

 1

SMU Classification: Restricted

Research Statement

Yintong Huo
School of Computing and Information Systems, Singapore Management University

Email: ythuo@smu.edu.sg
 28 (Day) 11 (Month) 2024 (Year)

Background

Modern software systems play a crucial role in our daily lives, powering everything
from search engines to communication platforms. Even minor failures in these
systems can significantly impact millions of users, making software reliability a critical
area of research. Traditional software reliability engineering methods often require
extensive manual inspection of software performance data. However, the introduction
of deep learning has opened new avenues for automating failure management. My
research concentrates on developing AI-based techniques that provide reliability
assurance in an extensive, practical, and generalizable way. In general, the goal of
my research is to improve the efficiency and reliability for software development and
operations.

To achieve the target, I have worked on language models to analyze textual software
data, such as generating functional code, repairing buggy code, detecting anomalies
in software logs, and automatically managing runtime failures. Additionally, I am
exploring multimodal software engineering, particularly in user interface and web
applications that respond to human instructions. In the following, I outline three of my
main research areas, i.e., context-aware code intelligence, AIOps, and multimodal
software development.

Research Areas

1. Context-aware Code Intelligence

Code production is a critical stage in software development that directly impacts
software reliability. Learning-based techniques, especially LLMs, demonstrate
advancements in understanding programming patterns and generating code.
However, these models are trained on general textual data, neglecting domain
knowledge in code practice; for example, they overlook the unique structure and
syntax of programming languages. This gap can lead to compromised code quality
and introduce errors. To bridge the gap, my research on context-aware code
intelligence focuses on two key aspects, current capabilities of LLMs and the domain
knowledge that can enhance code production. Specifically, I aim to answer three
questions: How can we better understand the programming capabilities of LLMs?
How can we integrate useful domain knowledge into these models for improved code
generation?

Understanding code models’ capabilities. To understand the programming
capabilities of code models, we established a series of benchmarks across different
tasks. For instance, we conducted the first empirical study on using LLMs to generate

 2

SMU Classification: Restricted

logging statements from code inputs [1]. This study created a large-scale benchmark
to assess the effectiveness and generalization of LLMs in logging. The analysis
revealed limitations in the models’ ability to capture complete code semantics,
highlighting the necessity of incorporating broader programming contexts and control
flow information to improve logging performance.

Domain knowledge for code intelligence. We aim at enhancing learning-based
models by integrating domain knowledge from program analysis. More specifically,
we are interested in identifying valuable programming resources and improving
existing NLP techniques for code production. The first question drives me looking into
knowledge mining from open forums like StackOverflow. For instance, one of our
research projects [2] develop an automated API resolution tool to link diverse APIs to
their official documentation, enabling swift comprehension of API usage patterns. The
second question leads us to incoporate extensive static contexts [5] (such as call
graphs and type information) beyond individual method boundaries for generating
logging statements [3]. We also integrate domain knowledge into prompts for fixing
program errors, using clustering and failure templates to repair buggy code [4].

Future Perspectives. While recent years have many works on generative code
models with promising results, these LLMs struggle with complex tasks due to their
limited sequential reasoning capabilities. To maximize their potential, there is a
growing trend toward developing agent systems that have evolved from standalone
assistants into nearly autonomous agents, capable of outsourcing tasks and adapting
their behavior for more sophisticated human requirements. In this framework, an LLM
acts as the main controller or “brain”, managing the sequence of operations necessary
to complete a task. Future work could focus on creating end-to-end agent-based
solutions that assist users in completing daily engineering tasks effectively.

2. AIOps (AI for IT Operations)

Fault tolerance is a crucial aspect in reliability engineering, which involves a system’s
capability to sustain its intended functionality despite failures (i.e., manifestations of
faults). Enhancing this resilience requires timely and accurate detection and diagnosis
of failures to implement appropriate mitigations, such as recovery through redundant
mechanisms or rolling back to a previous state. Traditional methods often depend on
manual monitoring of software telemetry data; however, the growing complexity of
systems and the vast amounts of output data make manual inspection increasingly
impractical.

