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Background

As our society and urban environments are rapidly becoming connected, they present an opportunity to de-
ploy autonomous agents—from personal digital assistants to self-driving cars—that promise to radically im-
prove productivity and safety, while reducing human e↵orts and risks. As an example, consider autonomous-
taxi fleet optimization where a key problem is to position taxis strategically based on their changing local
environment (total demand, other taxis in the same city zone). Similarly, autonomous ships, already on
the horizon, are predicted to disrupt the maritime shipping industry. For the world’s busiest ports such
as Singapore’s, a key problem is how to ensure a coordinated movement of ships that enables just-in-time
arrival and maintains safety of navigation to avoid environmental disasters such as oil spillage.

With such rapid proliferation of multiagent systems, following challenges and opportunities arise:

• Scale. Connected urban environments would require coordinating very large number of agents (e.g., au-
tonomous taxis, vessels, drones). Multiagent coordination approaches need to scale up to such massive
systems. However, with scale, there are several opportunities to exploit symmetries such as agent inter-
actions depending only on the aggregate counts of agents, rather than their identities (e.g., congestion,
revenue, safety).

• Decentralized control. A central control of a large multiagent system creates a bottleneck for future
scaling, communication overheads, and is not robust to failures. Therefore, there is a need to increase
decentralization of control wherein agents operate mostly autonomously acting based on their local ob-
servations of the environments, and only requiring limited communications with a central entity.

• Resource constrained optimization. Agents often operate in a resource limited environment. E.g., nav-
igable sea-space in busy megaports such as Singapore’s is limited; road network limits vehicle count.
Achieving e↵ective coordination despite such resource limitations is the key for practical applicability of
multiagent systems.

• From data to decisions. Instead of using idealized models of the multiagent system, accurate domain
simulators need to be constructed from data, which is often noisy and missing. Fortunately, reasoning
about a large agent population is possible using the aggregate data, which is often easier to obtain than
tracking each agent individually. This allows for multiagent reinforcement learning approaches to enable
agents learn to take better decisions by repeatedly interacting with the simulator.

To address above challenges, my research aims to develops scalable algorithmic techniques for planning

and reinforcement learning in rich, formal models of multiagent coordination such as distributed constraint

optimization (DCOP) and decentralized partially observable MDPs (Dec-POMDPs). Previous planning ap-
proaches have su↵ered from poor scalability or reliance on strong assumptions that limited their deployment.
Consequently, my work develops a number of general scalable techniques and frameworks for a large class
of multiagent planning problems of practical importance by exploiting the structure and symmetries present
in urban-scale multiagent systems. Methodologically, my work uses a synthesis of rigorous techniques from
multiple sub-areas of AI, and explores novel connections of planning with probabilistic graphical models,
machine learning and mathematical optimization.

Within this broad context, figure 1 shows the evolution of my research over time.

Research Areas

A.1 Multiagent Decision Making Under Uncertainty

My early research during the PhD was towards developing scalable algorithms for distributed constraint op-
timization (DCOP) and decentralized partially observable MDP (Dec-POMDP) models, which have emerged
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qStudied the Dec-POMDP and DCOP model

qExplored interaction structure among 
agents for algorithmic scalability

qDeveloped novel connections between 
probabilistic inference and multiagent 
planning à New solution approaches

A.1 Multiagent Decision Making Under Uncertainty

How can multiple 
autonomous agents take 
coordinated decisions?

qDeveloped automated 
methods to optimize finite-
state controller based 
policies for agents

qHighly interpretable and 
compact policies, and quality 
guarantees 

A.2 Optimizing Compact Policies for 
Multiagent Planning

What should agents 
remember from their 
past observations?
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https://gamedevelopment.tutsplus.com/tutorials/finite-state-machines-theory-and-implementation--gamedev-11867

qModeled behaviour of a large 
agent population (e.g., traffic 
flow) using collective 
graphical models (CGMs)

qDeveloped probabilistic 
inference methods for CGMs 
to learn population behaviour 
from noisy, missing and 
aggregate data 

B. Representation and Inference for Large 
Agent Population

How to model the 
behaviour of a large 

number of nearly 
identical agents?

qDeveloped framework called 
collective decentralized POMDPs 
for decision making in large agent 
populations

qExploited collective nature of 
interactions to show agent-
counts are sufficient statistic for 
planning

C.1 Collective Multiagent Decision Making

How to take 
decisions for a large 
agent population?

