asking it to preserve 99% of the variance in the projected data:
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In [20]: from sklearn.decomposition import PCA
pca = PCA(0.99, whiten=True)
data = pca.fit_transform(digits.data)
data.shape

Out[20]: (1797, 41)

The result is 41 dimensions, a reduction of nearly 1/3 with almost no information loss. Given
this projected data, let’s use the AIC to get a gauge for the number of GMM components we should
use:

In [21]: n_components = np.arange(50, 210, 10)
models = [GMM(n, covariance_type='full', random_state=0)

for n in n_components]
aics = [model.fit(data).aic(data) for model in models]
plt.plot(n_components, aics);

It appears that around 110 components minimizes the AIC; we will use this model. Let’s
quickly fit this to the data and confirm that it has converged:

In [22]: gmm = GMM(110, covariance_type='full', random_state=0)
gmm.fit(data)
print(gmm.converged_)

True
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Now we can draw samples of 100 new points within this 41-dimensional projected space, using
the GMM as a generative model:

In [23]: data_new = gmm.sample(100, random_state=0)
data_new.shape

Out[23]: (100, 41)

Finally, we can use the inverse transform of the PCA object to construct the new digits:

In [24]: digits_new = pca.inverse_transform(data_new)
plot_digits(digits_new)

The results for the most part look like plausible digits from the dataset!
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Consider what we’ve done here: given a sampling of handwritten digits, we have modeled
the distribution of that data in such a way that we can generate brand new samples of digits
from the data: these are “handwritten digits” which do not individually appear in the original
dataset, but rather capture the general features of the input data as modeled by the mixture model.
Such a generative model of digits can prove very useful as a component of a Bayesian generative
classifier, as we shall see in the next section.

< In Depth: k-Means Clustering | Contents | In-Depth: Kernel Density Estimation >
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< In Depth: Gaussian Mixture Models | Contents | Application: A Face Detection Pipeline >

1 In-Depth: Kernel Density Estimation

In the previous section we covered Gaussian mixture models (GMM), which are a kind of hy-
brid between a clustering estimator and a density estimator. Recall that a density estimator is an
algorithm which takes a D-dimensional dataset and produces an estimate of the D-dimensional
probability distribution which that data is drawn from. The GMM algorithm accomplishes this
by representing the density as a weighted sum of Gaussian distributions. Kernel density estimation
(KDE) is in some senses an algorithm which takes the mixture-of-Gaussians idea to its logical ex-
treme: it uses a mixture consisting of one Gaussian component per point, resulting in an essentially
non-parametric estimator of density. In this section, we will explore the motivation and uses of
KDE.

We begin with the standard imports:

In [1]: %matplotlib inline
import matplotlib.pyplot as plt
import seaborn as sns; sns.set()
import numpy as np

1.1 Motivating KDE: Histograms

As already discussed, a density estimator is an algorithm which seeks to model the probability
distribution that generated a dataset. For one dimensional data, you are probably already familiar
with one simple density estimator: the histogram. A histogram divides the data into discrete bins,
counts the number of points that fall in each bin, and then visualizes the results in an intuitive
manner.

For example, let’s create some data that is drawn from two normal distributions:

In [2]: def make_data(N, f=0.3, rseed=1):
rand = np.random.RandomState(rseed)
x = rand.randn(N)
x[int(f * N):] += 5
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return x

x = make_data(1000)

We have previously seen that the standard count-based histogram can be created with the
plt.hist() function. By specifying the normed parameter of the histogram, we end up with a
normalized histogram where the height of the bins does not reflect counts, but instead reflects
probability density:

In [3]: hist = plt.hist(x, bins=30, normed=True)

Notice that for equal binning, this normalization simply changes the scale on the y-axis, leav-
ing the relative heights essentially the same as in a histogram built from counts. This normaliza-
tion is chosen so that the total area under the histogram is equal to 1, as we can confirm by looking
at the output of the histogram function:

In [4]: density, bins, patches = hist
widths = bins[1:] - bins[:-1]
(density * widths).sum()

Out[4]: 1.0

One of the issues with using a histogram as a density estimator is that the choice of bin size
and location can lead to representations that have qualitatively different features. For example, if
we look at a version of this data with only 20 points, the choice of how to draw the bins can lead
to an entirely different interpretation of the data! Consider this example:
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In [5]: x = make_data(20)
bins = np.linspace(-5, 10, 10)

In [6]: fig, ax = plt.subplots(1, 2, figsize=(12, 4),
sharex=True, sharey=True,
subplot_kw={'xlim':(-4, 9),

'ylim':(-0.02, 0.3)})
fig.subplots_adjust(wspace=0.05)
for i, offset in enumerate([0.0, 0.6]):

ax[i].hist(x, bins=bins + offset, normed=True)
ax[i].plot(x, np.full_like(x, -0.01), '|k',

markeredgewidth=1)

On the left, the histogram makes clear that this is a bimodal distribution. On the right, we see
a unimodal distribution with a long tail. Without seeing the preceding code, you would probably
not guess that these two histograms were built from the same data: with that in mind, how can
you trust the intuition that histograms confer? And how might we improve on this?

Stepping back, we can think of a histogram as a stack of blocks, where we stack one block
within each bin on top of each point in the dataset. Let’s view this directly:

In [7]: fig, ax = plt.subplots()
bins = np.arange(-3, 8)
ax.plot(x, np.full_like(x, -0.1), '|k',

markeredgewidth=1)
for count, edge in zip(*np.histogram(x, bins)):

for i in range(count):
ax.add_patch(plt.Rectangle((edge, i), 1, 1,

alpha=0.5))
ax.set_xlim(-4, 8)
ax.set_ylim(-0.2, 8)

Out[7]: (-0.2, 8)
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The problem with our two binnings stems from the fact that the height of the block stack often
reflects not on the actual density of points nearby, but on coincidences of how the bins align with
the data points. This mis-alignment between points and their blocks is a potential cause of the
poor histogram results seen here. But what if, instead of stacking the blocks aligned with the bins,
we were to stack the blocks aligned with the points they represent? If we do this, the blocks won’t
be aligned, but we can add their contributions at each location along the x-axis to find the result.
Let’s try this:

In [8]: x_d = np.linspace(-4, 8, 2000)
density = sum((abs(xi - x_d) < 0.5) for xi in x)

plt.fill_between(x_d, density, alpha=0.5)
plt.plot(x, np.full_like(x, -0.1), '|k', markeredgewidth=1)

plt.axis([-4, 8, -0.2, 8]);
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The result looks a bit messy, but is a much more robust reflection of the actual data character-
istics than is the standard histogram. Still, the rough edges are not aesthetically pleasing, nor are
they reflective of any true properties of the data. In order to smooth them out, we might decide to
replace the blocks at each location with a smooth function, like a Gaussian. Let’s use a standard
normal curve at each point instead of a block:

In [9]: from scipy.stats import norm
x_d = np.linspace(-4, 8, 1000)
density = sum(norm(xi).pdf(x_d) for xi in x)

plt.fill_between(x_d, density, alpha=0.5)
plt.plot(x, np.full_like(x, -0.1), '|k', markeredgewidth=1)

plt.axis([-4, 8, -0.2, 5]);
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This smoothed-out plot, with a Gaussian distribution contributed at the location of each input
point, gives a much more accurate idea of the shape of the data distribution, and one which has
much less variance (i.e., changes much less in response to differences in sampling).

These last two plots are examples of kernel density estimation in one dimension: the first uses a
so-called “tophat” kernel and the second uses a Gaussian kernel. We’ll now look at kernel density
estimation in more detail.

1.2 Kernel Density Estimation in Practice

The free parameters of kernel density estimation are the kernel, which specifies the shape of the
distribution placed at each point, and the kernel bandwidth, which controls the size of the kernel at
each point. In practice, there are many kernels you might use for a kernel density estimation: in
particular, the Scikit-Learn KDE implementation supports one of six kernels, which you can read
about in Scikit-Learn’s Density Estimation documentation.

While there are several versions of kernel density estimation implemented in Python (notably
in the SciPy and StatsModels packages), I prefer to use Scikit-Learn’s version because of its ef-
ficiency and flexibility. It is implemented in the sklearn.neighbors.KernelDensity estimator,
which handles KDE in multiple dimensions with one of six kernels and one of a couple dozen
distance metrics. Because KDE can be fairly computationally intensive, the Scikit-Learn estimator
uses a tree-based algorithm under the hood and can trade off computation time for accuracy us-
ing the atol (absolute tolerance) and rtol (relative tolerance) parameters. The kernel bandwidth,
which is a free parameter, can be determined using Scikit-Learn’s standard cross validation tools
as we will soon see.
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Let’s first show a simple example of replicating the above plot using the Scikit-Learn
KernelDensity estimator:

In [10]: from sklearn.neighbors import KernelDensity

# instantiate and fit the KDE model
kde = KernelDensity(bandwidth=1.0, kernel='gaussian')
kde.fit(x[:, None])

# score_samples returns the log of the probability density
logprob = kde.score_samples(x_d[:, None])

plt.fill_between(x_d, np.exp(logprob), alpha=0.5)
plt.plot(x, np.full_like(x, -0.01), '|k', markeredgewidth=1)
plt.ylim(-0.02, 0.22)

Out[10]: (-0.02, 0.22)

The result here is normalized such that the area under the curve is equal to 1.

1.2.1 Selecting the bandwidth via cross-validation

The choice of bandwidth within KDE is extremely important to finding a suitable density estimate,
and is the knob that controls the bias–variance trade-off in the estimate of density: too narrow a
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bandwidth leads to a high-variance estimate (i.e., over-fitting), where the presence or absence of
a single point makes a large difference. Too wide a bandwidth leads to a high-bias estimate (i.e.,
under-fitting) where the structure in the data is washed out by the wide kernel.

There is a long history in statistics of methods to quickly estimate the best bandwidth based
on rather stringent assumptions about the data: if you look up the KDE implementations in the
SciPy and StatsModels packages, for example, you will see implementations based on some of
these rules.

In machine learning contexts, we’ve seen that such hyperparameter tuning often is done em-
pirically via a cross-validation approach. With this in mind, the KernelDensity estimator in Scikit-
Learn is designed such that it can be used directly within the Scikit-Learn’s standard grid search
tools. Here we will use GridSearchCV to optimize the bandwidth for the preceding dataset. Be-
cause we are looking at such a small dataset, we will use leave-one-out cross-validation, which
minimizes the reduction in training set size for each cross-validation trial:

In [11]: from sklearn.grid_search import GridSearchCV
from sklearn.cross_validation import LeaveOneOut

bandwidths = 10 ** np.linspace(-1, 1, 100)
grid = GridSearchCV(KernelDensity(kernel='gaussian'),

{'bandwidth': bandwidths},
cv=LeaveOneOut(len(x)))

grid.fit(x[:, None]);

Now we can find the choice of bandwidth which maximizes the score (which in this case
defaults to the log-likelihood):

In [12]: grid.best_params_

Out[12]: {'bandwidth': 1.1233240329780276}

The optimal bandwidth happens to be very close to what we used in the example plot earlier,
where the bandwidth was 1.0 (i.e., the default width of scipy.stats.norm).

1.3 Example: KDE on a Sphere

Perhaps the most common use of KDE is in graphically representing distributions of points. For
example, in the Seaborn visualization library (see Visualization With Seaborn), KDE is built in and
automatically used to help visualize points in one and two dimensions.

Here we will look at a slightly more sophisticated use of KDE for visualization of distributions.
We will make use of some geographic data that can be loaded with Scikit-Learn: the geographic
distributions of recorded observations of two South American mammals, Bradypus variegatus (the
Brown-throated Sloth) and Microryzomys minutus (the Forest Small Rice Rat).