In my pursuit of enhancing fault tolerance, my research focuses on developing
learning-based log management techniques, as logs serve as primary resources for
software monitoring. These semi-structured logs contain both developer-written
events and automatically generated runtime parameters. Current studies oversimplify
log sequences as character strings, neglecting the intricate semantics embedded in
these events. Therefore, my work aims to pioneer practical, adaptable, and scalable
log analytical methods by thinking three questions: (1) How do semantics in logs
facilitate log analysis? (2) Can log techniques adapt to complex and evolving software
demands? (3) How do we bridge the gap between academic tools and real-world
deployment?

 3

SMU Classification: Restricted

Semantic-aware log parsers. As the fundamental step of log analysis, log parsing
aims to extract structured templates and parameters from raw log messages.
However, existing log parsers are syntax-based, missing valuable semantic details in
logs. To address this limitation, our work, SemParser [6], extracts log semantics
through a two-step process: pairing parameters and their descriptions within individual
logs, and inferring implicit semantics and computing structural outputs based on
historical logs. We further explore LLMs for parsing. For example, DivLog [7]
harnesses LLMs’ in-context learning (ICL) ability by sampling parsing examples for
each target log, creating prompts for LLMs to parse logs. Additionally, LILAC [8]
tackles the LLM inefficiencies problem with an adaptive parsing cache. The core idea,
adaptive parsing cache, is to store previous log templates and employ tailored
matching and adaptive updating operations. LILAC outperforms state-of-the-art
methods in terms of parsing accuracy while maintaining higher efficiency.

Scalability and adaptivity in log analytics. In handling large daily logs, identifying
critical failures among anomalies poses a key challenge for engineers. Within
software evolution process, parsing errors, shifting log events, and unstable
sequences further complicate the process. EvLog [9] addresses these hurdles using
a multi-level representation extractor to retain log semantics and a one-to-all
anomalous log classifier with an attention mechanism to handle unstable sequences.
The evaluation across two systems shows that, EvLog maintains the effectiveness in
analyzing evolving-software log files without further training. Besides, we developed
SeaLog [10] to build an accurate, lightweight, and adaptable anomaly detection
framework. The core component of SeaLog is a Trie-based Detection Agent, using a
dynamically expanding Trie structure for real-time detection. It also incorporates
expert feedback to handle evolving log data. Its deployment within real-world cloud
company futher demonstrates practical applicability.

Log sequence simulator. Log analysis grapples with a significant challenge—
insufficient practical data due to privacy constraints in industrial logs and the simplistic
nature of publicly available lab logs. AutoLog [11] tackles this issue by leveraging
program analysis techniques to simulate log sequences based on the execution order
of logging statements. In experiments across 50 popular Java projects, AutoLog
significantly outperforms existing log datasets, acquiring 9-58 times more log events
from the same system and generating log messages 15 times faster using a single
machine.

Future perspectives. Modern software systems produce a variety of data modalities,
including logs, typologies, KPIs, and incident tickets. While these data types are often
interconnected, previous research has typically addressed them in isolation. My
upcoming research aims to develop multimodal operational strategies to enhance
software reliability, such as performing root cause analysis by analyzing combined
service dependency graphs and logs. Additionally, I plan to explore the integration of
development and operations (DevOps), utilizing operational data (like logs) to
formulate strategies for addressing software bugs. This approach leverages valuable
feedback from software operations to help identify and eliminate potential faults during
the development phase.

 4

SMU Classification: Restricted

3. Multimodal Software Development

Websites are integral to the modern digital landscape, with over 1.11 billion active
sites and approximately 252,000 new ones launched daily. The process of developing
a graphical user interface (GUI) for websites typically begins with graphic designers
creating the visual layout, which is then handed off to programmers to implement.
This translation from design to code is often time-consuming and prone to errors,
especially for those without specialized expertise.

