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I. Background & Overview 

Graphs are prevalent in real-world datasets, for they can model not only individual data entities, but also 
interactions between these entities. Example graphs include the Web, social networks, transportation and 
telecommunication systems, scholarly citation networks, and protein interaction networks. To gain insights 
into such data, my research (Figure 1) has undertaken learning and mining on graphs. In particular, I focus 
on three sub-areas: A) designing and learning graph representations, B) multi-modal graph-based learning, 
and C) data efficiency and scalability on graphs, as well as their various applications.  

 

Figure 1: Overall research theme – Learning and mining on graphs. 

Overall, my research is driven by the need to develop principled methodology for various fundamental 
problems on graphs. My work on graph representations investigates the underlying principles and 
mechanisms in graph-structured data, which builds a mathematical and algorithmic foundation for 
exploring different aspects and applications on graphs. In a finer granularity, my choice of specific research 
problems has been motivated by opportunities and challenges in the learning and mining of graph data. On 
the one hand, given the variety and volume of multi-modal data associated with graph structures, there is 
an urgency to leverage graph multi-modality to augment traditional learning and mining on graphs. Hence, 
I have explored the setting of “graph + X”, where X can be textual and visual data, or social media data. 
These data often complement the graph structures to enable more effective and robust learning. On the 
other hand, one of the biggest hurdle faced by the deep learning community is data efficiency in the 
absence of abundant labelled data. The same problem persists in learning on graphs. Moreover, in graph 
we need to address two aspects of data efficiency: when the structures are scarce, and when the labels are 
scarce. Addressing these research problems is crucial to not only the understanding of fundamental 
principles on graphs, but also the enabling of practical applications on graphs.  

Evolution of research. As new opportunities and challenges arise, my research has evolved around several 
important topics in graph-based learning and mining (Table 1).  
        My early research has studied the fundamental principles of graph representations based on structural 
patterns, ranging from simple links to more complex semantic structures. Compared to links, semantic 
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structures embody higher-order patterns and thus can capture complex heterogeneous relationships on 
graphs. Hence, semantic structures provide a higher capacity for graph representations. In particular, my 
research proposed metagraph [ICDE16b], a representative semantic structure which have since been widely 
used in the community for various applications and problems on graphs, including in my own research 
[Method17, TKDE19, CIKM21b]. Since I joined SMU, my research on graph representations has gradually 
taken on deep learning-based approaches, given the superior performance of neural networks. 
Nonetheless, such more recent work [KDD19, TKDE20, TKDE21b, IJCAI21, WWW23b, AAAI23a] are built 
upon the insights and foundation of pattern-based representations. In addition to the performance-
oriented evaluation, in recent years I have also explored the trustworthiness and fairness in representation 
learning [TOIS23, AAAI23b, NeurIPS23a]. This line of work has become increasingly, as it addresses critical 
concerns about the ethical and societal impacts of artificial intelligence. 
        Besides investigating the fundamental principles and methodologies on graphs, my research has also 
explored graph multi-modality, given the opportunities presented in the big data era. Specifically, the 
abundance of multi-modal data associated with graphs, including textual and visual data, and social media 
data. These data encompass rich information to complement graph structures, and can be immensely 
valuable to enhancing graph learning models for various graph-based applications. While earlier works 
[TACL14, IJCAI17] mostly leverage the foundational structural patterns, more recent works [CIKM20a, 
CIKM20b, ECMLPKDD20b, SIGIR23] have leveraged graph embedding and neural networks.  
        While deep learning has been widely adopted in different communities including learning on graphs, 
its success critically depends on the availability of large-scale labelled data. This limitation has motivated 
research on data-efficient learning, in which we aim to learn a good model even without large-scale data. 
Hence, my more recent research has paid significant attention to the data efficiency problem on graphs, in 
which there is not only label-scarcity issue [AAAI21b, SIGIR21], but also structure-scarce issue [BIOINF20, 
CIKM20b, KDD20, KDD21a, WWW22b]. Moreover, making use of large-scale label-free graphs in a pre-
training setting is also a promising direction, as demonstrated in a series of work [AAA21a, CIKM21b, 
KDD21b, NeurIPS23b]. More recently, as inspired by prompt-based learning in pre-trained language models, 
we furthered our graph pre-training research into prompt learning on graphs [WWW23a, CIKM23, AAAI24]. 
Similar to prompt on pre-trained language models, prompt on pre-trained graph models show great 
generalization ability across different downstream tasks with very limited task-specific supervision. On a 
separate line, in order to handle massive graphs (e.g., the label-free graphs used in pre-training), some of 
my research also studied the scalability of graph algorithms, ranging from pattern-based algorithms 
[VLDB13, VLDBJ15, TKDE21a] to deep learning-based algorithms [TKDD20, KDD21b].   