With Scikit-Learn, we can fetch this data as follows:

In [13]: from sklearn.datasets import fetch_species_distributions

data = fetch_species_distributions()

# Get matrices/arrays of species IDs and locations
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latlon = np.vstack([data.train['dd lat'],
data.train['dd long']]).T

species = np.array([d.decode('ascii').startswith('micro')
for d in data.train['species']], dtype='int')

With this data loaded, we can use the Basemap toolkit (mentioned previously in Geographic
Data with Basemap) to plot the observed locations of these two species on the map of South Amer-
ica.

In [14]: from mpl_toolkits.basemap import Basemap
from sklearn.datasets.species_distributions import construct_grids

xgrid, ygrid = construct_grids(data)

# plot coastlines with basemap
m = Basemap(projection='cyl', resolution='c',

llcrnrlat=ygrid.min(), urcrnrlat=ygrid.max(),
llcrnrlon=xgrid.min(), urcrnrlon=xgrid.max())

m.drawmapboundary(fill_color='#DDEEFF')
m.fillcontinents(color='#FFEEDD')
m.drawcoastlines(color='gray', zorder=2)
m.drawcountries(color='gray', zorder=2)

# plot locations
m.scatter(latlon[:, 1], latlon[:, 0], zorder=3,

c=species, cmap='rainbow', latlon=True);
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Unfortunately, this doesn’t give a very good idea of the density of the species, because points
in the species range may overlap one another. You may not realize it by looking at this plot, but
there are over 1,600 points shown here!

Let’s use kernel density estimation to show this distribution in a more interpretable way: as a
smooth indication of density on the map. Because the coordinate system here lies on a spherical
surface rather than a flat plane, we will use the haversine distance metric, which will correctly
represent distances on a curved surface.

There is a bit of boilerplate code here (one of the disadvantages of the Basemap toolkit) but the
meaning of each code block should be clear:

In [15]: # Set up the data grid for the contour plot
X, Y = np.meshgrid(xgrid[::5], ygrid[::5][::-1])
land_reference = data.coverages[6][::5, ::5]
land_mask = (land_reference > -9999).ravel()
xy = np.vstack([Y.ravel(), X.ravel()]).T
xy = np.radians(xy[land_mask])

# Create two side-by-side plots
fig, ax = plt.subplots(1, 2)
fig.subplots_adjust(left=0.05, right=0.95, wspace=0.05)
species_names = ['Bradypus Variegatus', 'Microryzomys Minutus']
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cmaps = ['Purples', 'Reds']

for i, axi in enumerate(ax):
axi.set_title(species_names[i])

# plot coastlines with basemap
m = Basemap(projection='cyl', llcrnrlat=Y.min(),

urcrnrlat=Y.max(), llcrnrlon=X.min(),
urcrnrlon=X.max(), resolution='c', ax=axi)

m.drawmapboundary(fill_color='#DDEEFF')
m.drawcoastlines()
m.drawcountries()

# construct a spherical kernel density estimate of the distribution
kde = KernelDensity(bandwidth=0.03, metric='haversine')
kde.fit(np.radians(latlon[species == i]))

# evaluate only on the land: -9999 indicates ocean
Z = np.full(land_mask.shape[0], -9999.0)
Z[land_mask] = np.exp(kde.score_samples(xy))
Z = Z.reshape(X.shape)

# plot contours of the density
levels = np.linspace(0, Z.max(), 25)
axi.contourf(X, Y, Z, levels=levels, cmap=cmaps[i])
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Compared to the simple scatter plot we initially used, this visualization paints a much clearer
picture of the geographical distribution of observations of these two species.

1.4 Example: Not-So-Naive Bayes

This example looks at Bayesian generative classification with KDE, and demonstrates how to use
the Scikit-Learn architecture to create a custom estimator.

In In Depth: Naive Bayes Classification, we took a look at naive Bayesian classification, in
which we created a simple generative model for each class, and used these models to build a fast
classifier. For Gaussian naive Bayes, the generative model is a simple axis-aligned Gaussian. With
a density estimation algorithm like KDE, we can remove the “naive” element and perform the
same classification with a more sophisticated generative model for each class. It’s still Bayesian
classification, but it’s no longer naive.

The general approach for generative classification is this:

1. Split the training data by label.

2. For each set, fit a KDE to obtain a generative model of the data. This allows you for any
observation x and label y to compute a likelihood P(x | y).

3. From the number of examples of each class in the training set, compute the class prior, P(y).

4. For an unknown point x, the posterior probability for each class is P(y | x) ∝ P(x | y)P(y).
The class which maximizes this posterior is the label assigned to the point.

The algorithm is straightforward and intuitive to understand; the more difficult piece is couch-
ing it within the Scikit-Learn framework in order to make use of the grid search and cross-
validation architecture.

This is the code that implements the algorithm within the Scikit-Learn framework; we will
step through it following the code block:

In [16]: from sklearn.base import BaseEstimator, ClassifierMixin

class KDEClassifier(BaseEstimator, ClassifierMixin):
"""Bayesian generative classification based on KDE

Parameters
----------
bandwidth : float

the kernel bandwidth within each class
kernel : str

the kernel name, passed to KernelDensity
"""
def __init__(self, bandwidth=1.0, kernel='gaussian'):

self.bandwidth = bandwidth
self.kernel = kernel

def fit(self, X, y):
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self.classes_ = np.sort(np.unique(y))
training_sets = [X[y == yi] for yi in self.classes_]
self.models_ = [KernelDensity(bandwidth=self.bandwidth,

kernel=self.kernel).fit(Xi)
for Xi in training_sets]

self.logpriors_ = [np.log(Xi.shape[0] / X.shape[0])
for Xi in training_sets]

return self

def predict_proba(self, X):
logprobs = np.array([model.score_samples(X)

for model in self.models_]).T
result = np.exp(logprobs + self.logpriors_)
return result / result.sum(1, keepdims=True)

def predict(self, X):
return self.classes_[np.argmax(self.predict_proba(X), 1)]

1.4.1 The anatomy of a custom estimator

Let’s step through this code and discuss the essential features:

from sklearn.base import BaseEstimator, ClassifierMixin

class KDEClassifier(BaseEstimator, ClassifierMixin):
"""Bayesian generative classification based on KDE

Parameters
----------
bandwidth : float

the kernel bandwidth within each class
kernel : str

the kernel name, passed to KernelDensity
"""

Each estimator in Scikit-Learn is a class, and it is most convenient for this class to inherit from
the BaseEstimator class as well as the appropriate mixin, which provides standard functional-
ity. For example, among other things, here the BaseEstimator contains the logic necessary to
clone/copy an estimator for use in a cross-validation procedure, and ClassifierMixin defines
a default score() method used by such routines. We also provide a doc string, which will be
captured by IPython’s help functionality (see Help and Documentation in IPython).

Next comes the class initialization method:

def __init__(self, bandwidth=1.0, kernel='gaussian'):
self.bandwidth = bandwidth
self.kernel = kernel

This is the actual code that is executed when the object is instantiated with KDEClassifier().
In Scikit-Learn, it is important that initialization contains no operations other than assigning the

13

01.01-Help-And-Documentation.ipynb


passed values by name to self. This is due to the logic contained in BaseEstimator required for
cloning and modifying estimators for cross-validation, grid search, and other functions. Similarly,
all arguments to __init__ should be explicit: i.e. *args or **kwargs should be avoided, as they
will not be correctly handled within cross-validation routines.

Next comes the fit() method, where we handle training data:

def fit(self, X, y):
self.classes_ = np.sort(np.unique(y))
training_sets = [X[y == yi] for yi in self.classes_]
self.models_ = [KernelDensity(bandwidth=self.bandwidth,

kernel=self.kernel).fit(Xi)
for Xi in training_sets]

self.logpriors_ = [np.log(Xi.shape[0] / X.shape[0])
for Xi in training_sets]

return self

Here we find the unique classes in the training data, train a KernelDensity model for each
class, and compute the class priors based on the number of input samples. Finally, fit() should
always return self so that we can chain commands. For example:

label = model.fit(X, y).predict(X)

Notice that each persistent result of the fit is stored with a trailing underscore (e.g.,
self.logpriors_). This is a convention used in Scikit-Learn so that you can quickly scan the
members of an estimator (using IPython’s tab completion) and see exactly which members are fit
to training data.

Finally, we have the logic for predicting labels on new data:

def predict_proba(self, X):
logprobs = np.vstack([model.score_samples(X)

for model in self.models_]).T
result = np.exp(logprobs + self.logpriors_)
return result / result.sum(1, keepdims=True)

def predict(self, X):
return self.classes_[np.argmax(self.predict_proba(X), 1)]

Because this is a probabilistic classifier, we first implement predict_proba() which returns an
array of class probabilities of shape [n_samples, n_classes]. Entry [i, j] of this array is the
posterior probability that sample i is a member of class j, computed by multiplying the likelihood
by the class prior and normalizing.

Finally, the predict() method uses these probabilities and simply returns the class with the
largest probability.

1.4.2 Using our custom estimator

Let’s try this custom estimator on a problem we have seen before: the classification of hand-
written digits. Here we will load the digits, and compute the cross-validation score for a range
of candidate bandwidths using the GridSearchCV meta-estimator (refer back to Hyperparameters
and Model Validation):
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In [17]: from sklearn.datasets import load_digits
from sklearn.grid_search import GridSearchCV

digits = load_digits()

bandwidths = 10 ** np.linspace(0, 2, 100)
grid = GridSearchCV(KDEClassifier(), {'bandwidth': bandwidths})
grid.fit(digits.data, digits.target)

scores = [val.mean_validation_score for val in grid.grid_scores_]

Next we can plot the cross-validation score as a function of bandwidth:

In [18]: plt.semilogx(bandwidths, scores)
plt.xlabel('bandwidth')
plt.ylabel('accuracy')
plt.title('KDE Model Performance')
print(grid.best_params_)
print('accuracy =', grid.best_score_)

{'bandwidth': 7.0548023107186433}
accuracy = 0.966611018364
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We see that this not-so-naive Bayesian classifier reaches a cross-validation accuracy of just over
96%; this is compared to around 80% for the naive Bayesian classification:

In [19]: from sklearn.naive_bayes import GaussianNB
from sklearn.cross_validation import cross_val_score
cross_val_score(GaussianNB(), digits.data, digits.target).mean()

Out[19]: 0.81860038035501381

One benefit of such a generative classifier is interpretability of results: for each unknown sam-
ple, we not only get a probabilistic classification, but a full model of the distribution of points we
are comparing it to! If desired, this offers an intuitive window into the reasons for a particular
classification that algorithms like SVMs and random forests tend to obscure.

If you would like to take this further, there are some improvements that could be made to our
KDE classifier model:

• we could allow the bandwidth in each class to vary independently
• we could optimize these bandwidths not based on their prediction score, but on the likeli-

hood of the training data under the generative model within each class (i.e. use the scores
from KernelDensity itself rather than the global prediction accuracy)

Finally, if you want some practice building your own estimator, you might tackle building a
similar Bayesian classifier using Gaussian Mixture Models instead of KDE.

< In Depth: Gaussian Mixture Models | Contents | Application: A Face Detection Pipeline >
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05.14-Image-Features

October 29, 2018

This notebook contains an excerpt from the Python Data Science Handbook by Jake VanderPlas; the
content is available on GitHub.

The text is released under the CC-BY-NC-ND license, and code is released under the MIT license. If
you find this content useful, please consider supporting the work by buying the book!

< In-Depth: Kernel Density Estimation | Contents | Further Machine Learning Resources >

1 Application: A Face Detection Pipeline

This chapter has explored a number of the central concepts and algorithms of machine learning.
But moving from these concepts to real-world application can be a challenge. Real-world datasets
are noisy and heterogeneous, may have missing features, and data may be in a form that is dif-
ficult to map to a clean [n_samples, n_features] matrix. Before applying any of the methods
discussed here, you must first extract these features from your data: there is no formula for how to
do this that applies across all domains, and thus this is where you as a data scientist must exercise
your own intuition and expertise.

One interesting and compelling application of machine learning is to images, and we have
already seen a few examples of this where pixel-level features are used for classification. In the
real world, data is rarely so uniform and simple pixels will not be suitable: this has led to a large
literature on feature extraction methods for image data (see Feature Engineering).

