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Background 

In recent years, there is a growing trend towards applying neural heuristics based 
on deep (reinforcement) learning against the traditional heuristics to solve 
combinatorial optimization problems (COPs), inspired by the remarkable success 
of deep neural networks in other domains. In general, all of them falls into the scope 
of Learning to Optimize (L2Opt). The rationale behind it comes from three aspects: 
(1) many COPs could be interpretated as optimizing a sequence (of nodes or 
elements), which is close to the NLP (Natural Language Processing) task in AI; (2) a 
class of COP instances may share similar structures and differ only in data which 
follows a distribution, such as the vehicle routing problems (VRPs) in logistics; and 
(3) neural heuristics based on deep models can discover the underlying patterns of a 
given COP class, which could be used to generate alternative algorithms that are 
better than hand-crafted ones in traditional heuristics.  

Similar to the traditional heuristics, the neural heuristics are also mainly categorized 
into two types: neural construction heuristics and neural improvement heuristics. 
Taking solving VRP as an example, the former usually start with an empty solution, 
and sequentially add a node (customer) to the current (partial) solution until a 
complete route is formed. The latter usually start with an initial but complete solution, 
and iteratively select nodes or operators to perform certain local operations to 
generate a new solution with potentially improved quality. 
 

Research Areas  

Focusing on Learning to Optimize (L2Opt), we have developed a number of 
advanced neural heuristics based on deep models for solving various COPs such as 
vehicle routing problem (VRP), job shop scheduling problem (JSSP), bin packing 
problem (BPP), integer programming (IP), and constraint satisfaction problem (CSP). 
 
A. Neural Solvers for Vehicle Routing Problem (TSP, CVRP, PDP) 
It aims to find a shortest path for a (fleet of) vehicle(s) that departs from the depot to 
serve customers at different locations with different demands while complying certain 
constraints such as capacity limit, and the vehicle finally returns to the depot. 
 
A.1 Multi-Decoder Attention Model (Construction): TSP, CVRP 

Existing neural construction heuristics suffer from a major limitation, i.e., the 
generated solutions are not diverse enough. Intuitively, a more diverse set of solutions 
could potentially lead to better ones. This is because for VRP and many other COPs, 
multiple optimal solutions exist and trying to find different ones will increase the 
chance of finding at least one. To address this issue, we propose the Multi-Decoder 
Attention Model (MDAM) to train multiple construction policies. It employs a 
Transformer to encode the node information, and multiple identical attention decoders 
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with unshared parameters to sample different trajectories. During training, each of the 
decoders learns distinct solution patterns, and is regularized by a Kullback-Leibler 
divergence loss to force the decoders to output dissimilar probability distribution of 
selecting nodes. 

 
                                            Figure 1. The overall architecture of our MDAM 
 
A.2 Dual-Aspect Collaborative Transformer (Improvement): TSP, CVRP 

The classic transformer is less effective in learning improvement models for VRP 
because its positional encoding (PE) method is not suitable in representing VRP 
solutions. To address this issue, we propose a novel Dual-Aspect Collaborative 
Transformer (DACT) to learn the embedding for the node and positional features 
separately, instead of fusing them together as done in existing ones, so as to avoid 
potential noises and incompatible correlations. Moreover, in our DACT, the positional 
features are embedded through a novel cyclic positional encoding (CPE) method to 
allow Transformer to effectively capture the circularity and symmetry of VRP solutions 
(i.e., cyclic sequences). 

 
                                         Figure 2. The overall architecture of our DACT 
 

A.3 Efficient Neural Neighborhood Search (Improvement): PDP 

The prevailing neural methods mainly focus on travelling salesman problem (TSP) or 
capacitated vehicle routing problem (CVRP), where efficient solvers for pickup and 
delivery problems (PDPs) are rarely studied. To bridge this gap, we present an 
efficient Neural Neighborhood Search (N2S) approach for PDPs. In specific, we 
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design a powerful Synthesis Attention that allows the vanilla self-attention to 
synthesize various types of features regarding a route solution. We also exploit two 
customized decoders that automatically learn to perform removal and reinsertion of a 
pickup-delivery node pair to tackle the precedence constraint.  