 
Notable recognition of research. My research activities were or have been supported in part by Ministry of 
Education Singapore (MOE Tier 2), A*STAR, AI Singapore, Alibaba Group and DBS Bank, as well as SMU 
internal funding (MOE Tier 1 and LARC funding). I have served as the PI or Co-PI/Project-level PI across 7 
projects. Since I joined SMU in July 2018, I have managed a total funding size of SGD 2.1 million from 
externally funded projects as the PI or project-level PI. I have published over 60 conference and journal 
papers in leading data mining, machine learning and the broader AI venues such as NeurIPS, KDD, WWW, 
SIGIR, ICML, AAAI and TKDE. As of the time of writing, my publications have attracted a total citation of 

Theme Detailed topic Research publications (Chronologically ordered) 

Graph 
representation 

learning 

Pattern-based mining WSDM11, SIGIR12, ICDE13, ICML14, ICDE16a, ICDE16b, Method17, TKDE19 

Deep graph learning 
BMC18, ICDM18, KDD19, IPM20, SDM20, TKDE20, IJCAI21, TKDD21, JBHI21, 
TKDE21b, WWW22a, WWW23b, AAAI23a, TKDE23 

Trustworthiness & fairness TOIS23, AAAI23b, NeurIPS23a 

Graph  
multi-modality 

Graph + text & visual IJCAI17, CIKM20a, CIKM21b, SIGIR23 

Graph + social data TACL14, ECMLPKDD20b 

Data efficiency 
& scalability in 
graph learning 

Label-scarce graphs 
AAAI21a, AAAI21b, SIGIR21, CIKM21b, IJCAI22, BIOINF22, WWW23a, 
CIKM23, NeurIPS23b, AAAI24 

Structure-scarce graphs BIOINF20, KDD20, CIKM20b, KDD21a, WWW22b 

Scalability VLDB13, VLDBJ15, TKDD20, TKDE21a, KDD21b 

Table 1: Topical and chronological evolution of my research. 
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2200+ and h-index of 28 according to Google Scholar. I was an invited speaker at the Social Networks 
Analysis Forum, 8th China Conference on Data Mining in 2020, on my series of work exploiting high-order 
semantic structures in heterogeneous information networks, and a keynote speaker in prestigious 
workshops collated at WSDM’23 and RecSys’23 on my work in data-efficient graph learning. I also served 
as an Area Chair on the program committee of WWW’24. My research [VLDBJ15] was featured in the “Best 
Papers of VLDB13” special issue of the VLDB Journal, which is a recognition and extended version of our 
work on efficient personalized PageRank computation [VLDB13]. 

II. Key Research Findings by Theme 

A. Graph representation learning 

Structural pattern-based approaches. My earlier research revolved around directly utilizing structural 
patterns in graphs. Unlike traditional flat data, graph structures explain complex interactions between data 
entities, and thus are crucial towards data-driven tasks. Leveraging on the simple link structures, we 
investigated semi-supervised learning on graphs [ICML14]. The resulting graph-based probabilistic 
framework unifies the underlying principle in our previous random walk models [WSDM11, ICDE13]. We 
further considered heterogeneous link structures [SIGIR12], as well as extended the learning objective on 
individual nodes to a set of nodes [ICDE16a]. In summary, link-based learning on graphs enable us to 
improve various tasks on graphs, including node classification and ranking, information extraction and data-
driven crawling. 

