
Research Statement

Chris Poskitt

School of Computing and Information Systems

Singapore Management University

Tel: (65) 6828-1376; Email: cposkitt@smu.edu.sg

21st December 2023

Research Overview

My research broadly addresses the problem of engineering correct and secure software/systems,

ensuring they can be trusted by users and deployed in contexts where reliability is paramount.

Working towards this goal is rewarding for two reasons: (1) software has become ubiquitous in

everyday life, and steps towards eradicating faults have a potentially larger impact now than ever

before; and (2) systems are increasingly heterogeneous and complex, making it a stimulating

technical challenge to find the right abstractions, tools, and analyses to support engineers in practice.

I am particularly interested in addressing this problem for cyber-physical systems (e.g. critical

infrastructure, autonomous vehicles) that are becoming more important in our daily lives, but the

complexity of which makes it difficult to directly apply traditional techniques for ensuring software

quality. With my collaborators, we have co-developed approaches that adapt these techniques for

such systems, whether using mutation testing to inspire the construction of anomaly detectors for

critical infrastructure, domain-specific languages to model traffic laws for autonomous vehicle

testing, or fuzzing to generate security benchmarks.

Furthermore, I am interested in how this domain knowledge can be translated to the classroom to

help graduate cutting-edge software engineers into the workforce.

Some key overarching questions my research addresses include:

● How can traditional approaches for software quality be generalised to complex

cyber-physical systems?

● How do we build defence mechanisms for critical infrastructure that effectively

detect/prevent attacks?

● How do we intelligently fuzz cyber-physical systems to uncover rare (but feasible) scenarios

that violate safety properties?

● How can undergraduate curricula better prepare students to engineer correct and secure

code?

My research tends to straddle both theory and practice: I am motivated to work in new and

emerging application domains (e.g. autonomous vehicles, critical infrastructure), but our solution

approaches are underpinned by rigorous ideas from software theory. For example, we developed a

fuzzing technique for testing autonomous driving systems such as Apollo: our approach is practical, in

that it actually finds concrete ways in which certain traffic laws are violated, but it is also theoretically

rigorous in that the fuzzing engine is built on top of a Signal Temporal Logic semantics of those traffic

laws.

These ‘interplays’ are not just limited to software theory and testing – the predominant approach I

take to solving research problems is to look for creative and effective interplays between the main

subfields I work in:

mailto:cposkitt@smu.edu.sg


For example, using:

● ‘Mutation testing’ to inspire a new way to learn anomaly detectors for cyber-physical

systems (CPS);

● Fuzzers to generate benchmarks for testing CPS defence mechanisms;

● Causal reasoning to help fuzzers distinguish between classes of ‘equivalent’ tests;

● Security scanners to raise insecurity awareness among undergraduate students.

The techniques and domains I work with are diverse, but I find that this diversity leads to exciting

new ideas that all chip away at the grand challenge of making our systems safer and more secure.

Research Highlights

In the following, I summarise some of the key results from the projects I have worked on.

Defending Cyber-Physical Systems
Cyber-Physical Systems (CPSs) are characterised by a deep integration of software and physical

processes. These complex systems are commonly used to automate aspects of public infrastructure

(e.g. water treatment, smart grids) and thus have become prime targets for cyberattackers.

Identifying whether a CPS has been compromised based on its behaviour, however, is very

challenging, given the tight integration of algorithmic control in the “cyber” part with continuous

behaviour in the “physical” part. While the software components (e.g. PLCs) are often simple when

viewed in isolation, this simplicity betrays the typical complexity of a CPS when taken as a whole. To

address this, we have been developing a number of defence mechanisms that attempt to intelligently

overcome this complexity.

In our S&P’18 paper [3], taking inspiration from

‘mutation testing’, we systematically mutated PLC

code to generate traces of abnormal physical

behaviour, using this to learn precise anomaly

detectors based on machine learning models. In our

ESEC/FSE’21 paper [2], we focused on the integrity of

PLCs themselves, developing an approach based on

privacy-preserving black box models that could be

used to attest the input/output behaviour of their

programs. Our approach was general, and resulted in

near-100% accuracy at detecting effective code

modification attacks. Finally, in our IEEE TDSC paper

[1], we explored the limitations of building defence mechanisms from data. In a detailed case study



on the SWaT water treatment testbed1, we found that anomaly detectors trained solely on historical

data were not enough, and could be exploited by adversaries with knowledge of the plant design

(e.g. backup pumps). We advocate for a hybrid approach in which anomaly detectors are constructed

using a combination of data as well ‘invariants’ extracted from the plant’s design documents.