 
                                         Figure 3. The overall architecture of our N2S 
 
B. Neural Solvers for Job Shop Scheduling Problem (JSSP) 

Learning to Dispatch (L2D, Construction). Priority dispatching rule (PDR) is widely 
used for solving real-world job-shop scheduling problem (JSSP). However, the design 
of effective PDRs is a tedious task, requiring a myriad of specialized knowledge and 
often delivering limited performance. To address this issue, we propose to 
automatically learn PDRs via an end-to-end deep reinforcement learning agent. We 
first cast the decision making (i.e., which job should go to which machine at each step) 
as determining the arc direction in a disjunctive graph, and then propose a Graph 
Neural Network based scheme to embed the states encountered during solving. The 
resulting policy network is size-agnostic, effectively enabling generalization on large-
scale instances. 

 
Figure 4. The representation as a disjunctive graph allows Graph Neural Network based embedding 

 
C. Neural Solvers for Bin Packing Problem (BPP) 

DRL with Multimodal Encoder (Construction). Due to the relatively less informative 
yet computationally heavy encoder, and considerably large action space inherent to 
the 3-D BPP, existing DRL methods are only able to handle up to 50 boxes.  
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                             Figure 5. The overall architecture of our DRL with multimodal encoder 
To address this issue, we propose a DRL agent, which sequentially addresses three 
subtasks of sequence, orientation, and position, respectively. Specifically, we exploit 
a multimodal encoder, where a sparse attention subencoder embeds the box state to 
mitigate the computation while learning the packing policy, and a convolutional neural 
network subencoder embeds the view state to produce auxiliary spatial 
representation. We also leverage an action representation learning in the decoder to 
cope with the large action space of the position subtask. 
 
D. Neural Solvers for Integer Programming (IP) 

DRL guided Large Neighborhood Search (Improvement). To tackle the issue that 
how to improve a solver from externals such that it can find high-quality solutions 
more quickly? we propose a high-level, learning based LNS method to solve general 
IP problems. Based on deep reinforcement learning (RL), we train a policy network 
as the destroy operator in LNS, which decides a subset of variables in the current 
solution for reoptimization. Then we use a solver as the repair operator, which solves 
sub-IPs to reoptimize the destroyed variables. Despite being heuristic, our method 
can effectively handle the large-scale IP by solving a series of smaller sub-IPs. 
 

 
                   Figure 6. The overall architecture of our DRL guided large neighborhood search 
 
E. Neural Solvers for Constraint Satisfaction Problems (CSP) 

DRL guided Backtracking Search. Backtracking search algorithms are often used 
to solve the Constraint Satisfaction Problem (CSP). Its efficiency depends greatly on 
the variable ordering heuristics. Currently, the most commonly used heuristics are 
hand-crafted based on expert knowledge. We propose a deep reinforcement learning 
based approach to automatically discover new variable ordering heuristics that are 
better adapted for a given class of CSP instances, without the need of relying on 
hand-crafted features and heuristics. To capture the complex relations among the 
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variables and constraints, we design a representation scheme based on Graph Neural 
Network that can process CSP instances with different sizes and constraint arities. 

 
                      Figure 7. The overall architecture of our DRL guided backtracking search 

Ongoing and Future Research Topics  

Different from the computer vision and natural language processing in AI, it is still 
challenging for deep learning to solve combinatorial optimization problems like the 
vehicle routing problem (VRP), since they are NP-hard and computationally 
expensive. On the other hand, the neural heuristics based on deep models just 
emerged recently, while VRPs (and other COPs) have been studied by traditional 
methods (either heuristics or exact ones) for decades, and it would be hard for neural 
heuristics to outperform them with arbitrary settings.  
 
In fact, most of existing neural heuristics always train and test the deep models using 
randomly generated VPR instances, which satisfy that, 1) the node locations are 
following a specific distribution, i.e., uniform, 2) the amount of nodes in an instance is 
fixed and small, i.e., 20, 50, and 100; 3) the constraints are relatively simple such as 
the feasibility of a node in TSP or the vehicle capacity limit in CVRP; and 4) the 
distance between nodes is usually measured in Euclidean space. Under those 
settings, the neural heuristics outstrip many traditional heuristics. However, the VRP 
instances in reality may follow various distributions and sizes, have more complex 
constraints, and are measured in real road networks which significantly differ from the 
Euclidean one, where the neural heuristics perform inferiorly to the traditional 
methods, and thus severely hinder their applications to solve the real-world problems. 
Therefore, how to strengthen the generalization of cross-distribution, cross-size, 
cross-constraints, and cross-metrics, is currently my research focus, which aims 
to build generalizable and robust neural solvers for VRPs, as well as other COPs. 
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