In this section, we will take a look at one such feature extraction technique, the Histogram of
Oriented Gradients (HOG), which transforms image pixels into a vector representation that is sen-
sitive to broadly informative image features regardless of confounding factors like illumination.
We will use these features to develop a simple face detection pipeline, using machine learning
algorithms and concepts we’ve seen throughout this chapter.

We begin with the standard imports:

In [1]: %matplotlib inline
import matplotlib.pyplot as plt
import seaborn as sns; sns.set()
import numpy as np

1.1 HOG Features

The Histogram of Gradients is a straightforward feature extraction procedure that was developed
in the context of identifying pedestrians within images. HOG involves the following steps:

1. Optionally pre-normalize images. This leads to features that resist dependence on variations
in illumination.
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2. Convolve the image with two filters that are sensitive to horizontal and vertical brightness
gradients. These capture edge, contour, and texture information.

3. Subdivide the image into cells of a predetermined size, and compute a histogram of the
gradient orientations within each cell.

4. Normalize the histograms in each cell by comparing to the block of neighboring cells. This
further suppresses the effect of illumination across the image.

5. Construct a one-dimensional feature vector from the information in each cell.

A fast HOG extractor is built into the Scikit-Image project, and we can try it out relatively
quickly and visualize the oriented gradients within each cell:

In [2]: from skimage import data, color, feature
import skimage.data

image = color.rgb2gray(data.chelsea())
hog_vec, hog_vis = feature.hog(image, visualise=True)

fig, ax = plt.subplots(1, 2, figsize=(12, 6),
subplot_kw=dict(xticks=[], yticks=[]))

ax[0].imshow(image, cmap='gray')
ax[0].set_title('input image')

ax[1].imshow(hog_vis)
ax[1].set_title('visualization of HOG features');

1.2 HOG in Action: A Simple Face Detector

Using these HOG features, we can build up a simple facial detection algorithm with any Scikit-
Learn estimator; here we will use a linear support vector machine (refer back to In-Depth: Support
Vector Machines if you need a refresher on this). The steps are as follows:

1. Obtain a set of image thumbnails of faces to constitute “positive” training samples.
2. Obtain a set of image thumbnails of non-faces to constitute “negative” training samples.
3. Extract HOG features from these training samples.
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4. Train a linear SVM classifier on these samples.
5. For an “unknown” image, pass a sliding window across the image, using the model to eval-

uate whether that window contains a face or not.
6. If detections overlap, combine them into a single window.

Let’s go through these steps and try it out:

1.2.1 1. Obtain a set of positive training samples

Let’s start by finding some positive training samples that show a variety of faces. We have one
easy set of data to work with—the Labeled Faces in the Wild dataset, which can be downloaded
by Scikit-Learn:

In [3]: from sklearn.datasets import fetch_lfw_people
faces = fetch_lfw_people()
positive_patches = faces.images
positive_patches.shape

Out[3]: (13233, 62, 47)

This gives us a sample of 13,000 face images to use for training.

1.2.2 2. Obtain a set of negative training samples

Next we need a set of similarly sized thumbnails which do not have a face in them. One way to
do this is to take any corpus of input images, and extract thumbnails from them at a variety of
scales. Here we can use some of the images shipped with Scikit-Image, along with Scikit-Learn’s
PatchExtractor:

In [4]: from skimage import data, transform

imgs_to_use = ['camera', 'text', 'coins', 'moon',
'page', 'clock', 'immunohistochemistry',
'chelsea', 'coffee', 'hubble_deep_field']

images = [color.rgb2gray(getattr(data, name)())
for name in imgs_to_use]

In [5]: from sklearn.feature_extraction.image import PatchExtractor

def extract_patches(img, N, scale=1.0, patch_size=positive_patches[0].shape):
extracted_patch_size = tuple((scale * np.array(patch_size)).astype(int))
extractor = PatchExtractor(patch_size=extracted_patch_size,

max_patches=N, random_state=0)
patches = extractor.transform(img[np.newaxis])
if scale != 1:

patches = np.array([transform.resize(patch, patch_size)
for patch in patches])

return patches
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negative_patches = np.vstack([extract_patches(im, 1000, scale)
for im in images for scale in [0.5, 1.0, 2.0]])

negative_patches.shape

Out[5]: (30000, 62, 47)

We now have 30,000 suitable image patches which do not contain faces. Let’s take a look at a
few of them to get an idea of what they look like:

In [6]: fig, ax = plt.subplots(6, 10)
for i, axi in enumerate(ax.flat):

axi.imshow(negative_patches[500 * i], cmap='gray')
axi.axis('off')

Our hope is that these would sufficiently cover the space of “non-faces” that our algorithm is
likely to see.

1.2.3 3. Combine sets and extract HOG features

Now that we have these positive samples and negative samples, we can combine them and com-
pute HOG features. This step takes a little while, because the HOG features involve a nontrivial
computation for each image:
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In [7]: from itertools import chain
X_train = np.array([feature.hog(im)

for im in chain(positive_patches,
negative_patches)])

y_train = np.zeros(X_train.shape[0])
y_train[:positive_patches.shape[0]] = 1

In [8]: X_train.shape

Out[8]: (43233, 1215)

We are left with 43,000 training samples in 1,215 dimensions, and we now have our data in a
form that we can feed into Scikit-Learn!

1.2.4 4. Training a support vector machine

Next we use the tools we have been exploring in this chapter to create a classifier of thumbnail
patches. For such a high-dimensional binary classification task, a Linear support vector machine
is a good choice. We will use Scikit-Learn’s LinearSVC, because in comparison to SVC it often has
better scaling for large number of samples.

First, though, let’s use a simple Gaussian naive Bayes to get a quick baseline:

In [9]: from sklearn.naive_bayes import GaussianNB
from sklearn.cross_validation import cross_val_score

cross_val_score(GaussianNB(), X_train, y_train)

Out[9]: array([ 0.9408785 , 0.8752342 , 0.93976823])

We see that on our training data, even a simple naive Bayes algorithm gets us upwards of 90%
accuracy. Let’s try the support vector machine, with a grid search over a few choices of the C
parameter:

In [10]: from sklearn.svm import LinearSVC
from sklearn.grid_search import GridSearchCV
grid = GridSearchCV(LinearSVC(), {'C': [1.0, 2.0, 4.0, 8.0]})
grid.fit(X_train, y_train)
grid.best_score_

Out[10]: 0.98667684407744083

In [11]: grid.best_params_

Out[11]: {'C': 4.0}

Let’s take the best estimator and re-train it on the full dataset:

In [12]: model = grid.best_estimator_
model.fit(X_train, y_train)

Out[12]: LinearSVC(C=4.0, class_weight=None, dual=True, fit_intercept=True,
intercept_scaling=1, loss='squared_hinge', max_iter=1000,
multi_class='ovr', penalty='l2', random_state=None, tol=0.0001,
verbose=0)
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1.2.5 5. Find faces in a new image

Now that we have this model in place, let’s grab a new image and see how the model does. We
will use one portion of the astronaut image for simplicity (see discussion of this in Section 1.3),
and run a sliding window over it and evaluate each patch:

In [13]: test_image = skimage.data.astronaut()
test_image = skimage.color.rgb2gray(test_image)
test_image = skimage.transform.rescale(test_image, 0.5)
test_image = test_image[:160, 40:180]

plt.imshow(test_image, cmap='gray')
plt.axis('off');

Next, let’s create a window that iterates over patches of this image, and compute HOG features
for each patch:

In [14]: def sliding_window(img, patch_size=positive_patches[0].shape,
istep=2, jstep=2, scale=1.0):

Ni, Nj = (int(scale * s) for s in patch_size)
for i in range(0, img.shape[0] - Ni, istep):
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for j in range(0, img.shape[1] - Ni, jstep):
patch = img[i:i + Ni, j:j + Nj]
if scale != 1:

patch = transform.resize(patch, patch_size)
yield (i, j), patch

indices, patches = zip(*sliding_window(test_image))
patches_hog = np.array([feature.hog(patch) for patch in patches])
patches_hog.shape

Out[14]: (1911, 1215)

Finally, we can take these HOG-featured patches and use our model to evaluate whether each
patch contains a face:

In [15]: labels = model.predict(patches_hog)
labels.sum()

Out[15]: 33.0

We see that out of nearly 2,000 patches, we have found 30 detections. Let’s use the information
we have about these patches to show where they lie on our test image, drawing them as rectangles:

In [16]: fig, ax = plt.subplots()
ax.imshow(test_image, cmap='gray')
ax.axis('off')

Ni, Nj = positive_patches[0].shape
indices = np.array(indices)

for i, j in indices[labels == 1]:
ax.add_patch(plt.Rectangle((j, i), Nj, Ni, edgecolor='red',

alpha=0.3, lw=2, facecolor='none'))
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All of the detected patches overlap and found the face in the image! Not bad for a few lines of
Python.

1.3 Caveats and Improvements

If you dig a bit deeper into the preceding code and examples, you’ll see that we still have a bit
of work before we can claim a production-ready face detector. There are several issues with what
we’ve done, and several improvements that could be made. In particular:

1.3.1 Our training set, especially for negative features, is not very complete

The central issue is that there are many face-like textures that are not in the training set, and so our
current model is very prone to false positives. You can see this if you try out the above algorithm
on the full astronaut image: the current model leads to many false detections in other regions of
the image.

We might imagine addressing this by adding a wider variety of images to the negative training
set, and this would probably yield some improvement. Another way to address this is to use a
more directed approach, such as hard negative mining. In hard negative mining, we take a new
set of images that our classifier has not seen, find all the patches representing false positives, and
explicitly add them as negative instances in the training set before re-training the classifier.
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1.3.2 Our current pipeline searches only at one scale

As currently written, our algorithm will miss faces that are not approximately 62Œ47 pixels.
This can be straightforwardly addressed by using sliding windows of a variety of sizes, and re-
sizing each patch using skimage.transform.resize before feeding it into the model. In fact, the
sliding_window() utility used here is already built with this in mind.

1.3.3 We should combine overlapped detection patches

For a production-ready pipeline, we would prefer not to have 30 detections of the same face, but
to somehow reduce overlapping groups of detections down to a single detection. This could be
done via an unsupervised clustering approach (MeanShift Clustering is one good candidate for
this), or via a procedural approach such as non-maximum suppression, an algorithm common in
machine vision.

1.3.4 The pipeline should be streamlined

Once we address these issues, it would also be nice to create a more streamlined pipeline for
ingesting training images and predicting sliding-window outputs. This is where Python as a data
science tool really shines: with a bit of work, we could take our prototype code and package it
with a well-designed object-oriented API that give the user the ability to use this easily. I will
leave this as a proverbial “exercise for the reader”.

1.3.5 More recent advances: Deep Learning

Finally, I should add that HOG and other procedural feature extraction methods for images are no
longer state-of-the-art techniques. Instead, many modern object detection pipelines use variants
of deep neural networks: one way to think of neural networks is that they are an estimator which
determines optimal feature extraction strategies from the data, rather than relying on the intuition
of the user. An intro to these deep neural net methods is conceptually (and computationally!)
beyond the scope of this section, although open tools like Google’s TensorFlow have recently
made deep learning approaches much more accessible than they once were. As of the writing of
this book, deep learning in Python is still relatively young, and so I can’t yet point to any definitive
resource. That said, the list of references in the following section should provide a useful place to
start!

< In-Depth: Kernel Density Estimation | Contents | Further Machine Learning Resources >
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05.15-Learning-More

October 29, 2018

This notebook contains an excerpt from the Python Data Science Handbook by Jake VanderPlas; the
content is available on GitHub.

The text is released under the CC-BY-NC-ND license, and code is released under the MIT license. If
you find this content useful, please consider supporting the work by buying the book!