Policy	Gradient	With	Value	Function	Approximation	For	Collective	Multiagent Planning
Duc Thien	Nguyen,	Akshat	Kumar	and	Hoong Chuin Lau,	School	of	Information	Systems,	Singapore	Management	University

{dtnguyen.2014, akshatkumar, hclau}@smu.edu.sg

Introduction Collective	Actor	Critic

Collective	Decentralized	POMDPs

Experiments

Synthetic instances modeling congestion

aware robot navigation in a grid for a

population of 20 robots is moving from a

initial locations to a specific goal location

A real world taxi dataset modeling a

supply-demand matching problem

for a fleet of taxis of 8000 taxis in

Singapore city divided into 81 zones

over 1 year

Factorized Value Function Approximation
Reinforcement	Learning	System	Classification

This research is funded by the National Research Foundation Singapore under its Corp Lab @ University scheme

Objective:
Maximize the single 
agent accumulated 

reward

Objective:
Maximize the total multi-
agent accumulated reward

Objective:
Maximize the total count-
based accumulated reward

Property: Compatible value function for ℂ-DecPOMDPs has a 
factorized form.
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Actor Critic Convergence in Taxi Domain

Collective decentralized POMDP (ℂDec-POMDP) framework is
used to model collective decision making in a (large) population of
similar agents. Such problems often arise in supply-demand matching
and network congestion domains such as traffic and transportation.
Our main contributions are:
• Develop an actor-critic RL method for the collective setting
• Show counts as the sufficient statistic for collective RL
• Develop a factorized value function approximation for collective RL
• Address multiagent credit assignment for the collective setting

Collective Training Framework
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qExploit count-based symmetries 
in CDec-POMDP to develop highly 
scalable deep reinforcement 
learning algorithms

qAddress several challenges such 
as high variance of gradients, and 
multiagent credit assignment

C.2 Collective Multiagent Reinforcement 
Learning (RL)

How to learn good 
agent strategies from 

aggregate data? 

address this, we a) resort to an approximate value function (“critic”) trained to

estimate the empirical return (train critic), and hence resolve the high variance

problem of the empirical return, b) propose an efficient policy update to train the

policy function (train actor) by the critic.

Train critic

Environment

Approximate
Value Function

Decentralized 
Policy

Train actor

critic

actor

Joint 
action

Joint 
transition
&reward

Joint 
State

Local
observations

...

Figure 1.2: Multi-agent Reinforcement Learning framework

Shared policy

Instead of multiple decentralized policies for different agents, we consider a single

decentralized policy function shared by homogeneous agents in the system. In fact,

learning a shared (or homogeneous) policy between agents is a common objective

in multi-agent reinforcement learning literature [120, 44, 146, 130, 40]. In large

scale domains such as movement of animal flocks or a traffic network, a homoge-

neous behavior model of individuals is usually assumed [107, 57]. In our research

problems, by optimizing the shared policy, we can collectively shape behaviors of

individuals in favor of system quality. To extend our model to heterogeneous agents,

we can generalize shared policy by considering the type of agent as an input feature

into the policy function.

6

Collective Reinforcement Learning

qDeveloped collective RL for the 
MTM setting where agents take 
variable amount of time to 
perform movement actions 

qOngoing work develops both a 
realistic simulator (in Unity3D 
Machine Learning SDK), and 
associated algorithms for 
multiagent path finding

C.3 Collective RL with Asynchronous Agent 
Behaviors

How to adapt 
collective RL to 

settings with 
asynchronous agent 

movement?

qDeveloped resource constrained 
MTM scheduling framework to 
increase safety of navigation by 
coordinating vessel movement

qDeveloped realistic simulator 
from historical data to validate 
MTM approaches

D. Multiagent Maritime Traffic Management (MTM)

How to coordinate 
vessel movements to 

increase safety of 
navigation?

the local information agents receive (which may be different
for different agents), each agent chooses the next action to
take (in parallel) operating in a sequential manner over a fi-
nite or an infinite horizon. At each time step, the agent-team
also obtains a joint-reward. The goal is to compute policies
(mapping from local observation history to actions for each
agent) to maximize the total reward over the planning hori-
zon. The joint-reward makes the problem cooperative, and
action selection based on local observations makes the prob-
lem decentralized.

