
 

 1

SMU Classification: Restricted 

Research Statement 
 

SHAR Lwin Khin 
School of Computing and Information Systems, Singapore Management University 

Tel: (65) 6828-0019; Email: lkshar@smu.edu.sg 
 21 December 2023 

 

Background   
With the rise of Industry 4.0, software systems are becoming more pervasive in all 
industry sectors and have become increasingly complex and critical. As a result, the 
issues and challenges traditionally faced in software development are becoming more 
acute. They need more effective, efficient development processes, more automation, 
and more scalable solutions. Therefore, software engineering research is highly 
relevant and could have a significant impact to many industry sectors. However, there 
is a gap between academic-research and industrial needs in software engineering. In 
our software engineering research community, we tend to measure success by 
counting publications, which naturally lead to academics producing papers that may 
or may not be industry-relevant. A prominent software engineering researcher stated 
that among the publications from the top software engineering research venues, only 
a small proportion of the papers stem from industry-relevant research. My research 
aims to be industry-relevant. For this to happen, it must be context-driven.  
 
Context-driven research doesn’t try to frame a general problem and devise universal 
solutions. Rather, for a given context that is precisely defined, it makes clear working 
assumptions and devises practical solutions that work in such a context. It also 
considers and makes tradeoffs that make sense in the given context to achieve 
practicality and scalability. Clearly, this doesn’t produce solutions that generalize 
easily to any arbitrary software development environment. But this doesn’t reduce its 
value because universal solutions hardly work, anyway, for different software systems 
that have different contextual factors such as software complexity and characteristics, 
domain-related criticality and compliance with standards, organization’s cost and time 
constraints, and human factors (e.g. engineers’ background). Software from 
telecommunication industry could be very much different from those of automotive 
industry. 
 
Whether the cost of a comprehensive software validation technique is justified will 
depend on the criticality of the software being assessed and the standards it must 
comply with. For example, in Singapore, software systems that acquire user privacy 
data must comply with Personal Data Protection Act (PDPA); hence a validation 
technique that specifically focuses on the PDPA will be beneficial for such systems. 
That is, they require a technique that can transform the natural language form of 
PDPA into a machine-analyzable form, that can extract the security and privacy 
requirements embedded in the PDPA, and that can support automated or semi-
automated generation of test scenarios to validate these requirements. Although this 
may sound universal, in the nutshell, an effective technique requires domain-specific 
considerations — specific terms and definitions used in the PDPA must be considered 
for the natural language processing; testing typically requires specific set of inputs 
such as the inputs’ form and content; and any other contextual factors such as the 
development process used, the cost and time constraints, etc. must be considered. 



 

 2

SMU Classification: Restricted 

 

Research Areas  

My research mainly focuses on security analysis of web/mobile/IoT applications and 
Cyber-Physical systems, which falls under the umbrella of software validation and 
verification domain – a sub-discipline of software engineering. Particularly, I work on 
detecting and analyzing security vulnerabilities, privacy issues, and anomalies. The 
kinds of software artefact applicable to my research range from source code to 
deployed software. My research is not limited to the use of any particular technique 
but for the problems that I am addressing, I found that the combined use of static 
analysis, dynamic analysis, search-based test generation, and machine learning 
techniques suits the need so far. The following discusses some of the major work that 
achieved high impact in my research domain: 
 
Security Vulnerability Analysis [1-9]. The work proposed in ICSE NIER track [1] is one 
of the pioneer works that uses machine learning on code characteristics to predict 
vulnerabilities in web applications, differently from the then-approaches that mainly 
focused on the use of static and dynamic analyses only for detecting web 
vulnerabilities. In [1] and its subsequent extensions [2-4], we incorporated the use of 
machine learning to address the scalability and effectiveness problems of static and 
dynamic analyses; we proposed approaches that predict various code injection 
vulnerabilities (SQL injection, cross site scripting, remote code execution, path 
traversal, etc.) in web programs. Static and dynamic analyses are first used to extract 
code features from web programs containing known vulnerabilities. The extracted 
features reflect information about potentially correct and incorrect validation and 
sanitization routines implemented in a program. Supervised, semi-supervised, 
unsupervised machine learning techniques are then applied to build vulnerability 
predictors based on these features and the known, available vulnerability information. 
The predictors are then applied to predict vulnerabilities in other web programs. The 
experimental results show that the best predictor could detect 90% of vulnerabilities 
with 12% false alarm rate. 
 
Vulnerability predictors have been shown to be effective, but they only predict 
vulnerable code sections. They do not provide comprehensive information on the 
deficiencies of the implementations that cause vulnerabilities. Therefore, to 
complement the above prediction approaches and to assist the developers in auditing 
the code, in [5, 6], I have also worked on a static analysis-based approach that 
specifically extracts security-relevant code slices for security auditing purposes. It also 
provides guidelines to carry out security audits based on the extracted code slices. 
This work addressed the technical and scalability challenges of precisely extracting 
the code slices for Java-based web programs.  
 