< Application: A Face Detection Pipeline | Contents | Appendix: Figure Code >

1 Further Machine Learning Resources

This chapter has been a quick tour of machine learning in Python, primarily using the tools within
the Scikit-Learn library. As long as the chapter is, it is still too short to cover many interesting and
important algorithms, approaches, and discussions. Here I want to suggest some resources to
learn more about machine learning for those who are interested.

1.1 Machine Learning in Python

To learn more about machine learning in Python, I’d suggest some of the following resources:

• The Scikit-Learn website: The Scikit-Learn website has an impressive breadth of documen-
tation and examples covering some of the models discussed here, and much, much more. If
you want a brief survey of the most important and often-used machine learning algorithms,
this website is a good place to start.

• SciPy, PyCon, and PyData tutorial videos: Scikit-Learn and other machine learning topics are
perennial favorites in the tutorial tracks of many Python-focused conference series, in par-
ticular the PyCon, SciPy, and PyData conferences. You can find the most recent ones via a
simple web search.

• Introduction to Machine Learning with Python: Written by Andreas C. Mueller and Sarah
Guido, this book includes a fuller treatment of the topics in this chapter. If you’re interested
in reviewing the fundamentals of Machine Learning and pushing the Scikit-Learn toolkit
to its limits, this is a great resource, written by one of the most prolific developers on the
Scikit-Learn team.

• Python Machine Learning: Sebastian Raschka’s book focuses less on Scikit-learn itself, and
more on the breadth of machine learning tools available in Python. In particular, there is
some very useful discussion on how to scale Python-based machine learning approaches to
large and complex datasets.
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1.2 General Machine Learning

Of course, machine learning is much broader than just the Python world. There are many good
resources to take your knowledge further, and here I will highlight a few that I have found useful:

• Machine Learning: Taught by Andrew Ng (Coursera), this is a very clearly-taught free on-
line course which covers the basics of machine learning from an algorithmic perspective. It
assumes undergraduate-level understanding of mathematics and programming, and steps
through detailed considerations of some of the most important machine learning algorithms.
Homework assignments, which are algorithmically graded, have you actually implement
some of these models yourself.

• Pattern Recognition and Machine Learning: Written by Christopher Bishop, this classic techni-
cal text covers the concepts of machine learning discussed in this chapter in detail. If you
plan to go further in this subject, you should have this book on your shelf.

• Machine Learning: a Probabilistic Perspective: Written by Kevin Murphy, this is an excellent
graduate-level text that explores nearly all important machine learning algorithms from a
ground-up, unified probabilistic perspective.

These resources are more technical than the material presented in this book, but to really un-
derstand the fundamentals of these methods requires a deep dive into the mathematics behind
them. If you’re up for the challenge and ready to bring your data science to the next level, don’t
hesitate to dive-in!

< Application: A Face Detection Pipeline | Contents | Appendix: Figure Code >
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06.00-Figure-Code

October 29, 2018

This notebook contains an excerpt from the Python Data Science Handbook by Jake VanderPlas; the
content is available on GitHub.

The text is released under the CC-BY-NC-ND license, and code is released under the MIT license. If
you find this content useful, please consider supporting the work by buying the book!

< Further Machine Learning Resources | Contents |

1 Appendix: Figure Code

Many of the figures used throughout this text are created in-place by code that appears in print.
In a few cases, however, the required code is long enough (or not immediately relevant enough)
that we instead put it here for reference.

In [1]: %matplotlib inline
import matplotlib.pyplot as plt
import numpy as np
import seaborn as sns

In [2]: import os
if not os.path.exists('figures'):

os.makedirs('figures')

1.1 Broadcasting

Figure Context

In [3]: # Adapted from astroML: see http://www.astroml.org/book_figures/appendix/fig_broadcast_visual.html
import numpy as np
from matplotlib import pyplot as plt

#------------------------------------------------------------
# Draw a figure and axis with no boundary
fig = plt.figure(figsize=(6, 4.5), facecolor='w')
ax = plt.axes([0, 0, 1, 1], xticks=[], yticks=[], frameon=False)

def draw_cube(ax, xy, size, depth=0.4,
edges=None, label=None, label_kwargs=None, **kwargs):
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"""draw and label a cube. edges is a list of numbers between
1 and 12, specifying which of the 12 cube edges to draw"""
if edges is None:

edges = range(1, 13)

x, y = xy

if 1 in edges:
ax.plot([x, x + size],

[y + size, y + size], **kwargs)
if 2 in edges:

ax.plot([x + size, x + size],
[y, y + size], **kwargs)

if 3 in edges:
ax.plot([x, x + size],

[y, y], **kwargs)
if 4 in edges:

ax.plot([x, x],
[y, y + size], **kwargs)

if 5 in edges:
ax.plot([x, x + depth],

[y + size, y + depth + size], **kwargs)
if 6 in edges:

ax.plot([x + size, x + size + depth],
[y + size, y + depth + size], **kwargs)

if 7 in edges:
ax.plot([x + size, x + size + depth],

[y, y + depth], **kwargs)
if 8 in edges:

ax.plot([x, x + depth],
[y, y + depth], **kwargs)

if 9 in edges:
ax.plot([x + depth, x + depth + size],

[y + depth + size, y + depth + size], **kwargs)
if 10 in edges:

ax.plot([x + depth + size, x + depth + size],
[y + depth, y + depth + size], **kwargs)

if 11 in edges:
ax.plot([x + depth, x + depth + size],

[y + depth, y + depth], **kwargs)
if 12 in edges:

ax.plot([x + depth, x + depth],
[y + depth, y + depth + size], **kwargs)

if label:
if label_kwargs is None:
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label_kwargs = {}
ax.text(x + 0.5 * size, y + 0.5 * size, label,

ha='center', va='center', **label_kwargs)

solid = dict(c='black', ls='-', lw=1,
label_kwargs=dict(color='k'))

dotted = dict(c='black', ls='-', lw=0.5, alpha=0.5,
label_kwargs=dict(color='gray'))

depth = 0.3

#------------------------------------------------------------
# Draw top operation: vector plus scalar
draw_cube(ax, (1, 10), 1, depth, [1, 2, 3, 4, 5, 6, 9], '0', **solid)
draw_cube(ax, (2, 10), 1, depth, [1, 2, 3, 6, 9], '1', **solid)
draw_cube(ax, (3, 10), 1, depth, [1, 2, 3, 6, 7, 9, 10], '2', **solid)

draw_cube(ax, (6, 10), 1, depth, [1, 2, 3, 4, 5, 6, 7, 9, 10], '5', **solid)
draw_cube(ax, (7, 10), 1, depth, [1, 2, 3, 6, 7, 9, 10, 11], '5', **dotted)
draw_cube(ax, (8, 10), 1, depth, [1, 2, 3, 6, 7, 9, 10, 11], '5', **dotted)

draw_cube(ax, (12, 10), 1, depth, [1, 2, 3, 4, 5, 6, 9], '5', **solid)
draw_cube(ax, (13, 10), 1, depth, [1, 2, 3, 6, 9], '6', **solid)
draw_cube(ax, (14, 10), 1, depth, [1, 2, 3, 6, 7, 9, 10], '7', **solid)

ax.text(5, 10.5, '+', size=12, ha='center', va='center')
ax.text(10.5, 10.5, '=', size=12, ha='center', va='center')
ax.text(1, 11.5, r'${\tt np.arange(3) + 5}$',

size=12, ha='left', va='bottom')

#------------------------------------------------------------
# Draw middle operation: matrix plus vector

# first block
draw_cube(ax, (1, 7.5), 1, depth, [1, 2, 3, 4, 5, 6, 9], '1', **solid)
draw_cube(ax, (2, 7.5), 1, depth, [1, 2, 3, 6, 9], '1', **solid)
draw_cube(ax, (3, 7.5), 1, depth, [1, 2, 3, 6, 7, 9, 10], '1', **solid)

draw_cube(ax, (1, 6.5), 1, depth, [2, 3, 4], '1', **solid)
draw_cube(ax, (2, 6.5), 1, depth, [2, 3], '1', **solid)
draw_cube(ax, (3, 6.5), 1, depth, [2, 3, 7, 10], '1', **solid)

draw_cube(ax, (1, 5.5), 1, depth, [2, 3, 4], '1', **solid)
draw_cube(ax, (2, 5.5), 1, depth, [2, 3], '1', **solid)
draw_cube(ax, (3, 5.5), 1, depth, [2, 3, 7, 10], '1', **solid)

# second block
draw_cube(ax, (6, 7.5), 1, depth, [1, 2, 3, 4, 5, 6, 9], '0', **solid)
draw_cube(ax, (7, 7.5), 1, depth, [1, 2, 3, 6, 9], '1', **solid)
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draw_cube(ax, (8, 7.5), 1, depth, [1, 2, 3, 6, 7, 9, 10], '2', **solid)

draw_cube(ax, (6, 6.5), 1, depth, range(2, 13), '0', **dotted)
draw_cube(ax, (7, 6.5), 1, depth, [2, 3, 6, 7, 9, 10, 11], '1', **dotted)
draw_cube(ax, (8, 6.5), 1, depth, [2, 3, 6, 7, 9, 10, 11], '2', **dotted)

draw_cube(ax, (6, 5.5), 1, depth, [2, 3, 4, 7, 8, 10, 11, 12], '0', **dotted)
draw_cube(ax, (7, 5.5), 1, depth, [2, 3, 7, 10, 11], '1', **dotted)
draw_cube(ax, (8, 5.5), 1, depth, [2, 3, 7, 10, 11], '2', **dotted)

# third block
draw_cube(ax, (12, 7.5), 1, depth, [1, 2, 3, 4, 5, 6, 9], '1', **solid)
draw_cube(ax, (13, 7.5), 1, depth, [1, 2, 3, 6, 9], '2', **solid)
draw_cube(ax, (14, 7.5), 1, depth, [1, 2, 3, 6, 7, 9, 10], '3', **solid)

draw_cube(ax, (12, 6.5), 1, depth, [2, 3, 4], '1', **solid)
draw_cube(ax, (13, 6.5), 1, depth, [2, 3], '2', **solid)
draw_cube(ax, (14, 6.5), 1, depth, [2, 3, 7, 10], '3', **solid)

draw_cube(ax, (12, 5.5), 1, depth, [2, 3, 4], '1', **solid)
draw_cube(ax, (13, 5.5), 1, depth, [2, 3], '2', **solid)
draw_cube(ax, (14, 5.5), 1, depth, [2, 3, 7, 10], '3', **solid)

ax.text(5, 7.0, '+', size=12, ha='center', va='center')
ax.text(10.5, 7.0, '=', size=12, ha='center', va='center')
ax.text(1, 9.0, r'${\tt np.ones((3,\, 3)) + np.arange(3)}$',

size=12, ha='left', va='bottom')

#------------------------------------------------------------
# Draw bottom operation: vector plus vector, double broadcast

# first block
draw_cube(ax, (1, 3), 1, depth, [1, 2, 3, 4, 5, 6, 7, 9, 10], '0', **solid)
draw_cube(ax, (1, 2), 1, depth, [2, 3, 4, 7, 10], '1', **solid)
draw_cube(ax, (1, 1), 1, depth, [2, 3, 4, 7, 10], '2', **solid)

draw_cube(ax, (2, 3), 1, depth, [1, 2, 3, 6, 7, 9, 10, 11], '0', **dotted)
draw_cube(ax, (2, 2), 1, depth, [2, 3, 7, 10, 11], '1', **dotted)
draw_cube(ax, (2, 1), 1, depth, [2, 3, 7, 10, 11], '2', **dotted)

draw_cube(ax, (3, 3), 1, depth, [1, 2, 3, 6, 7, 9, 10, 11], '0', **dotted)
draw_cube(ax, (3, 2), 1, depth, [2, 3, 7, 10, 11], '1', **dotted)
draw_cube(ax, (3, 1), 1, depth, [2, 3, 7, 10, 11], '2', **dotted)

