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Background

Today software is everywhere such as the mobile, computer and TV, everything runs
on software. With the booming of intelligent systems such as smart phones, self-
driving cars, and robotics, we are increasingly dependent on the correct

operation of software. As software is becoming larger and more complex, it is a

big challenge for guaranteeing correctness and security of software. Moreover, the
form of software is becoming diverse, from traditional code-based software to new
data-driven software (e.g., intelligent software). Due to the fundamental differences
between code-based software and data-driven software, existing techniques on
traditional software are not available in Al software. Hence, with the increasing
complexity and diversity of modern software systems, we are forced to rethink
questions such as how to test and verify different kind of traditional software
effectively and how to assure the quality of the intelligent software in such

context.

Motivated by the above challenges, my research goal is to develop automated
techniques and practical tools for quality analysis of traditional software and intelligent
software. Specifically, for traditional software, | work on fundamental program analysis
and software testing techniques to verify the correctness and discover bugs. | have
proposed techniques on different kinds of software like JavaScript engines, game
software and others. For intelligent software, | have worked on automated analysis
on trustworthy Al including the data-centric analysis and mode-centric analysis.

To address the challenges of assuring software quality, my research work mainly
focuses on the following areas: program analysis, software testing, Al for software
engineering and software engineering for Al.

Program and Loop Analysis

Program analysis is the fundamental technique of automatically analyzing the
behavior of computer programs regarding some properties such as correctness,
robustness, and liveness. Loop structures are one of the biggest challenges for
program analysis. As a classical problem (e.g., in software verification and termination
proof), loop analysis has been studied for many years. An effective loop analysis can
greatly improve the overall program analysis, making it an important area of study in
computer science.

Focused on this hard problem, | first proposed a loop classification [1] to
systematically understand the difficulty of analyzing different types of loops. Based on
the classification, a series of summarization techniques [1,2,3] have been developed
and customized for handling different loops such as linear loops, non-linear loops,
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and string loops. The calculated loop summary could be applied to improve the
performance on symbolic execution, loop bound analysis and vulnerability detection.

In addition, with the loop summary, | also developed a lightweight framework to
automatically analyze the program termination [4] that is a classical halting problem.
Furthermore, we conducted an empirical study on the termination bugs in real-world
projects [36]. We found that there is a big gap between existing termination
benchmark and real-world termination bugs. The existing techniques mainly focus on
theory while that cannot be used in detecting real-world termination bugs. To address
this problem, we developed the first practical non-termination detection method [39]
that can detect real-world non-termination issues.

Future Research Plan. In the future, | will focus on: 1) to analyze more complex loops
and recurrent functions. | plan to apply advanced Al techniques to handle complex
loops and 2) develop practical techniques and tools to detect real-world non-
termination issues, particularly focusing on non-terminating recursive functions.

Software Testing

Testing is the main method to test the correctness and robustness of software. | am
quite interested in detecting software bugs especially vulnerabilities that could be
exploited by attackers. The main challenges that | mainly focus on in software testing
include: 1) how to develop effective algorithm that can discover bugs fast; 2) how to
discover different kinds of bugs (e.g., logical bugs, memory related bugs, GUI bugs)
and 3) how to test different kinds of software (e.g., smart contract, JavaScript engine,
Web application and Android application). For the algorithm level, | have developed
coverage-guided testing techniques (e.g., fuzzing) [5,6,7] to detect bugs, including the
test case selection, test case mutation, testing guidance etc. With these techniques,
| have discovered 100+ security vulnerabilities in open-source projects. | also
developed techniques to detect different kinds of bugs such as use-after-free bugs
[5], memory corruption bugs [25], performance bugs [37] and logical bugs [26].
Moreover, | developed techniques for testing different software such as game
software [9, 27, 28, 29, 40], Web applications [10], network protocols [26], JavaScript
engines [7] and deep learning frameworks [24,30]. After new bugs are detected, |
developed the root cause analysis technique [8] towards more effective debugging.
In addition, | developed approaches to mitigate cross-site scripting attacks in web
applications [11] and Android malware detection [12,13].