In [8, 9], we extended this security auditing research in the area of improving the 
constraint solvers. This also augments existing vulnerability detection approaches. 
Given code slices, a powerful constraint solver will be able to tell precisely what inputs 
can cause the vulnerabilities. We developed such a constraint solver addressing the 
challenges of solving complex string operations and mixed (integer and string) 
operations in a scalable and effective way. For scalability, we built several finite-state 
machines (FSMs) that model various Java string operations, which avoid the need for 
resolving such operations into basic set of operations that are often recursive and 



 

 3

SMU Classification: Restricted 

complex to solve; and then incorporated a search-based input generation algorithm 
into the FSMs-based constraint solver for effectiveness. The tool that implements the 
approach was evaluated on an industrial code base provided by HITEC Luxembourg 
(www.hitec.lu). 
 
Privacy Analysis [10-13]. Even though security and privacy are often mentioned 
together, and many approaches claimed to address both issues at the same time, 
there are some subtle differences that pose specific challenges for addressing privacy 
concerns properly. Security has commonly accepted definitions and properties; for 
example, a secure communication system can be defined as the one that has 
confidentiality, integrity, and availability properties. By contrast, privacy is hard to be 
defined appropriately as it could mean differently to different people. To address this 
problem, in the scope of Android apps, in [10], we proposed an approach that reports 
anomalous data flows to users for them to make informed decisions. Firstly, using 
natural language processing and clustering techniques, our approach forms clusters 
of apps where each cluster contains a group of similar trusted, benign apps according 
to their functional descriptions; the approach then learns their normal behaviors by 
analyzing the call graphs of the app code and by running diverse test cases. We 
combined static analysis and genetic algorithm-based test generation so as to 
observe diverse behaviors as many as possible. Lastly, give a test app, the approach 
compares its behaviors against those of the apps in the same cluster. In [11], we 
extend the approach in [10] to detect permission re-delegation vulnerabilities that 
could leak privacy data. In [12], we proposed an approach that maps user interfaces 
in Android apps to permission uses so that users can make an informed privacy 
decisions when they interact with the apps. 
Even when privacy requirements are well-defined by stakeholders for privacy-
sensitive systems, it is often the case that the requirements are only visible in the 
requirement documents; there is no traceability between the privacy specifications 
and the actual implementations. Hence, in this context, I have worked on a European 
industrial & academic research project called EDLAH2 (http://edlah2.eu), which 
attempts to address this problem. In this work, we developed a modeling method for 
specifying the security and privacy requirements in a traceable way [13]. 
 
Anomaly Analysis [14-20]. Concurrently with vulnerability and privacy analysis, I also 
conduct research in anomaly analysis that includes malware and generic software 
bugs. In the earlier work [14], I worked on malware behavior modeling using bounded 
feature space to deal with the scalability issue of signature-based malware detection 
approaches. Given that there is plethora of machine learning-based malware 
prediction approaches nowadays, I also worked on empirical studies to compare the 
malware detection performance of various types of features, classifiers (conventional 
classifiers and deep learning classifiers) [15, 21] and data preprocessing techniques 
[16].  
 
Recently, I have been working on anomaly detection in IoT environment and drone 
behaviors, a project funded by NSoE MSS-CS, in collaboration with HTX Singapore 
(https://www.htx.gov.sg/). Differently from traditional computing platforms, IoT 
computing platforms typically consist of diverse apps and devices ranging from 
sensors and cameras to smart cars and drones, and diverse communication 
protocols. And entities in IoT computing platform are highly automated, interactive, 
and inter-dependent. IoT devices may also be remote and have limited computing 



 

 4

SMU Classification: Restricted 

resources. Due to immaturity, IoT computing platforms are also progressive. These 
unique characteristics make security analysis very challenging. Current approaches 
and tools are not yet adequate to these challenges. In [17], we have developed an 
automated fuzzing approach for detecting anomalies in Samsung SmartThings IoT 
platform, which takes into consideration the interplays between SmartThings apps, 
devices, and user inputs. In [18-19], we proposed a machine learning-based analysis 
approach that detects anomalous drone behaviors in flight log data. The approach 
aims to detect anomalies such as sensor fault, actuator fault, configuration errors and 
bugs in drone control program. During a flight mission, drones typically log flight 
states, which could reflect anomalies. Hence, we train a LSTM-based deep learning 
model on the normal flight logs, which can then be used to detect anomalies in real 
time flight logs. In [20], we proposed an automated approach for configuring 
unsupervised learning systems in the context of detecting anomalies in Cyber-
Physical systems.  
 