# second block
draw_cube(ax, (6, 3), 1, depth, [1, 2, 3, 4, 5, 6, 9], '0', **solid)
draw_cube(ax, (7, 3), 1, depth, [1, 2, 3, 6, 9], '1', **solid)
draw_cube(ax, (8, 3), 1, depth, [1, 2, 3, 6, 7, 9, 10], '2', **solid)

4



draw_cube(ax, (6, 2), 1, depth, range(2, 13), '0', **dotted)
draw_cube(ax, (7, 2), 1, depth, [2, 3, 6, 7, 9, 10, 11], '1', **dotted)
draw_cube(ax, (8, 2), 1, depth, [2, 3, 6, 7, 9, 10, 11], '2', **dotted)

draw_cube(ax, (6, 1), 1, depth, [2, 3, 4, 7, 8, 10, 11, 12], '0', **dotted)
draw_cube(ax, (7, 1), 1, depth, [2, 3, 7, 10, 11], '1', **dotted)
draw_cube(ax, (8, 1), 1, depth, [2, 3, 7, 10, 11], '2', **dotted)

# third block
draw_cube(ax, (12, 3), 1, depth, [1, 2, 3, 4, 5, 6, 9], '0', **solid)
draw_cube(ax, (13, 3), 1, depth, [1, 2, 3, 6, 9], '1', **solid)
draw_cube(ax, (14, 3), 1, depth, [1, 2, 3, 6, 7, 9, 10], '2', **solid)

draw_cube(ax, (12, 2), 1, depth, [2, 3, 4], '1', **solid)
draw_cube(ax, (13, 2), 1, depth, [2, 3], '2', **solid)
draw_cube(ax, (14, 2), 1, depth, [2, 3, 7, 10], '3', **solid)

draw_cube(ax, (12, 1), 1, depth, [2, 3, 4], '2', **solid)
draw_cube(ax, (13, 1), 1, depth, [2, 3], '3', **solid)
draw_cube(ax, (14, 1), 1, depth, [2, 3, 7, 10], '4', **solid)

ax.text(5, 2.5, '+', size=12, ha='center', va='center')
ax.text(10.5, 2.5, '=', size=12, ha='center', va='center')
ax.text(1, 4.5, r'${\tt np.arange(3).reshape((3,\, 1)) + np.arange(3)}$',

ha='left', size=12, va='bottom')

ax.set_xlim(0, 16)
ax.set_ylim(0.5, 12.5)

fig.savefig('figures/02.05-broadcasting.png')
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1.2 Aggregation and Grouping

Figures from the chapter on aggregation and grouping

1.2.1 Split-Apply-Combine

In [4]: def draw_dataframe(df, loc=None, width=None, ax=None, linestyle=None,
textstyle=None):

loc = loc or [0, 0]
width = width or 1

x, y = loc

if ax is None:
ax = plt.gca()

ncols = len(df.columns) + 1
nrows = len(df.index) + 1

dx = dy = width / ncols
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if linestyle is None:
linestyle = {'color':'black'}

if textstyle is None:
textstyle = {'size': 12}

textstyle.update({'ha':'center', 'va':'center'})

# draw vertical lines
for i in range(ncols + 1):

plt.plot(2 * [x + i * dx], [y, y + dy * nrows], **linestyle)

# draw horizontal lines
for i in range(nrows + 1):

plt.plot([x, x + dx * ncols], 2 * [y + i * dy], **linestyle)

# Create index labels
for i in range(nrows - 1):

plt.text(x + 0.5 * dx, y + (i + 0.5) * dy,
str(df.index[::-1][i]), **textstyle)

# Create column labels
for i in range(ncols - 1):

plt.text(x + (i + 1.5) * dx, y + (nrows - 0.5) * dy,
str(df.columns[i]), style='italic', **textstyle)

# Add index label
if df.index.name:

plt.text(x + 0.5 * dx, y + (nrows - 0.5) * dy,
str(df.index.name), style='italic', **textstyle)

# Insert data
for i in range(nrows - 1):

for j in range(ncols - 1):
plt.text(x + (j + 1.5) * dx,

y + (i + 0.5) * dy,
str(df.values[::-1][i, j]), **textstyle)

#----------------------------------------------------------
# Draw figure

import pandas as pd
df = pd.DataFrame({'data': [1, 2, 3, 4, 5, 6]},

index=['A', 'B', 'C', 'A', 'B', 'C'])
df.index.name = 'key'
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fig = plt.figure(figsize=(8, 6), facecolor='white')
ax = plt.axes([0, 0, 1, 1])

ax.axis('off')

draw_dataframe(df, [0, 0])

for y, ind in zip([3, 1, -1], 'ABC'):
split = df[df.index == ind]
draw_dataframe(split, [2, y])

sum = pd.DataFrame(split.sum()).T
sum.index = [ind]
sum.index.name = 'key'
sum.columns = ['data']
draw_dataframe(sum, [4, y + 0.25])

result = df.groupby(df.index).sum()
draw_dataframe(result, [6, 0.75])

style = dict(fontsize=14, ha='center', weight='bold')
plt.text(0.5, 3.6, "Input", **style)
plt.text(2.5, 4.6, "Split", **style)
plt.text(4.5, 4.35, "Apply (sum)", **style)
plt.text(6.5, 2.85, "Combine", **style)

arrowprops = dict(facecolor='black', width=1, headwidth=6)
plt.annotate('', (1.8, 3.6), (1.2, 2.8), arrowprops=arrowprops)
plt.annotate('', (1.8, 1.75), (1.2, 1.75), arrowprops=arrowprops)
plt.annotate('', (1.8, -0.1), (1.2, 0.7), arrowprops=arrowprops)

plt.annotate('', (3.8, 3.8), (3.2, 3.8), arrowprops=arrowprops)
plt.annotate('', (3.8, 1.75), (3.2, 1.75), arrowprops=arrowprops)
plt.annotate('', (3.8, -0.3), (3.2, -0.3), arrowprops=arrowprops)

plt.annotate('', (5.8, 2.8), (5.2, 3.6), arrowprops=arrowprops)
plt.annotate('', (5.8, 1.75), (5.2, 1.75), arrowprops=arrowprops)
plt.annotate('', (5.8, 0.7), (5.2, -0.1), arrowprops=arrowprops)

plt.axis('equal')
plt.ylim(-1.5, 5);

fig.savefig('figures/03.08-split-apply-combine.png')
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1.3 What Is Machine Learning?

In [5]: # common plot formatting for below
def format_plot(ax, title):

ax.xaxis.set_major_formatter(plt.NullFormatter())
ax.yaxis.set_major_formatter(plt.NullFormatter())
ax.set_xlabel('feature 1', color='gray')
ax.set_ylabel('feature 2', color='gray')
ax.set_title(title, color='gray')

1.3.1 Classification Example Figures

Figure context
The following code generates the figures from the Classification section.

In [6]: from sklearn.datasets.samples_generator import make_blobs
from sklearn.svm import SVC

# create 50 separable points
X, y = make_blobs(n_samples=50, centers=2,
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random_state=0, cluster_std=0.60)

# fit the support vector classifier model
clf = SVC(kernel='linear')
clf.fit(X, y)

# create some new points to predict
X2, _ = make_blobs(n_samples=80, centers=2,

random_state=0, cluster_std=0.80)
X2 = X2[50:]

# predict the labels
y2 = clf.predict(X2)

Classification Example Figure 1

In [7]: # plot the data
fig, ax = plt.subplots(figsize=(8, 6))
point_style = dict(cmap='Paired', s=50)
ax.scatter(X[:, 0], X[:, 1], c=y, **point_style)

# format plot
format_plot(ax, 'Input Data')
ax.axis([-1, 4, -2, 7])

fig.savefig('figures/05.01-classification-1.png')
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Classification Example Figure 2

In [8]: # Get contours describing the model
xx = np.linspace(-1, 4, 10)
yy = np.linspace(-2, 7, 10)
xy1, xy2 = np.meshgrid(xx, yy)
Z = np.array([clf.decision_function([t])

for t in zip(xy1.flat, xy2.flat)]).reshape(xy1.shape)

# plot points and model
fig, ax = plt.subplots(figsize=(8, 6))
line_style = dict(levels = [-1.0, 0.0, 1.0],

linestyles = ['dashed', 'solid', 'dashed'],
colors = 'gray', linewidths=1)

ax.scatter(X[:, 0], X[:, 1], c=y, **point_style)
ax.contour(xy1, xy2, Z, **line_style)

# format plot
format_plot(ax, 'Model Learned from Input Data')
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ax.axis([-1, 4, -2, 7])

fig.savefig('figures/05.01-classification-2.png')

Classification Example Figure 3

In [9]: # plot the results
fig, ax = plt.subplots(1, 2, figsize=(16, 6))
fig.subplots_adjust(left=0.0625, right=0.95, wspace=0.1)

ax[0].scatter(X2[:, 0], X2[:, 1], c='gray', **point_style)
ax[0].axis([-1, 4, -2, 7])

ax[1].scatter(X2[:, 0], X2[:, 1], c=y2, **point_style)
ax[1].contour(xy1, xy2, Z, **line_style)
ax[1].axis([-1, 4, -2, 7])

format_plot(ax[0], 'Unknown Data')
format_plot(ax[1], 'Predicted Labels')
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fig.savefig('figures/05.01-classification-3.png')

1.3.2 Regression Example Figures

Figure Context
The following code generates the figures from the regression section.

In [10]: from sklearn.linear_model import LinearRegression

# Create some data for the regression
rng = np.random.RandomState(1)

X = rng.randn(200, 2)
y = np.dot(X, [-2, 1]) + 0.1 * rng.randn(X.shape[0])

# fit the regression model
model = LinearRegression()
model.fit(X, y)

# create some new points to predict
X2 = rng.randn(100, 2)

# predict the labels
y2 = model.predict(X2)

Regression Example Figure 1

In [11]: # plot data points
fig, ax = plt.subplots()
points = ax.scatter(X[:, 0], X[:, 1], c=y, s=50,

cmap='viridis')
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# format plot
format_plot(ax, 'Input Data')
ax.axis([-4, 4, -3, 3])

fig.savefig('figures/05.01-regression-1.png')

Regression Example Figure 2

In [12]: from mpl_toolkits.mplot3d.art3d import Line3DCollection

points = np.hstack([X, y[:, None]]).reshape(-1, 1, 3)
segments = np.hstack([points, points])
segments[:, 0, 2] = -8

# plot points in 3D
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
ax.scatter(X[:, 0], X[:, 1], y, c=y, s=35,

cmap='viridis')
ax.add_collection3d(Line3DCollection(segments, colors='gray', alpha=0.2))
ax.scatter(X[:, 0], X[:, 1], -8 + np.zeros(X.shape[0]), c=y, s=10,
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cmap='viridis')

# format plot
ax.patch.set_facecolor('white')
ax.view_init(elev=20, azim=-70)
ax.set_zlim3d(-8, 8)
ax.xaxis.set_major_formatter(plt.NullFormatter())
ax.yaxis.set_major_formatter(plt.NullFormatter())
ax.zaxis.set_major_formatter(plt.NullFormatter())
ax.set(xlabel='feature 1', ylabel='feature 2', zlabel='label')

# Hide axes (is there a better way?)
ax.w_xaxis.line.set_visible(False)
ax.w_yaxis.line.set_visible(False)
ax.w_zaxis.line.set_visible(False)
for tick in ax.w_xaxis.get_ticklines():

tick.set_visible(False)
for tick in ax.w_yaxis.get_ticklines():

tick.set_visible(False)
for tick in ax.w_zaxis.get_ticklines():

tick.set_visible(False)

fig.savefig('figures/05.01-regression-2.png')
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Regression Example Figure 3

In [13]: from matplotlib.collections import LineCollection

# plot data points
fig, ax = plt.subplots()
pts = ax.scatter(X[:, 0], X[:, 1], c=y, s=50,

cmap='viridis', zorder=2)

# compute and plot model color mesh
xx, yy = np.meshgrid(np.linspace(-4, 4),

np.linspace(-3, 3))
Xfit = np.vstack([xx.ravel(), yy.ravel()]).T
yfit = model.predict(Xfit)
zz = yfit.reshape(xx.shape)
ax.pcolorfast([-4, 4], [-3, 3], zz, alpha=0.5,

cmap='viridis', norm=pts.norm, zorder=1)

# format plot
format_plot(ax, 'Input Data with Linear Fit')
ax.axis([-4, 4, -3, 3])

fig.savefig('figures/05.01-regression-3.png')
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Regression Example Figure 4

In [14]: # plot the model fit
fig, ax = plt.subplots(1, 2, figsize=(16, 6))
fig.subplots_adjust(left=0.0625, right=0.95, wspace=0.1)

ax[0].scatter(X2[:, 0], X2[:, 1], c='gray', s=50)
ax[0].axis([-4, 4, -3, 3])

ax[1].scatter(X2[:, 0], X2[:, 1], c=y2, s=50,
cmap='viridis', norm=pts.norm)

ax[1].axis([-4, 4, -3, 3])

# format plots
format_plot(ax[0], 'Unknown Data')
format_plot(ax[1], 'Predicted Labels')

fig.savefig('figures/05.01-regression-4.png')

1.3.3 Clustering Example Figures

Section ??
The following code generates the figures from the clustering section.