1. Mitigating Adversarial Attacks on Data-Driven Invariant Checkers for Cyber-Physical Systems,

R.R. Maiti, C.H. Yoong, V.R. Palleti, A. Silva, and C.M. Poskitt. IEEE TDSC'23

2. Code Integrity Attestation for PLCs using Black Box Neural Network Predictions, Y. Chen, C.M.

Poskitt, and J. Sun. ESEC/FSE'21

3. Learning from Mutants: Using Code Mutation to Learn and Monitor Invariants of a

Cyber-Physical System, Y. Chen, C.M. Poskitt, and J. Sun. S&P'18

Testing Critical Infrastructure
A problem we repeatedly encountered

while developing defence mechanisms for

critical infrastructure was a lack of

benchmarks to evaluate them against. This

spurred a new line of work in which we tried

to apply ideas from black-box fuzzing to

systematically generate test suites of

network attacks. In our ASE’19 paper [6], we

designed an approach that combined

metaheuristic search with predictive machine learning models (learnt by observing sensor readings

in the system’s logs) to find actuator manipulations that pushed the system towards anomalous

behaviours. In our ISSTA’20 paper [5], we adapted the techniques to work at the network

packet-level – flipping bits in the payloads – and used an ‘active learning’ approach to predict the

effects so as to minimise the amount of training data needed. Our work was able to automatically

derive tests for SWaT covering 27 different unsafe states, including six that were not covered by an

existing expert-crafted benchmark. Finally, in our ICSE’23 paper [4] we developed algorithms that

help these fuzzers ensure that they uncover causally different tests, thus ensuring test suite diversity.

4. Finding Causally Different Tests for an Industrial Control System, Christopher M. Poskitt, Yuqi

Chen, Jun Sun, and Yu Jiang. ICSE'23

5. Active Fuzzing for Testing and Securing Cyber-Physical Systems, Y. Chen, B. Xuan, C.M. Poskitt,

J. Sun, and F. Zhang. ISSTA'20

6. Learning-Guided Network Fuzzing for Testing Cyber-Physical System Defences, Y. Chen, C.M.

Poskitt, J. Sun, S. Adepu, and F. Zhang. ASE'19

1 https://itrust.sutd.edu.sg/testbeds/secure-water-treatment-swat/

https://itrust.sutd.edu.sg/testbeds/secure-water-treatment-swat/


Fuzzing Autonomous Vehicles
Autonomous Driving Systems (ADSs) such as Baidu

Apollo must be comprehensively tested before they

can be deployed on real roads. High-fidelity

simulators exist for this purpose, and allow for

them to be tested in scenarios that are difficult to

recreate in the real world. Previous ADS testing

work, however, has largely focused on weak test

oracles, e.g. “did the car collide?” or “did the car

reach the destination?”. On the road, however, the quality of the journey is just as important as

getting to the destination in one piece (skipping every traffic light, for example, is unacceptable, even

if it can be done without crashing). In our ASE’22 paper [7], we addressed this problem by developing

a domain-specific language for specifying traffic laws based on Signal Temporal Logic (STL). We gave

the underlying STL formalisation a quantitative semantics that our fuzzing engine then used to search

for scenarios that came ‘closer’ to violating our traffic laws. As our case study, we formalised the

traffic laws of China, and were able to cause Apollo to violate 14 of them.

7. LawBreaker: An Approach for Specifying Traffic Laws and Fuzzing Autonomous Vehicles, Y.

Sun, C.M. Poskitt, J. Sun, Y. Chen, Z. Yang. ASE'22

Reasoning about Graph-like Structures
As part of my PhD, I studied techniques for proving the

correctness of problems modelled as graphs and algebraic

graph transformations (i.e., “graph programs”), and still

maintain a thread of research in this community. For example,

in recent work [8,9], I adapted Peter O’Hearn’s “incorrectness

logic” to this setting. Unlike traditional program logics (which

prove facts about all possible executions), an incorrectness

logic proves the presence of certain executions, which could

be particularly important for graph programs given the large

amount of nondeterminism.

In some earlier work [10], I used a graph-based modelling tool (“GROOVE”) to model the semantics

of SCOOP, an extension of the Eiffel object-oriented language that provided concurrency via an

actor-like message-passing model. By abstracting the semantics to graphs, we were able to uncover a

discrepancy between two versions of the SCOOP semantics that had implications for the behaviour

of real programs.

8. Monadic Second-Order Incorrectness Logic for GP 2, Christopher M. Poskitt and Detlef Plump.

JLAMP'23

9. Incorrectness Logic for Graph Programs, C.M. Poskitt. ICGT'21

10. A Semantics Comparison Workbench for a Concurrent, Asynchronous, Distributed

Programming Language, C. Corrodi, A. Heußner, and C.M. Poskitt. FAOC’18



Software Engineering Education
I occasionally publish in the computing education community

to disseminate any new pedagogical interventions that we

feel may be useful for other practitioners (e.g. [11], [12]).

Most recently, our ITiCSE’22 paper [11] addressed our

observation that many computing curricula provide limited

exposure to topics in computer security, risking graduates

with very little software security awareness. Our paper

advocates a “security integration” approach to solve this, in

which security is used as a unifying topic across non-security

courses. We assessed one such example in a web

development course, integrating the use of security scanners

to make students aware of the risks of, e.g. blindly trusting user input. Upon scanning students’

project code ourselves before and after this modest intervention, we observed notably fewer flaws.

11. XSS for the Masses: Integrating Security in a Web Programming Course using a Security

Scanner, L.K. Shar, C.M. Poskitt, K.J. Shim, L.Y.L. Wong. ITiCSE'22

12. Securing Bring-Your-Own-Device (BYOD) Programming Exams, O. Kurniawan, N.T.S. Lee, and

C.M. Poskitt. SIGCSE'20