In software engineering and empirical studies, it is important that tools that 
implements the proposed approaches and other software artefacts are made 
available to researchers for replication and extension. We have implemented several 
tools and made them available at 

 Security auditing tool for web apps: https://github.com/julianthome   
 Mobile apps security analysis tool: https://biniamf.github.io/PREV/ 
 Fuzzing tool for SmarThings apps: https://github.com/sharlwinkhin  
 Anomaly detection tool for drones and empirical studies: 

https://github.com/Jesper20   
 Fuzzing tool for drones: https://github.com/weiminn 

 
Future Plan 
Going forward, my long term plan is to improve the practice of software engineering 
through a context-driven research and produce a meaningful impact on industrial 
practice. I aim to realize this vision by conducting context-driven research in security 
testing & analysis in general with industrial collaborations, developing effective, 
efficient, (semi-)automated, and scalable solutions for testing their complex software 
systems under precise contexts. 
 
As a short term plan, for the next two years, I plan to conduct translational research 
in the context of anomaly analysis of Cyber-Physical systems and vulnerability 
analysis of web applications through translational grants with industrial collaborators.   

 

Selected Publications and Outputs 

[1] L. K. Shar and H. B. K. Tan. Mining input sanitization patterns for predicting SQL 
injection and cross site scripting vulnerabilities. ICSE 2012. 

[2] L. K. Shar et al. Mining SQL injection and cross site scripting vulnerabilities using 
hybrid program analysis. ICSE 2013. 

[3] L. K. Shar et al. Web application vulnerability prediction using hybrid program 
analysis and machine learning. TDSC 2015. 

[4] L. K. Shar and H. B. K. Tan. Predicting SQL injection and cross site scripting 
vulnerabilities through mining input sanitization patterns. IST 2013. 



 

 5

SMU Classification: Restricted 

[5] J. Thome, L. K. Shar, and L. Briand. Security Slicing for Auditing XML, XPath, and 
SQL Injection Vulnerabilities. ISSRE 2015. 

[6] J. Thome, L. K. Shar, D. Bianculli, and L. Briand. Security slicing for auditing 
common injection vulnerabilities. JSS 2018. 

[7] J. Thome, L. K. Shar, D. Bianculli, L. Briand. JoanAudit: A Tool for Auditing 
Common Injection Vulnerabilities. ESEC/FSE 2018.   

[8] J. Thome, L. K. Shar, D. Bianculli, and L. Briand. Search-driven String Constraint 
Solving for Vulnerability Detection. ICSE 2017. 

[9] J. Thome, L. K. Shar, D. Bianculli, L. Briand. An Integrated Approach for Effective 
Injection Vulnerability Analysis of Web Applications through Security Slicing and 
Hybrid Constraint Solving. TSE 2018. 

[10] B. F. Demissie, M. Ceccato, and L. K. Shar. AnFlo: Detecting Anomalous 
Sensitive Information Flows in Android Apps. MobileSoft 2018. 

[11] B.F. Demissie, B.F., M. Ceccato, L.K. Shar. Security analysis of permission 
re-delegation vulnerabilities in Android apps. EMSE 2020. 

[12] V.K. Malviya, C.W. Leow, A. Kasthuri, Y.N. Tun, L.K. Shar, Right to Know, 
Right to Refuse: Towards UI Perception-Based Automated Fine-Grained 
Permission Controls for Android Apps. ASE 2022. 

[13] X. P. Mai, A. Goknil, L. K. Shar, F. Pastore, L. Briand, S. Shaame. Modeling 
Security and Privacy Requirements: a Use Case-Driven Approach. IST 2018. 

[14] M. Chandramohan, H. B. K. Tan, L. C. Briand, L. K. Shar and B. M. 
Padmanabhuni. A scalable approach for malware detection through bounded 
feature space behavior modeling. ASE 2013. 

[15] L. K. Shar et al. Experimental comparison of features and classifiers for 
Android malware detection. MobileSoft 2020. 

[16] L.K. Shar et al. Empirical evaluation of minority oversampling techniques in 
the context of Android malware detection, APSEC 2021. 

[17] L.K. Shar et al. SmartFuzz: An Automated Smart Fuzzing Approach for 
Testing SmartThings Apps, APSEC 2020. 

[18] L.K. Shar et al., DronLomaly: Runtime Detection of Anomalous Drone 
Behaviors via Log Analysis and Deep Learning, APSEC 2022. 

[19] W. Minn, Y. N. Tun, L.K. Shar, L. Jiang, DronLomaly: Runtime Log-based 
Anomaly Detector for DJI Drones, ICSE Demonstrations 2024. 

[20] L.K. Shar et al. AutoConf: Automated Configuration of Unsupervised Learning 
Systems Using Metamorphic Testing and Bayesian Optimization, ASE 2023. 

[21] L.K. Shar et al. Experimental comparison of features, analyses, and classifiers 
for Android malware detection. EMSE 2023. 

 
 