I have also studied higher-order semantic structures beyond simple link structures. In real-world 
scenarios, objects are often interlinked to form heterogeneous graphs, where different semantics exist 
between nodes. For instance, the below social network (Figure 2) contains users of different semantic 
relationships: some are classmates, some are family, and some are colleagues. The multitude of semantics 
arises from various types of nodes and their different interactions. We have proposed metagraph 
representations [ICDE16b] as a novel means to characterise these different semantic classes, which have 
shown very promising results in our studies on proximity ranking [ICDE16b] and node classification 
[Methods17]. Taking a step further, we have also explored metagraphs as a universal form of node and 
edge representations [TKDE19], 
demonstrating its superior performance in 
more downstream tasks including clustering 
and relationship prediction. Apart from using 
metagraphs as explicit representations, they 
can also serve as the foundation in graph deep 
learning [TKDE20] and graph pre-training 
[CIKM21b] on heterogeneous graphs. 

Graph deep learning. I have also investigated 
various techniques of graph embedding and 
neural networks for representation learning 
on different kinds of graphs. On general 
graphs, we have studied the node-wise adaptation of graph neural networks [IJCAI21], edge-centric 
message-passing [AAAI23a], and latent heterogeneous graph neural networks [WWW23b]. On 
heterogenous graphs, we have investigated neighborhood propagation [ICDM18], adversarial learning 
[KDD19] and metagraph-guided embedding [TKDE20]. On dynamic graphs, we have researched the neural 
attention mechanism [ECMLPKDD20a] and Hawkes process [ECMLPKDD21, WWW22a]. On attributed 
graphs, we have explored the integration of structures and attributes [IPM20, SIGIR20]. In summary, these 
works all leverage artificial neural networks for graph representation learning. Due to the ability to fit 
complex, nonlinear functions, neural networks-based graph representation learning often achieve state-of-
the-art performance in various domains such as bioinformatics [BMC18, JBHI21] and recommendation 
systems [SDM20, ECMLPKDD20a, TKDE23].  

Figure 2. Example social network with rich semantics. 
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Trustworthiness and fairness. Traditionally, graph representation learning primarily focuses on improving 
performance in graph-based applications, often emphasizing accuracy, scalability, and efficiency. This focus 
typically involves developing algorithms to effectively capture the structure and features of graphs, but pays 
little attention to other crucial aspects, such as the trustworthiness and fairness of the outcomes delivered 
by the models, which entail profound ethical and societal consequences. More specifically, our work on 
structural fairness in graph neural networks [AAAI23b] aims to develop methods for learning fair 
representations of nodes, particularly focusing on addressing the disparities in structural resources (e.g., 
social capital) among these nodes. The goal is to ensure that the algorithmic outcomes are equitable, 
regardless of the varied structural resources of the nodes. The fairness concept can also be extended to 
recommender systems, which deals with a user-item bipartite graph. On this bipartite graph, we investigate 
the issue of popularity bias [TOIS23], aiming to achieve fairness on both user and item side, regardless of 
their existing popularity. On recommender systems, we also explore propensity estimation for causality-
based recommendation systems [NeurIPS23a]. This study focuses on developing recommendation 
algorithms that are not only effective but also more trustworthy and explainable, by producing outcomes 
that are grounded in causal effect rather than mere correlations. 

B. Graph multi-modality learning 

Many problem statements often involve other kinds of data in addition to explicit graph structures, 
including visual and textual data and social meta-data. These data either enable us to construct new graphs, 
or to complement existing graphs to improve learning or to enable new tasks. We refer such research as 
multi-modal graph-based learning. Exploiting multi-modal data with graphs is a form of data enrichment to 
bring in knowledge that are not directly available from labeled data. There is a general consensus in the 
community that current machine learning approaches suffer from a significant knowledge gap. Additional 
knowledge from multi-modal data can potentially narrow the gap.  