In [15]: from sklearn.datasets.samples_generator import make_blobs
from sklearn.cluster import KMeans

# create 50 separable points
X, y = make_blobs(n_samples=100, centers=4,

random_state=42, cluster_std=1.5)
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# Fit the K Means model
model = KMeans(4, random_state=0)
y = model.fit_predict(X)

Clustering Example Figure 1

In [16]: # plot the input data
fig, ax = plt.subplots(figsize=(8, 6))
ax.scatter(X[:, 0], X[:, 1], s=50, color='gray')

# format the plot
format_plot(ax, 'Input Data')

fig.savefig('figures/05.01-clustering-1.png')

Clustering Example Figure 2

In [17]: # plot the data with cluster labels
fig, ax = plt.subplots(figsize=(8, 6))
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ax.scatter(X[:, 0], X[:, 1], s=50, c=y, cmap='viridis')

# format the plot
format_plot(ax, 'Learned Cluster Labels')

fig.savefig('figures/05.01-clustering-2.png')

1.3.4 Dimensionality Reduction Example Figures

Figure context
The following code generates the figures from the dimensionality reduction section.

Dimensionality Reduction Example Figure 1

In [18]: from sklearn.datasets import make_swiss_roll

# make data
X, y = make_swiss_roll(200, noise=0.5, random_state=42)
X = X[:, [0, 2]]
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# visualize data
fig, ax = plt.subplots()
ax.scatter(X[:, 0], X[:, 1], color='gray', s=30)

# format the plot
format_plot(ax, 'Input Data')

fig.savefig('figures/05.01-dimesionality-1.png')

Dimensionality Reduction Example Figure 2

In [19]: from sklearn.manifold import Isomap

model = Isomap(n_neighbors=8, n_components=1)
y_fit = model.fit_transform(X).ravel()

# visualize data
fig, ax = plt.subplots()
pts = ax.scatter(X[:, 0], X[:, 1], c=y_fit, cmap='viridis', s=30)
cb = fig.colorbar(pts, ax=ax)
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# format the plot
format_plot(ax, 'Learned Latent Parameter')
cb.set_ticks([])
cb.set_label('Latent Variable', color='gray')

fig.savefig('figures/05.01-dimesionality-2.png')

1.4 Introducing Scikit-Learn

1.4.1 Features and Labels Grid

The following is the code generating the diagram showing the features matrix and target array.

In [20]: fig = plt.figure(figsize=(6, 4))
ax = fig.add_axes([0, 0, 1, 1])
ax.axis('off')
ax.axis('equal')

# Draw features matrix
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ax.vlines(range(6), ymin=0, ymax=9, lw=1)
ax.hlines(range(10), xmin=0, xmax=5, lw=1)
font_prop = dict(size=12, family='monospace')
ax.text(-1, -1, "Feature Matrix ($X$)", size=14)
ax.text(0.1, -0.3, r'n_features $\longrightarrow$', **font_prop)
ax.text(-0.1, 0.1, r'$\longleftarrow$ n_samples', rotation=90,

va='top', ha='right', **font_prop)

# Draw labels vector
ax.vlines(range(8, 10), ymin=0, ymax=9, lw=1)
ax.hlines(range(10), xmin=8, xmax=9, lw=1)
ax.text(7, -1, "Target Vector ($y$)", size=14)
ax.text(7.9, 0.1, r'$\longleftarrow$ n_samples', rotation=90,

va='top', ha='right', **font_prop)

ax.set_ylim(10, -2)

fig.savefig('figures/05.02-samples-features.png')
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1.5 Hyperparameters and Model Validation

1.5.1 Cross-Validation Figures

In [21]: def draw_rects(N, ax, textprop={}):
for i in range(N):

ax.add_patch(plt.Rectangle((0, i), 5, 0.7, fc='white'))
ax.add_patch(plt.Rectangle((5. * i / N, i), 5. / N, 0.7, fc='lightgray'))
ax.text(5. * (i + 0.5) / N, i + 0.35,

"validation\nset", ha='center', va='center', **textprop)
ax.text(0, i + 0.35, "trial {0}".format(N - i),

ha='right', va='center', rotation=90, **textprop)
ax.set_xlim(-1, 6)
ax.set_ylim(-0.2, N + 0.2)

2-Fold Cross-Validation

In [22]: fig = plt.figure()
ax = fig.add_axes([0, 0, 1, 1])
ax.axis('off')
draw_rects(2, ax, textprop=dict(size=14))

fig.savefig('figures/05.03-2-fold-CV.png')
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5-Fold Cross-Validation

In [23]: fig = plt.figure()
ax = fig.add_axes([0, 0, 1, 1])
ax.axis('off')
draw_rects(5, ax, textprop=dict(size=10))

fig.savefig('figures/05.03-5-fold-CV.png')

1.5.2 Overfitting and Underfitting

In [24]: import numpy as np

def make_data(N=30, err=0.8, rseed=1):
# randomly sample the data
rng = np.random.RandomState(rseed)
X = rng.rand(N, 1) ** 2
y = 10 - 1. / (X.ravel() + 0.1)
if err > 0:

y += err * rng.randn(N)
return X, y

In [25]: from sklearn.preprocessing import PolynomialFeatures
from sklearn.linear_model import LinearRegression
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from sklearn.pipeline import make_pipeline

def PolynomialRegression(degree=2, **kwargs):
return make_pipeline(PolynomialFeatures(degree),

LinearRegression(**kwargs))

Bias-Variance Tradeoff

In [26]: X, y = make_data()
xfit = np.linspace(-0.1, 1.0, 1000)[:, None]
model1 = PolynomialRegression(1).fit(X, y)
model20 = PolynomialRegression(20).fit(X, y)

fig, ax = plt.subplots(1, 2, figsize=(16, 6))
fig.subplots_adjust(left=0.0625, right=0.95, wspace=0.1)

ax[0].scatter(X.ravel(), y, s=40)
ax[0].plot(xfit.ravel(), model1.predict(xfit), color='gray')
ax[0].axis([-0.1, 1.0, -2, 14])
ax[0].set_title('High-bias model: Underfits the data', size=14)

ax[1].scatter(X.ravel(), y, s=40)
ax[1].plot(xfit.ravel(), model20.predict(xfit), color='gray')
ax[1].axis([-0.1, 1.0, -2, 14])
ax[1].set_title('High-variance model: Overfits the data', size=14)

fig.savefig('figures/05.03-bias-variance.png')

Bias-Variance Tradeoff Metrics

In [27]: fig, ax = plt.subplots(1, 2, figsize=(16, 6))
fig.subplots_adjust(left=0.0625, right=0.95, wspace=0.1)
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X2, y2 = make_data(10, rseed=42)

ax[0].scatter(X.ravel(), y, s=40, c='blue')
ax[0].plot(xfit.ravel(), model1.predict(xfit), color='gray')
ax[0].axis([-0.1, 1.0, -2, 14])
ax[0].set_title('High-bias model: Underfits the data', size=14)
ax[0].scatter(X2.ravel(), y2, s=40, c='red')
ax[0].text(0.02, 0.98, "training score: $R^2$ = {0:.2f}".format(model1.score(X, y)),

ha='left', va='top', transform=ax[0].transAxes, size=14, color='blue')
ax[0].text(0.02, 0.91, "validation score: $R^2$ = {0:.2f}".format(model1.score(X2, y2)),

ha='left', va='top', transform=ax[0].transAxes, size=14, color='red')

ax[1].scatter(X.ravel(), y, s=40, c='blue')
ax[1].plot(xfit.ravel(), model20.predict(xfit), color='gray')
ax[1].axis([-0.1, 1.0, -2, 14])
ax[1].set_title('High-variance model: Overfits the data', size=14)
ax[1].scatter(X2.ravel(), y2, s=40, c='red')
ax[1].text(0.02, 0.98, "training score: $R^2$ = {0:.2g}".format(model20.score(X, y)),

ha='left', va='top', transform=ax[1].transAxes, size=14, color='blue')
ax[1].text(0.02, 0.91, "validation score: $R^2$ = {0:.2g}".format(model20.score(X2, y2)),

ha='left', va='top', transform=ax[1].transAxes, size=14, color='red')

fig.savefig('figures/05.03-bias-variance-2.png')

Validation Curve

In [28]: x = np.linspace(0, 1, 1000)
y1 = -(x - 0.5) ** 2
y2 = y1 - 0.33 + np.exp(x - 1)

fig, ax = plt.subplots()
ax.plot(x, y2, lw=10, alpha=0.5, color='blue')
ax.plot(x, y1, lw=10, alpha=0.5, color='red')
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ax.text(0.15, 0.2, "training score", rotation=45, size=16, color='blue')
ax.text(0.2, -0.05, "validation score", rotation=20, size=16, color='red')

ax.text(0.02, 0.1, r'$\longleftarrow$ High Bias', size=18, rotation=90, va='center')
ax.text(0.98, 0.1, r'$\longleftarrow$ High Variance $\longrightarrow$', size=18, rotation=90, ha='right', va='center')
ax.text(0.48, -0.12, 'Best$\\longrightarrow$\nModel', size=18, rotation=90, va='center')

ax.set_xlim(0, 1)
ax.set_ylim(-0.3, 0.5)

ax.set_xlabel(r'model complexity $\longrightarrow$', size=14)
ax.set_ylabel(r'model score $\longrightarrow$', size=14)

ax.xaxis.set_major_formatter(plt.NullFormatter())
ax.yaxis.set_major_formatter(plt.NullFormatter())

ax.set_title("Validation Curve Schematic", size=16)

fig.savefig('figures/05.03-validation-curve.png')

27



Learning Curve

In [29]: N = np.linspace(0, 1, 1000)
y1 = 0.75 + 0.2 * np.exp(-4 * N)
y2 = 0.7 - 0.6 * np.exp(-4 * N)

fig, ax = plt.subplots()
ax.plot(x, y1, lw=10, alpha=0.5, color='blue')
ax.plot(x, y2, lw=10, alpha=0.5, color='red')

ax.text(0.2, 0.88, "training score", rotation=-10, size=16, color='blue')
ax.text(0.2, 0.5, "validation score", rotation=30, size=16, color='red')

ax.text(0.98, 0.45, r'Good Fit $\longrightarrow$', size=18, rotation=90, ha='right', va='center')
ax.text(0.02, 0.57, r'$\longleftarrow$ High Variance $\longrightarrow$', size=18, rotation=90, va='center')

ax.set_xlim(0, 1)
ax.set_ylim(0, 1)

ax.set_xlabel(r'training set size $\longrightarrow$', size=14)
ax.set_ylabel(r'model score $\longrightarrow$', size=14)

ax.xaxis.set_major_formatter(plt.NullFormatter())
ax.yaxis.set_major_formatter(plt.NullFormatter())

ax.set_title("Learning Curve Schematic", size=16)

fig.savefig('figures/05.03-learning-curve.png')
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1.6 Gaussian Naive Bayes