A Dec-POMDP can be defined by a tuple
�I, S, {Ai}, P, R, {Y i}, O, ��, where I denotes a finite
set of n agents; S denotes a finite set of states with des-
ignated initial state distribution �0; Ai denotes a finite
set of actions for each agent i; P denotes state transition
probabilities: P (s�|s,�a), the probability of transitioning from
state s to s� when the joint-action �a is taken by the agents; R
denotes the reward function: R(s,�a) is the immediate reward
for being in state s and joint-action taken as �a; Y i denotes
a finite set of observations for each agent i; O denotes the
observation probabilities: O(�y|s�,�a) is the probability of
receiving the joint-observation �y when the last joint-action
taken was �a that resulted in the environment state being s�; �
denotes the reward discounting factor. An agent i’s policy,
�i : Ȳ i � Ai, maps the set of all possible observation
histories Ȳ i to actions. Solving a Dec-POMDP entails
finding the joint-policy � = ��1, . . . , �n� that maximizes the
total expected reward:

E
� ��

t=0

�tR
�
st,�at; �

��
(1)

where � denotes the joint-policy and subscript t denotes the
dependence on time. There are several representations possi-
ble for local policies �i such as policy trees, finite-state con-
trollers [Amato et al., 2010; Kumar et al., 2015], and deep
neural networks [Nguyen et al., 2018].

3 Modeling Urban Environments
Several urban environments can be modeled as a diffusion,
cascade or flow of entities (e.g., vehicles, vessels, humans)
over an underlying geographical network [Kumar et al.,
2013]. For example, traffic flow can be modeled as diffusion
of vehicles over the network [Kumar et al., 2013], maritime
traffic as vessel movement between sea zones [Singh et al.,
2019], and people flow over a geographical area [Iwata and
Shimizu, 2019]. However, in many such domains, individual
data tracking the movement of each entity is either not avail-
able (e.g., to protect privacy of individuals) or too expensive
to collect. Only the aggregate or collective data (which may
be noisy or missing) is observed. For example, consider a
road traffic network. A key learning problem in such traffic
networks is estimating the turn probabilites for each road seg-
ment of this network [Kumar et al., 2013]. Several popular
analytical models of traffic flow such as the cell transmission
model [Daganzo, 1994] are based on the assumption that turn
probabilities are known a priori for each location. In several
urban traffic networks, aggregate data in the form of vehi-
cle count is already collected for each road segment using

Landmass
Traffic	Separation	
Scheme	(TSS)	

Zone	markers

Anchorages

Landmass

(a)

Figure 1: Electronic navigation chart (ENC) of straits near a large
asian city with color-coded features

inductive-loop traffic detectors, and we show that such aggre-
gate level information is sufficient to learn turn probabilities
for traffic networks and model the traffic flow [Kumar et al.,
2013].

As another example, figure 1 shows the e-navigation chart
(ENC) of a strait [Singh et al., 2019]. The ENC is composed
of several features such as anchorages where vessels anchor
and wait for services, berths, pilot boarding grounds, and the
traffic separation scheme or TSS. The TSS (figure 1) is the
set of mandatory unidirectional routes designed to carry bulk
of the maritime traffic to reduce collision risk among vessels
transitioning through or entering the Straits. Based on geo-
graphical features, the TSS can be further divided into smaller
zones, and maritime traffic can be thought of as flow of ves-
sels over zones. In the maritime case, although individual
vessel trajectories are available, modeling the precise move-
ment of each vessel is intractable (it requires modeling inter-
action with other vessels, effects of weather on the movement
among other factors). Therefore, modeling the traffic at the
aggregate level of zones (where we observe how many vessels
are present in which zone at each time step) is significantly
more tractable, and in our empirical tests, we show such an
aggregate modeling is accurate enough to replicate historical
patterns [Singh et al., 2019].