Graph + Textual & visual data. In my work on object detection in images [IJCAI17], we exploit  knowledge 
graphs to improve the visual detection task (Figure 3). In particular, knowledge graphs contain 
commonsense knowledge that relate different objects in images. An example piece of commonsense 
knowledge is that pets (e.g., cats) and furniture (e.g., table) often appear together. Such knowledge would 
improve detection recalls in home scenes: the detections of pet and furniture mutually reinforce each 
other, should one of them has low initial confidence. Alternatively, textual information, such as item 
descriptions in a recommendation 
scenario, can enrich the 
interactions between users and 
items to form a more dense graph 
structure, providing additional 
insights to boost recommendation 
performance [CIKM20a]. In 
another work, texts associated 
with graph nodes reveal multi-
facet topical factors, which can 
guide finer-grained learning on 
graphs for both better model 
performance and interpretability 
[CIKM21b]. More recently, inspired by success of prompting in pre-trained language models, we have also 
investigated prompt tuning techniques for graph-grounded text classification [SIGIR23]. 

Graph + Social data. In our entity linking study [TACL14], we construct spatial and temporal graphs for 
entities appearing on Twitter, so that entities that are close to each other in either space or time are 
connected based on the meta-data of the tweets (i.e., timestamp and geotagging of the tweet). The 
connections reveal the relatedness between entities, which proves beneficial to the entity linking task on 
Twitter. In a more recent work, we attempt to enrich collaborative filtering with a novel form of social meta-

Figure 3. (left) An example task of object detection, to identify a 

dining table and a cat in the image. (right) Toy knowledge graph 

demonstrating the relationship between cats and tables. 
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data known as “friend referral circle” [ECMLPKDD20b], where users are recommended with items liked or 
shared by their circle of friends. Leveraging the unique friend referral circle enables a more accurate 
modeling of social factors (e.g., user behaviors are more influenced by their friends who appears more 
authoritative), beyond just the homophily effect assumed in conventional social recommendation. 

C. Data efficiency and scalability in graph learning 

Learning with data efficiency has always been an important research topic, and has  gained particular 
traction in recent years due to the rise of deep learning which often require large-scale, high-density data 
for optimal performance. To address the over-reliance on data, in particular on graphs, we have explored 
several directions of data efficiency. Besides, we have also studied the more conventional computational 
scalability problem on massive graphs. 

Data efficiency on structure-scarce graphs. 
Structure-scarce graphs refer to graphs where 
the connective structures between nodes are 
very sparse. First, we investigate a dual 
dropout strategy on both nodes and edges for 
graph neural networks [BIOINF20], to increase 
the overall robustness of learning. Second, we 
observe that in a graph collection, there is 
often a long-tail of small graphs [WWW22b]. 
These tail graphs often lack  distinguishable 
structures due to their small sizes. To help 
these tail graphs, we exploit a knowledge 
transfer based on pattern co-occurrence from 
head graphs, as the head graphs are larger in size and often have richer and more distinctive structures. 
Third, even if a graph is considered structure-rich on the whole, there still exist tail nodes with very few 
links. In other words, an individual tail node has very scarce structural connectivity, despite the abundance 
of links on other nodes. In general, the node degrees vary considerably across the network and are not 
uniformly distributed (Figure 4, left). The lack of structural connectivity on a tail node makes its 
representation more difficult to learn than nodes with abundant links (Figure 4, right). Representation 
learning for the tail nodes is thus a challenging and novel problem. Inspired by meta-learning, we formulate 
the problem as a few-shot regression task in our work meta-tail2vec [CIKM20b], a first attempt on this 
problem to our best knowledge. However, meta-tail2vec is a two-stage method that improves the tail node 
embedding through a post-processing step. Thus, we further propose an end-to-end tail node 
representation learning framework for graph neural networks [KDD21a]. Similarly, the cold-start 
recommendation problem also suffers from the scarcity of structures connecting new users and items. 
Thus, we formulate the cold-start problem as a few-shot link prediction task, and addressed it under the 
meta-learning paradigm as well [KDD20].                  