1.6.1 Gaussian Naive Bayes Example

Figure Context

In [30]: from sklearn.datasets import make_blobs
X, y = make_blobs(100, 2, centers=2, random_state=2, cluster_std=1.5)

fig, ax = plt.subplots()

ax.scatter(X[:, 0], X[:, 1], c=y, s=50, cmap='RdBu')
ax.set_title('Naive Bayes Model', size=14)

xlim = (-8, 8)
ylim = (-15, 5)

xg = np.linspace(xlim[0], xlim[1], 60)
yg = np.linspace(ylim[0], ylim[1], 40)
xx, yy = np.meshgrid(xg, yg)
Xgrid = np.vstack([xx.ravel(), yy.ravel()]).T
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for label, color in enumerate(['red', 'blue']):
mask = (y == label)
mu, std = X[mask].mean(0), X[mask].std(0)
P = np.exp(-0.5 * (Xgrid - mu) ** 2 / std ** 2).prod(1)
Pm = np.ma.masked_array(P, P < 0.03)
ax.pcolorfast(xg, yg, Pm.reshape(xx.shape), alpha=0.5,

cmap=color.title() + 's')
ax.contour(xx, yy, P.reshape(xx.shape),

levels=[0.01, 0.1, 0.5, 0.9],
colors=color, alpha=0.2)

ax.set(xlim=xlim, ylim=ylim)

fig.savefig('figures/05.05-gaussian-NB.png')

1.7 Linear Regression

1.7.1 Gaussian Basis Functions

Figure Context
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In [31]: from sklearn.pipeline import make_pipeline
from sklearn.linear_model import LinearRegression

from sklearn.base import BaseEstimator, TransformerMixin

class GaussianFeatures(BaseEstimator, TransformerMixin):
"""Uniformly-spaced Gaussian Features for 1D input"""

def __init__(self, N, width_factor=2.0):
self.N = N
self.width_factor = width_factor

@staticmethod
def _gauss_basis(x, y, width, axis=None):

arg = (x - y) / width
return np.exp(-0.5 * np.sum(arg ** 2, axis))

def fit(self, X, y=None):
# create N centers spread along the data range
self.centers_ = np.linspace(X.min(), X.max(), self.N)
self.width_ = self.width_factor * (self.centers_[1] - self.centers_[0])
return self

def transform(self, X):
return self._gauss_basis(X[:, :, np.newaxis], self.centers_,

self.width_, axis=1)

rng = np.random.RandomState(1)
x = 10 * rng.rand(50)
y = np.sin(x) + 0.1 * rng.randn(50)
xfit = np.linspace(0, 10, 1000)

gauss_model = make_pipeline(GaussianFeatures(10, 1.0),
LinearRegression())

gauss_model.fit(x[:, np.newaxis], y)
yfit = gauss_model.predict(xfit[:, np.newaxis])

gf = gauss_model.named_steps['gaussianfeatures']
lm = gauss_model.named_steps['linearregression']

fig, ax = plt.subplots()

for i in range(10):
selector = np.zeros(10)
selector[i] = 1
Xfit = gf.transform(xfit[:, None]) * selector
yfit = lm.predict(Xfit)
ax.fill_between(xfit, yfit.min(), yfit, color='gray', alpha=0.2)
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ax.scatter(x, y)
ax.plot(xfit, gauss_model.predict(xfit[:, np.newaxis]))
ax.set_xlim(0, 10)
ax.set_ylim(yfit.min(), 1.5)

fig.savefig('figures/05.06-gaussian-basis.png')

1.8 Random Forests

1.8.1 Helper Code

The following will create a module helpers_05_08.py which contains some tools used in In-
Depth: Decision Trees and Random Forests.

In [32]: %%file helpers_05_08.py

import numpy as np
import matplotlib.pyplot as plt
from sklearn.tree import DecisionTreeClassifier
from ipywidgets import interact
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def visualize_tree(estimator, X, y, boundaries=True,
xlim=None, ylim=None, ax=None):

ax = ax or plt.gca()

# Plot the training points
ax.scatter(X[:, 0], X[:, 1], c=y, s=30, cmap='viridis',

clim=(y.min(), y.max()), zorder=3)
ax.axis('tight')
ax.axis('off')
if xlim is None:

xlim = ax.get_xlim()
if ylim is None:

ylim = ax.get_ylim()

# fit the estimator
estimator.fit(X, y)
xx, yy = np.meshgrid(np.linspace(*xlim, num=200),

np.linspace(*ylim, num=200))
Z = estimator.predict(np.c_[xx.ravel(), yy.ravel()])

# Put the result into a color plot
n_classes = len(np.unique(y))
Z = Z.reshape(xx.shape)
contours = ax.contourf(xx, yy, Z, alpha=0.3,

levels=np.arange(n_classes + 1) - 0.5,
cmap='viridis', clim=(y.min(), y.max()),
zorder=1)

ax.set(xlim=xlim, ylim=ylim)

# Plot the decision boundaries
def plot_boundaries(i, xlim, ylim):

if i >= 0:
tree = estimator.tree_

if tree.feature[i] == 0:
ax.plot([tree.threshold[i], tree.threshold[i]], ylim, '-k', zorder=2)
plot_boundaries(tree.children_left[i],

[xlim[0], tree.threshold[i]], ylim)
plot_boundaries(tree.children_right[i],

[tree.threshold[i], xlim[1]], ylim)

elif tree.feature[i] == 1:
ax.plot(xlim, [tree.threshold[i], tree.threshold[i]], '-k', zorder=2)
plot_boundaries(tree.children_left[i], xlim,

[ylim[0], tree.threshold[i]])
plot_boundaries(tree.children_right[i], xlim,

[tree.threshold[i], ylim[1]])

33



if boundaries:
plot_boundaries(0, xlim, ylim)

def plot_tree_interactive(X, y):
def interactive_tree(depth=5):

clf = DecisionTreeClassifier(max_depth=depth, random_state=0)
visualize_tree(clf, X, y)

return interact(interactive_tree, depth=[1, 5])

def randomized_tree_interactive(X, y):
N = int(0.75 * X.shape[0])

xlim = (X[:, 0].min(), X[:, 0].max())
ylim = (X[:, 1].min(), X[:, 1].max())

def fit_randomized_tree(random_state=0):
clf = DecisionTreeClassifier(max_depth=15)
i = np.arange(len(y))
rng = np.random.RandomState(random_state)
rng.shuffle(i)
visualize_tree(clf, X[i[:N]], y[i[:N]], boundaries=False,

xlim=xlim, ylim=ylim)

interact(fit_randomized_tree, random_state=[0, 100]);

Overwriting helpers_05_08.py

1.8.2 Decision Tree Example

In [33]: fig = plt.figure(figsize=(10, 4))
ax = fig.add_axes([0, 0, 0.8, 1], frameon=False, xticks=[], yticks=[])
ax.set_title('Example Decision Tree: Animal Classification', size=24)

def text(ax, x, y, t, size=20, **kwargs):
ax.text(x, y, t,

ha='center', va='center', size=size,
bbox=dict(boxstyle='round', ec='k', fc='w'), **kwargs)

text(ax, 0.5, 0.9, "How big is\nthe animal?", 20)
text(ax, 0.3, 0.6, "Does the animal\nhave horns?", 18)
text(ax, 0.7, 0.6, "Does the animal\nhave two legs?", 18)
text(ax, 0.12, 0.3, "Are the horns\nlonger than 10cm?", 14)
text(ax, 0.38, 0.3, "Is the animal\nwearing a collar?", 14)
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text(ax, 0.62, 0.3, "Does the animal\nhave wings?", 14)
text(ax, 0.88, 0.3, "Does the animal\nhave a tail?", 14)

text(ax, 0.4, 0.75, "> 1m", 12, alpha=0.4)
text(ax, 0.6, 0.75, "< 1m", 12, alpha=0.4)

text(ax, 0.21, 0.45, "yes", 12, alpha=0.4)
text(ax, 0.34, 0.45, "no", 12, alpha=0.4)

text(ax, 0.66, 0.45, "yes", 12, alpha=0.4)
text(ax, 0.79, 0.45, "no", 12, alpha=0.4)

ax.plot([0.3, 0.5, 0.7], [0.6, 0.9, 0.6], '-k')
ax.plot([0.12, 0.3, 0.38], [0.3, 0.6, 0.3], '-k')
ax.plot([0.62, 0.7, 0.88], [0.3, 0.6, 0.3], '-k')
ax.plot([0.0, 0.12, 0.20], [0.0, 0.3, 0.0], '--k')
ax.plot([0.28, 0.38, 0.48], [0.0, 0.3, 0.0], '--k')
ax.plot([0.52, 0.62, 0.72], [0.0, 0.3, 0.0], '--k')
ax.plot([0.8, 0.88, 1.0], [0.0, 0.3, 0.0], '--k')
ax.axis([0, 1, 0, 1])

fig.savefig('figures/05.08-decision-tree.png')

1.8.3 Decision Tree Levels

In [34]: from helpers_05_08 import visualize_tree
from sklearn.tree import DecisionTreeClassifier
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from sklearn.datasets import make_blobs

fig, ax = plt.subplots(1, 4, figsize=(16, 3))
fig.subplots_adjust(left=0.02, right=0.98, wspace=0.1)

X, y = make_blobs(n_samples=300, centers=4,
random_state=0, cluster_std=1.0)

for axi, depth in zip(ax, range(1, 5)):
model = DecisionTreeClassifier(max_depth=depth)
visualize_tree(model, X, y, ax=axi)
axi.set_title('depth = {0}'.format(depth))

fig.savefig('figures/05.08-decision-tree-levels.png')

1.8.4 Decision Tree Overfitting

In [35]: model = DecisionTreeClassifier()

fig, ax = plt.subplots(1, 2, figsize=(16, 6))
fig.subplots_adjust(left=0.0625, right=0.95, wspace=0.1)
visualize_tree(model, X[::2], y[::2], boundaries=False, ax=ax[0])
visualize_tree(model, X[1::2], y[1::2], boundaries=False, ax=ax[1])

fig.savefig('figures/05.08-decision-tree-overfitting.png')
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1.9 Principal Component Analysis

1.9.1 Principal Components Rotation

In [36]: from sklearn.decomposition import PCA

In [37]: def draw_vector(v0, v1, ax=None):
ax = ax or plt.gca()
arrowprops=dict(arrowstyle='->',

linewidth=2,
shrinkA=0, shrinkB=0)

ax.annotate('', v1, v0, arrowprops=arrowprops)

In [38]: rng = np.random.RandomState(1)
X = np.dot(rng.rand(2, 2), rng.randn(2, 200)).T
pca = PCA(n_components=2, whiten=True)
pca.fit(X)

fig, ax = plt.subplots(1, 2, figsize=(16, 6))
fig.subplots_adjust(left=0.0625, right=0.95, wspace=0.1)

# plot data
ax[0].scatter(X[:, 0], X[:, 1], alpha=0.2)
for length, vector in zip(pca.explained_variance_, pca.components_):

v = vector * 3 * np.sqrt(length)
draw_vector(pca.mean_, pca.mean_ + v, ax=ax[0])

ax[0].axis('equal');
ax[0].set(xlabel='x', ylabel='y', title='input')

# plot principal components
X_pca = pca.transform(X)
ax[1].scatter(X_pca[:, 0], X_pca[:, 1], alpha=0.2)
draw_vector([0, 0], [0, 3], ax=ax[1])
draw_vector([0, 0], [3, 0], ax=ax[1])
ax[1].axis('equal')
ax[1].set(xlabel='component 1', ylabel='component 2',

title='principal components',
xlim=(-5, 5), ylim=(-3, 3.1))

fig.savefig('figures/05.09-PCA-rotation.png')
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1.9.2 Digits Pixel Components