In addition, | also developed testing methods to evaluate the quality and reliability of
autonomous driving systems [41, 42]. We mainly focus on the problem of discovering
realistic and diverse critical scenarios.

Future Research Plan. In the future, | plan to focus on 1) test driver synthesis. Existing
test drivers mainly rely on human, which could be costly and incomplete. 2) Targeting
on new types of bugs and software such as block chain security and cloud
infrastructure security. | plan to collect new types of bugs/vulnerabilities, which can
be further used to improve the bug detection capability. 3) How to better apply Large
Language Model on software testing is a promising direction.
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Al for Software Engineering (AI4SE)

With the booming development of open-source software, the amount of available
code-related data (a.k.a. “big code”) has reached an unprecedented scale, which
inspires researchers from both academia and the industry to explore employing data-
driven approaches (e.g., machine learning) for diverse code-related tasks such as
type inference, clone detection, code summarization and code summarization. | am
interested in how to better mine knowledge from big code, which can provide useful
information to developers. For example, we proposed a novel retrieval-based
augmentation for effectively learning summarization from source code [31], which can
effectively improve the learning performance. Considering the different programming
language data in big code, we proposed the cross-lingual adaptation for type
inference, i.e., we would like to transfer the knowledge from one program language
to another language [32]. Moreover, we also proposed the techniques to better learn
the code semantics and representations [43, 44].

Another interesting direction is how to better apply machine learning in software
testing. We conducted an empirical study on deep learning for fuzz testing. We
observed that existing DL based approaches are not effective and some future
directions are concluded based on the study results [33]. After the bugs are identified
(e.g., from testing), a problem is how to automatically repair the buggy programs. We
adopted the deep learning on generating patches by learning from the history
information of big code [34,35].

Future Research Plan. In the future, | mainly focus on 1) data quality analysis for
different tasks. Although there are a lot of open-source code, the quality of the code
and documentation is not guaranteed, which could affect the training performance. 2)
| plan to focus on model robustness evaluation and interpretation to make trained
models more reliable and trustworthy. 3) | will also plan to study the large language
models on different code learning tasks and how to improve the performance.

Software Engineering for Al (SE4AI)

Deep learning (DL) has been widely applied in many cutting-edge applications.
However, deep neural networks (DNNs) are vulnerable (e.g., suffering from
adversarial examples). Considering the fundamental difference between traditional
software and deep learning software, it is a new challenge on quality assurance of
deep learning systems. In this new area, my research has contributed to quality
assurance of DL software during the development phase and deployment phase.

e DL Testing in Development Phase. Considering the unique characteristics of
DL software, the testing requires the analysis on the model as well as the
training data. | have proposed techniques on data analysis [14,15,16] and
model testing [17, 18, 45, 46]. For data quality analysis, we characterize the
data sensitivity [14], data uncertainty [15] and data distribution [16] for better
understanding the training data and test data. For model testing, we proposed
new testing criteria [18,19,38], input mutation techniques [20], seed input
selection [46], distribution-guided testing [45] and coverage-guided testing
frameworks [17,18]. The techniques have been demonstrated effective in
finding weaknesses for image classification, speech to text, and natural
language processing. After the problems are identified, | proposed the
automatic repair techniques to improve the quality of the target models [21,22].
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o DL Testing during Deployment Phase. Although DNNs have been well-tested
during the training phase, it can still cause issues when they are deployed in
environments that are different with the training environment, e.g., different
devices, different frameworks, and different platform. To ensure the quality of
the DNN after deployment, | have proposed the testing techniques to detect
compatibility issues [23] on different environments. | also developed the
framework to detect bugs in the deep learning frameworks (e.g., PyTorch,
TensorFlow) [24, 30], which can largely affect the quality of DNNs.

Future Research Plan. In the future, | mainly focus more on applications based on
existing research, which can further demonstrate the usefulness of our research.
Specifically, | will focus on the trustworthy Al in different domains, e.g., cybersecurity
(malware detection, intrusion detection), autonomous driving and healthcare.
Furthermore, with the rapid development of large language models, | will also focus
on testing and analyzing the quality of large language models.
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