3.1 Collective Graphical Models and Learning
Domain Simulators

We use the framework of collective graphical models (CGMs)
to model several types of urban environments [Sheldon and
Dietterich, 2011] where we fit a model of the behavior of in-
dividuals but our data consist only of aggregate information
or counts. CGMs compactly describe the distribution of the
aggregate statistics of a population sampled independently
from a discrete graphical model. Let G = (V, E) denote an
undirected graph. Consider the following pairwise graphical
model over the discrete random vector X = (X1, . . . , X|V |):

p(x; �) = Pr(X =x; �)=
1

Z(�)

�

(i,j)�E

�ij(xi, xj ; �). (2)

Here, �ij(·, ·; �) is a local potential defined on the setting of
variables (Xi, Xj). The local potentials depend on the pa-
rameter vector �, and Z(�) is the partition function. We as-
sume that each variable Xi takes values in the same finite set
X . Now, consider an ordered sample x

(1), . . . ,x(M) of ran-
dom vectors drawn independently from the graphical model.

Electronic Navigation Chart of Straits

Figure 1: Evolution of my research directions
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as popular frameworks for (sequential) cooperative multiagent decision making. These models captures plan-
ning problems where agents act based on di↵erent partial information about the environment and about each
other to maximize a global reward function. I have contributed towards:

• Scalable algorithms for finite-horizon Dec-POMDPs where agents operate over a finite plan horizon [7,
8, 11]. I show connections of finite-horizon planning to the problem of constraint optimization (COP) or
Markov random fields, a subclass of graphical models. As a result of this connection, established COP
solvers can be used to solve Dec-POMDPs resulting in increased algorithmic scalability by multiple
orders of magnitude over previous best solvers.

• Probabilistic inference based approaches for multiagent planning (for both finite and infinite hori-
zon settings). I have shown how the multiagent planning problem can be reformulated to that of
probabilistic inference in a (dynamic) Bayesian network for both the Dec-POMDP [9, 14, 15] and the
DCOP models [10]. Using this connection, I show how the problem of likelihood maximization (LM),
a popular machine learning problem, is equivalent to that of solving the planning problem optimally.
As a result of these connections, a number of approaches from the ML literature become applicable to
multiagent planning, leading to a fruitful and productive avenue of research for myself and the wider
multiagent planning community. Several state-of-the-art multiagent planning algorithms are based on
this planning-as-inference paradigm.

• Exploiting interaction structure among agents to scale multiagent planing (increasing scalability
from 2 to dozens of agents). This scalability is achieved in settings such as sensor networks where
agents are only loosely-coupled. Such restricted agent interactions have been formalized using the
network distributed POMDP model [16], and I have developed several state-of-the-art approaches for
this model [7, 14, 12].

A.2 Optimizing Compact Policies for Multiagent Planning

Solution approaches for sequential decision making su↵er from the curse of history which implies agents
may need to remember their entire observation history to select the next action. Fortunately, in practice,
remembering compact summary of the observation history is su�cient to make good decisions. I have
developed mixed-integer programming based methods that optimize both the information that needs be
memorized as well as the action to take for each such memory using the framework of finite-state controllers [5,
13]. This approach results in highly compact policies that are human interpretable, and implementable in
resource-limited agents. This work is currently among the state-of-the-art methods for optimizing controller-
based policies for 2-agent Dec-POMDPs, and validated on several publicly available benchmarks.

At a high-level, most of my work during the Ph.D. and early tenure at SMU was model-based where
the knowledge of the complete planning model was assumed. The scalability of algorithms developed was
up to few dozen agents, which at the time was significant given the NEXP-Hard complexity of a 2-agent
Dec-POMDP, and the NP-Hard complexity of DCOPs. During the following years, my focus has shifted
towards learning planning models and domain simulators from data, and using such simulators for e↵ective
multiagent decision making specially in urban settings with hundreds to thousands of agents.