Data efficiency on label-scarce graphs. Like any other supervised machine learning models, state-of-the-
art graph neural networks rely on a large number of labels for good performance. However, in reality, many 
tasks often lack abundant labeled data. One common scenario is the few-shot node classification task on a 
graph, in which some novel classes only have one or few examples. For instance, on a scholarly citation 
network, while Markov chains is a mature topic with many labeled examples, algorithmic explainability and 
fairness is relatively new with few labeled examples. To address few-shot learning on graphs, we resort to 
the framework of meta-learning, while simultaneously exploiting graph-specific characteristics including 
the long-range dependencies between nodes, and the global graph contexts [AAAI21a]. In another scenario, 
there might be out-of-distribution (OOD) classes on a graph, i.e., there is no label for these classes at all, 
and it is important to identify these OOD nodes for more accurate classification of in-distribution nodes 
[IJCAI22]. We have also explored inductive graph learning across graphs, where the trained model on an 

Figure 4. Relationship between node degree and the 

quality of learned representation on a typical graph. 

(left) Node degree distribution. (right) Classification 

performance w.r.t. node degrees. 
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existing set of graphs can be transferred to new graphs in the same feature space, reducing the need for 
labels on the new graphs [SIGIR21].  
        Meanwhile, to make use of the vast availability of “label-free” graphs (i.e., graphs without given labels 
for downstream tasks), pre-training has been a promising direction to capture inherent graph properties in 
a task-agnostic manner, which can be transferred to different downstream tasks. Some of our works 
[KDD21b, CIKM21b, BIOINF22, NeurIPS23b] attempt to design various pre-training objectives to better 
capture such properties. The pre-trained graph models  can be adapted to diverse downstream tasks 
through a fine-tuning step using some task-specific labels. However, pre-training is decoupled from fine-
tuning, causing a divergence between their optimization objectives [AAAI21b]. To address the objective 
differences, we draw inspiration from prompt-based learning in natural language processing, in which 
prompts are designed to generalize the pre-trained model to a wide range of downstream tasks without 
the need for fine-tuning. Consequently, we have designed GraphPrompt [WWW23a], one of the pioneering 
works that attempt to unify pre-training and downstream tasks in a prompt-tuning framework for graph 
learning. We have further applied prompt-based learning to address anomaly detection in e-commerce 
[CIKM23], and handle heterogeneous graphs [AAAI24].  

Scalability solutions on graphs. Finally, we explore scalable computational frameworks for massive graphs. 
Our work investigated fast approximation algorithms for computing Personalized PageRank [VLDB13, 
VLDBJ15] and SimRank [TKDE21a] on large graphs. The algorithm can speed up over existing methods by 
several folds with high accuracy and excellent scalability. More recently, as network embedding and graph 
neural networks emerge as the de facto standard on graphs, we have attempted to accelerate graph 
representation learning via importance sampling on large-scale heterogeneous graphs [TKDD20]. The key 
idea is to design an effective sampler that is aware of the multitude of node and edge types and their 
complex inter-dependence. Moreover, we have proposed a contrastive graph pre-training approach 
designed for large-scale heterogeneous graphs [KDD21b], using efficient sampling and sparsification 
strategies. 

III. Future Research Agenda 

My future work will still be anchored on learning and mining on graphs. As major research thrusts, I will 
continue with more in-depth studies in the three areas (areas A, B, C in Figure 1), as many research 
questions remain open.  
        For graph representation learning, while we have conducted some preliminary work in trustworthiness 
and fairness, they are still in their early stages and many challenges exist. First, different perspectives of 
fairness and different forms of biases exist, and it is crucial to have an adaptive framework that can 
accommodate different fairness or bias definitions. Second, how do we study various related concepts in 
trustworthy learning systematically? For example, fairness and explainability are often not independent but 
have intricate relationships. Considering both or more aspects jointly could improve the trustworthiness of 
graph learning.   
        For graph multi-modality, in the age of large models, how can we integrate large amount of visual 
and/or language data to complement graph learning. Ideally, we could envision a foundation model for 
graph data, encompassing various modalities. Nevertheless, there would be several fundamental questions 
regarding the graph foundation model, including its feasibility, its methodology, and its applications.      
        For data efficiency, I plan to further explore prompt-based learning of graph models beyond current 
preliminary studies, such as on different kinds of graphs like dynamic graphs, on diverse pre-training models 
like graph transformers. In addition to prompt-based learning, other parameter-efficient fine-tuning 
methods are worth exploring on graph models, such as adapter learning and low-rank adaptation 
techniques.  
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