In [39]: def plot_pca_components(x, coefficients=None, mean=0, components=None,
imshape=(8, 8), n_components=8, fontsize=12,
show_mean=True):

if coefficients is None:
coefficients = x

if components is None:
components = np.eye(len(coefficients), len(x))

mean = np.zeros_like(x) + mean

fig = plt.figure(figsize=(1.2 * (5 + n_components), 1.2 * 2))
g = plt.GridSpec(2, 4 + bool(show_mean) + n_components, hspace=0.3)

def show(i, j, x, title=None):
ax = fig.add_subplot(g[i, j], xticks=[], yticks=[])
ax.imshow(x.reshape(imshape), interpolation='nearest')
if title:

ax.set_title(title, fontsize=fontsize)

show(slice(2), slice(2), x, "True")

approx = mean.copy()

counter = 2
if show_mean:

show(0, 2, np.zeros_like(x) + mean, r'$\mu$')
show(1, 2, approx, r'$1 \cdot \mu$')
counter += 1
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for i in range(n_components):
approx = approx + coefficients[i] * components[i]
show(0, i + counter, components[i], r'$c_{0}$'.format(i + 1))
show(1, i + counter, approx,

r"${0:.2f} \cdot c_{1}$".format(coefficients[i], i + 1))
if show_mean or i > 0:

plt.gca().text(0, 1.05, '$+$', ha='right', va='bottom',
transform=plt.gca().transAxes, fontsize=fontsize)

show(slice(2), slice(-2, None), approx, "Approx")
return fig

In [40]: from sklearn.datasets import load_digits

digits = load_digits()
sns.set_style('white')

fig = plot_pca_components(digits.data[10],
show_mean=False)

fig.savefig('figures/05.09-digits-pixel-components.png')

1.9.3 Digits PCA Components

In [41]: pca = PCA(n_components=8)
Xproj = pca.fit_transform(digits.data)
sns.set_style('white')
fig = plot_pca_components(digits.data[10], Xproj[10],

pca.mean_, pca.components_)

fig.savefig('figures/05.09-digits-pca-components.png')
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1.10 Manifold Learning

1.10.1 LLE vs MDS Linkages

In [42]: def make_hello(N=1000, rseed=42):
# Make a plot with "HELLO" text; save as png
fig, ax = plt.subplots(figsize=(4, 1))
fig.subplots_adjust(left=0, right=1, bottom=0, top=1)
ax.axis('off')
ax.text(0.5, 0.4, 'HELLO', va='center', ha='center', weight='bold', size=85)
fig.savefig('hello.png')
plt.close(fig)

# Open this PNG and draw random points from it
from matplotlib.image import imread
data = imread('hello.png')[::-1, :, 0].T
rng = np.random.RandomState(rseed)
X = rng.rand(4 * N, 2)
i, j = (X * data.shape).astype(int).T
mask = (data[i, j] < 1)
X = X[mask]
X[:, 0] *= (data.shape[0] / data.shape[1])
X = X[:N]
return X[np.argsort(X[:, 0])]

In [43]: def make_hello_s_curve(X):
t = (X[:, 0] - 2) * 0.75 * np.pi
x = np.sin(t)
y = X[:, 1]
z = np.sign(t) * (np.cos(t) - 1)
return np.vstack((x, y, z)).T

X = make_hello(1000)
XS = make_hello_s_curve(X)
colorize = dict(c=X[:, 0], cmap=plt.cm.get_cmap('rainbow', 5))

In [44]: from mpl_toolkits.mplot3d.art3d import Line3DCollection
from sklearn.neighbors import NearestNeighbors

# construct lines for MDS
rng = np.random.RandomState(42)
ind = rng.permutation(len(X))
lines_MDS = [(XS[i], XS[j]) for i in ind[:100] for j in ind[100:200]]

# construct lines for LLE
nbrs = NearestNeighbors(n_neighbors=100).fit(XS).kneighbors(XS[ind[:100]])[1]
lines_LLE = [(XS[ind[i]], XS[j]) for i in range(100) for j in nbrs[i]]
titles = ['MDS Linkages', 'LLE Linkages (100 NN)']
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# plot the results
fig, ax = plt.subplots(1, 2, figsize=(16, 6),

subplot_kw=dict(projection='3d', axisbg='none'))
fig.subplots_adjust(left=0, right=1, bottom=0, top=1, hspace=0, wspace=0)

for axi, title, lines in zip(ax, titles, [lines_MDS, lines_LLE]):
axi.scatter3D(XS[:, 0], XS[:, 1], XS[:, 2], **colorize);
axi.add_collection(Line3DCollection(lines, lw=1, color='black',

alpha=0.05))
axi.view_init(elev=10, azim=-80)
axi.set_title(title, size=18)

fig.savefig('figures/05.10-LLE-vs-MDS.png')

1.11 K-Means

1.11.1 Expectation-Maximization

Figure Context
The following figure shows a visual depiction of the Expectation-Maximization approach to K

Means:

In [45]: from sklearn.datasets.samples_generator import make_blobs
from sklearn.metrics import pairwise_distances_argmin

X, y_true = make_blobs(n_samples=300, centers=4,
cluster_std=0.60, random_state=0)

rng = np.random.RandomState(42)
centers = [0, 4] + rng.randn(4, 2)

def draw_points(ax, c, factor=1):
ax.scatter(X[:, 0], X[:, 1], c=c, cmap='viridis',
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s=50 * factor, alpha=0.3)

def draw_centers(ax, centers, factor=1, alpha=1.0):
ax.scatter(centers[:, 0], centers[:, 1],

c=np.arange(4), cmap='viridis', s=200 * factor,
alpha=alpha)

ax.scatter(centers[:, 0], centers[:, 1],
c='black', s=50 * factor, alpha=alpha)

def make_ax(fig, gs):
ax = fig.add_subplot(gs)
ax.xaxis.set_major_formatter(plt.NullFormatter())
ax.yaxis.set_major_formatter(plt.NullFormatter())
return ax

fig = plt.figure(figsize=(15, 4))
gs = plt.GridSpec(4, 15, left=0.02, right=0.98, bottom=0.05, top=0.95, wspace=0.2, hspace=0.2)
ax0 = make_ax(fig, gs[:4, :4])
ax0.text(0.98, 0.98, "Random Initialization", transform=ax0.transAxes,

ha='right', va='top', size=16)
draw_points(ax0, 'gray', factor=2)
draw_centers(ax0, centers, factor=2)

for i in range(3):
ax1 = make_ax(fig, gs[:2, 4 + 2 * i:6 + 2 * i])
ax2 = make_ax(fig, gs[2:, 5 + 2 * i:7 + 2 * i])

# E-step
y_pred = pairwise_distances_argmin(X, centers)
draw_points(ax1, y_pred)
draw_centers(ax1, centers)

# M-step
new_centers = np.array([X[y_pred == i].mean(0) for i in range(4)])
draw_points(ax2, y_pred)
draw_centers(ax2, centers, alpha=0.3)
draw_centers(ax2, new_centers)
for i in range(4):

ax2.annotate('', new_centers[i], centers[i],
arrowprops=dict(arrowstyle='->', linewidth=1))

# Finish iteration
centers = new_centers
ax1.text(0.95, 0.95, "E-Step", transform=ax1.transAxes, ha='right', va='top', size=14)
ax2.text(0.95, 0.95, "M-Step", transform=ax2.transAxes, ha='right', va='top', size=14)
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# Final E-step
y_pred = pairwise_distances_argmin(X, centers)
axf = make_ax(fig, gs[:4, -4:])
draw_points(axf, y_pred, factor=2)
draw_centers(axf, centers, factor=2)
axf.text(0.98, 0.98, "Final Clustering", transform=axf.transAxes,

ha='right', va='top', size=16)

fig.savefig('figures/05.11-expectation-maximization.png')

1.11.2 Interactive K-Means

The following script uses IPython’s interactive widgets to demonstrate the K-means algorithm
interactively. Run this within the IPython notebook to explore the expectation maximization algo-
rithm for computing K Means.

In [46]: %matplotlib inline
import matplotlib.pyplot as plt
import seaborn; seaborn.set() # for plot styling
import numpy as np

from ipywidgets import interact
from sklearn.metrics import pairwise_distances_argmin
from sklearn.datasets.samples_generator import make_blobs

def plot_kmeans_interactive(min_clusters=1, max_clusters=6):
X, y = make_blobs(n_samples=300, centers=4,

random_state=0, cluster_std=0.60)

def plot_points(X, labels, n_clusters):
plt.scatter(X[:, 0], X[:, 1], c=labels, s=50, cmap='viridis',

vmin=0, vmax=n_clusters - 1);

def plot_centers(centers):
plt.scatter(centers[:, 0], centers[:, 1], marker='o',
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c=np.arange(centers.shape[0]),
s=200, cmap='viridis')

plt.scatter(centers[:, 0], centers[:, 1], marker='o',
c='black', s=50)

def _kmeans_step(frame=0, n_clusters=4):
rng = np.random.RandomState(2)
labels = np.zeros(X.shape[0])
centers = rng.randn(n_clusters, 2)

nsteps = frame // 3

for i in range(nsteps + 1):
old_centers = centers
if i < nsteps or frame % 3 > 0:

labels = pairwise_distances_argmin(X, centers)

if i < nsteps or frame % 3 > 1:
centers = np.array([X[labels == j].mean(0)

for j in range(n_clusters)])
nans = np.isnan(centers)
centers[nans] = old_centers[nans]

# plot the data and cluster centers
plot_points(X, labels, n_clusters)
plot_centers(old_centers)

# plot new centers if third frame
if frame % 3 == 2:

for i in range(n_clusters):
plt.annotate('', centers[i], old_centers[i],

arrowprops=dict(arrowstyle='->', linewidth=1))
plot_centers(centers)

plt.xlim(-4, 4)
plt.ylim(-2, 10)

if frame % 3 == 1:
plt.text(3.8, 9.5, "1. Reassign points to nearest centroid",

ha='right', va='top', size=14)
elif frame % 3 == 2:

plt.text(3.8, 9.5, "2. Update centroids to cluster means",
ha='right', va='top', size=14)

return interact(_kmeans_step, frame=[0, 50],
n_clusters=[min_clusters, max_clusters])
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plot_kmeans_interactive();

1.12 Gaussian Mixture Models

1.12.1 Covariance Type

Figure Context

In [47]: from sklearn.mixture import GMM

from matplotlib.patches import Ellipse

def draw_ellipse(position, covariance, ax=None, **kwargs):
"""Draw an ellipse with a given position and covariance"""
ax = ax or plt.gca()

# Convert covariance to principal axes
if covariance.shape == (2, 2):

U, s, Vt = np.linalg.svd(covariance)
angle = np.degrees(np.arctan2(U[1, 0], U[0, 0]))
width, height = 2 * np.sqrt(s)

else:
angle = 0
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width, height = 2 * np.sqrt(covariance)

# Draw the Ellipse
for nsig in range(1, 4):

ax.add_patch(Ellipse(position, nsig * width, nsig * height,
angle, **kwargs))

fig, ax = plt.subplots(1, 3, figsize=(14, 4), sharex=True, sharey=True)
fig.subplots_adjust(wspace=0.05)

rng = np.random.RandomState(5)
X = np.dot(rng.randn(500, 2), rng.randn(2, 2))

for i, cov_type in enumerate(['diag', 'spherical', 'full']):
model = GMM(1, covariance_type=cov_type).fit(X)
ax[i].axis('equal')
ax[i].scatter(X[:, 0], X[:, 1], alpha=0.5)
ax[i].set_xlim(-3, 3)
ax[i].set_title('covariance_type="{0}"'.format(cov_type),

size=14, family='monospace')
draw_ellipse(model.means_[0], model.covars_[0], ax[i], alpha=0.2)
ax[i].xaxis.set_major_formatter(plt.NullFormatter())
ax[i].yaxis.set_major_formatter(plt.NullFormatter())

fig.savefig('figures/05.12-covariance-type.png')
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