B Representation and Inference for Large Agent Population

After graduation and during my postdoc at IBM Research, I became interested in how to scale multiagent
decision making to practical problems by exploiting the structure of agent interactions in a large population.
Towards this end, I began working on the framework of collective graphical models (CGMs) [22] which allow
learning the behavior of a population of agents based only on aggregate population-level data without

requiring to track each individual agent.
Along with my collaborators, I have developed several scalable message-passing approaches for inference

in CGMs [20, 24, 6, 21]. Crucially, these inference algorithms allow to learn the hidden parameters

governing interaction among agents using only aggregate, noisy and missing data, which is the norm in
real world settings. These algorithms are highly scalable, up to thousands of agents, by exploiting that most
of the agents are homogeneous to each other in a large population. We have used CGM-based models to
learn crowd movement patterns in a theme park in Singapore as part of the Living Analytics Research Center
at SMU, and were able to achieve good accuracy for predicting wait times at popular attractions [3, 4].

http://www.mysmu.edu/faculty/akshatkumar
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I have been part of the Fujitsu-SMU Urban Computing and Engineering (UNiCEN) Corp Lab since 2014.
Problem settings at UNiCEN are characterized by a need to control a large fleet of agents (most of whom are
homogeneous or belong to a small number of types). E.g., an autonomous taxi may observe the demand and
the count of other taxis in its current zone to decide where to move next to optimize fleet’s total revenue; a
vessel in Singapore strait may observe the tra�c in its current zone, and decide its speed to reach its next
target zone to minimize congestion. Such practical contexts have led me to naturally combine CGMs and
decision theoretic reasoning to develop new multiagent planning frameworks and algorithms that can model
such large multiagent systems as described next.

C.1 Collective Multiagent Decision Making

We have developed a general decision theoretic framework—collective decentralized partially observ-

able MDP (CDec-POMDP)—that allows to control the behavior of a population of nearly identical agents
operating collaboratively in an uncertain and partially observable environment [17]. Our key enabling insight
is that agent interactions are governed by the aggregate count and types of agents, and do not depend on the
specific identities of individual agents, similar to CGMs. This insight makes it possible to construct scalable
and general approaches to multiagent modeling, simulation and optimization that are capable of addressing
a range of practical problems in urban systems. This addresses shortcomings of previous multiagent planning
approaches which are either general but not scalable or scalable but with limited applicability. Using col-
lective interactions, the CDec-POMDP model succinctly captures real world problems, such as autonomous
taxi fleet optimization [17] and maritime tra�c management [23], involving thousands of agents.

We have also established several basic properties of CDec-POMDPs such as agent count in di↵erent states
being the su�cient statistic for agent-based simulation and decision making. Such theoretical properties are
exploited for scalability by the solution approaches we have developed.

C.2 Collective Multiagent Reinforcement Learning

We have developed a set of principled approaches for collective decision making with a focus on reinforce-

ment learning (RL) based algorithms [18, 19]. The novel contribution is the development and validation
of learning approaches that work with count-based data, which is the key to computational tractability as
it allows us to handle large agent populations including thousands of agents. Such a count-based multiagent
learning is not possible with standard RL algorithms. Furthermore, we have also addressed the following
core challenges for multiagent RL: (i) stability of learning in the presence of multiple agents, (ii) scalability

given the combinatorial state and action spaces in collective multiagent decision making problems, and (iii)
multiagent credit assignment that helps to identify agents that contributed most to the team’s success.

We have validated our approaches using domain simulators based on real historical data for
taxi supply-demand matching, incidence response in Singapore [19], and maritime tra�c coordination in
Singapore strait [23]. Our approaches are shown to be significantly better (both in scalability and solution
quality) than previous best approaches.

D Multiagent Maritime Tra�c Management

As part of the UNiCEN, I have worked on projects targeted towards near term operational needs of the
vessel tra�c control system in collaboration with the Maritime Port Authority (MPA) of Singapore. Using
historical location data of all vessels in Singapore strait and its electronic navigation charts, we have built
a realistic maritime tra�c simulator over the last 4 years. We have developed intelligent scheduling

algorithms that smartly coordinate the vessel tra�c in the narrow strait to increase the safety of navigation
while minimally a↵ecting the tra�c throughput. We have developed constraint programming and operations
research based approaches that compute safe passage plan for arriving vessels [1]. Results using historical data
show that we can reduce the tra�c density by 50% over the current levels by incurring only marginal average
delays (about 30 minutes per vessel) [1]. We have extended our scheduling based approaches to incorporate
realistic maritime navigational features and constraints through consultations with domain experts to make
sure that resulting schedules are implementable in real world [2].

C.3 Collective RL with Asynchronous Agent Behaviors. Adapting RL to the maritime domain
requires incorporating several domain constraints such as vessels cannot stop mid-water, have to

http://www.mysmu.edu/faculty/akshatkumar
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maintain a minimum cruising speed, and the uncertainty of navigation in the strait which is a↵ected by
weather conditions. As a result of such constraints, agents (or vessels) operate in an asynchronous manner—
vessels may navigate the same zone in di↵erent amount of time. This is a significant departure from the
standard multiagent RL case where agents’ actions take same amount of time to finish. Our recent and
ongoing work has addressed such constraints by learning the navigation behavior of vessel movement

using historical data, incorporating it into our maritime tra�c simulator, and adapting our

collective RL approaches to this setting [23]. Empirical results on synthetic and real world problems
show that our approach can significantly reduce congestion while keeping the tra�c throughput high [23].

Recognition and Accomplishments

• I have been invited to give a talk at the International Joint Conference on Artificial Intelligence

(IJCAI) 2019 Early Career Track. The early career speakers are chosen among young researchers
with an outstanding publication record and high visibility following nominations by IJCAI area chairs.

• I am selected as one of the IEEE Intelligent System’s AI ten to watch in 2018. It is a highly
competitive call (open worldwide every two years) for early career AI researchers who received their
Ph.D. in or after 2011. My contribution was titled Planning and Inference for Multiagent Systems.

• Best papers. •Received Best paper award at the AAAI Conference on Artificial Intelligence, Com-
putational Sustainability track, 2017. AAAI is the flagship conference for the AI community. •Received
outstanding Application Paper Award at the International Conference on Automated Planning
and Scheduling (ICAPS), 2014. The ICAPS is the flagship conference for the automated planning and
scheduling community.

• I was the co-chair of the Planning and Learning Track for the 2018 ICAPS and the co-chair of the
doctoral consortium at ICAPS 2019.

• External grants. I have received multiple external highly competitive grants by the Ministry of Ed-
ucation (MoE) for their tier-2 program—one as Co-PI (Jan’17-Dec’19, $674,046), and the other as PI
(Jan’19-Dec’21, $468,700). The latest grant is towards collective multiagent decision making and RL, my
recentmost research topic.

• Dissertation awards: Received best Dissertation Award at ICAPS 2014, IFAAMAS Victor Lesser

Distinguished Dissertation Runner-up Award at the International Conference on Autonomous Agents and
Multiagent Systems (AAMAS), 2013, and the best dissertation award at the school of computer science
at the University of Massachusetts Amherst.

Future Directions

I am particularly excited by the opportunities and research questions that are going to arise in our rapidly
networked and connected urban environments. To benefit from such connectivity, new computational tech-
nologies are needed for increasing our productivity, safety and e�ciency. I plan to address in near future:

• Scalability: Given very large number of agents (in thousands) in our urban and societal settings, how
can we develop coordination models/algorithms that scale well to such large planning problems?

• Cooperation and Competition: Real world systems are neither fully cooperative nor fully self-
interested. How can we develop novel models and algorithms that can encapsulate such cooperative-
competitive behavior of agents in a unified decision theoretic model?

• Multiagent RL and urban system optimization: My current work explores deep multiagent RL
for urban system optimization. Given the success of single-agent RL, developing such techniques for
multiple agents presents several challenges such as nonstationary environment due to multiple learning
agents, learning with partial observability, and multiagent credit assignment.

• Humans and AI: Humans would always cohabitate with AI based technologies such as human driven
cars and autonomous taxis sharing the road, autonomous drones making delivery to our houses. A key
question to explore is how to design “safe” algorithms that enable productive cohabitation among humans
and AI agents possible.
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