While multimodal LLMs have shown significant advancements in handling image and
code, their application to GUI understanding and generation remains unexplored. As
an emerging area, developing MLLM-based GUI-to-code applicable to real-world
scenarios involves several challenges. First, there lacks benchmark that mimics
comprehensive and realistic development scenarios, which can include mobile app
design and desktop UI design. Webpages may feature a variety of elements and
visual designs, each with differing complexities. It is crucial to categorize the levels of
automatic GUI generation to capture this diversity effectively. Second, there exists a
modality gap between visual features in screenshots and code snippets. Webpages
often include intricate layouts and styles, requiring the model to have a deep
understanding of a GUI framework's components. Such understanding must be
sufficient to accurately reproduce elements with detailed attributes such as colors,
fonts, margins, and positioning.

Autonomous webpage development. My initial work on this problem resulted in the
first MLLM-based segment-aware method for web UI generation. While existing
MLLMs struggle with generating accurate UI code, our study observes that breaking
down full screenshots into smaller visual segments will improve performance. This
decomposition allows models to conduct more reasoning steps, each focused on a
manageable sub-generation task. Motivated by the traditional “divide and conquer”
algorithm, our method, DCGen [12], decomposes a complicated screenshot into
smaller, doable visual segments, solves each part individually, and then combines the
solutions for the original problem.

Comprehensive dataset and benchmarks. High-quality and representative web
development dataset are the crucial resources and for multimodal software
engineering research. We introduce a benchmark consisting of complicated real-
world static webpages, as well as the first collection of user-interactive webpages [13]
for this area. Upon these benchmarks, we empirically analyze the effectiveness and
common failures of MLLMs-generated UI code, revealing several current limitations
and implications for future improvements.

Future perspective. While code generation from natural language instructions has
been extensively studied, developing software that meets multi-modal requirements
remains an unexplored area. Future research could focus on the end-to-end software
development process, aiming to simultaneously optimize front-end design, back-end
architecture, and resource management. Additionally, the development of GUI agents
presents another promising research direction. These agents aim to understand
software interfaces and execute user instructions by mimicking human interactions,
such as searching, clicking and typing. This area could significantly enhance user
experience and streamline the software development process.

 5

SMU Classification: Restricted

Selected Publications and Outputs

For a complete publication list, please refer to my Google Scholar or DBLP page.

1. Yichen Li*, Yintong Huo*, Zhihan Jiang, Renyi Zhong, Pinjia He, Yuxin Su, Lionel C.

Briand, and Michael R. Lyu, “Exploring the Effectiveness of LLMs in Automated Logging
Statement Generation: An Empirical Study.” To appear in IEEE Transactions on Software
Engineering, 2024.

2. Yintong Huo, Yuxin Su, Hongming Zhang, and Michael R. Lyu, “ARCLIN: Automated
API Mention Resolution for Unformatted Texts.” In Proceedings of the 2022 International
Conference on Software Engineering, pp. 138-149.

3. Yichen Li, Yintong Huo, Renyi Zhong, Zhihan Jiang, Jinyang Liu, Junjie Huang, Jiazhen
Gu, Pinjie He, and Michael R. Lyu, “Go Static: Contextualized Logging Statement
Generation.” In Proceedings of the 2024 ACM on Software Engineering, pp. 609 – 630.

4. Yun Peng, Shuzheng Gao, Cuiyun Gao, Yintong Huo, and Michael R. Lyu, “Domain
Knowledge Matters: Improving Prompts with Fix Templates for Repairing Python Type
Errors.” In Proceedings of the 2024 International Conference on Software Engineering,
pp. 12-24.

5. Yichen Li, Yun Peng, Yintong Huo, and Michael R. Lyu, “Enhancing LLM-based Coding
Tools Through Native Integration of IDE-Derived Static Context.” In Proceedings of the
2024 IEEE/ACM International Conference on Software Engineering Workshop on Large
Language Model for Code.

6. Yintong Huo, Yuxin Su, Baitong Li, and Michael R. Lyu, “SemParser: A Semantic Parser
for Log Analytics.” In Proceedings of the 2023 International Conference on Software
Engineering, pp. 881-893.

7. Junjielong Xu, Ruichun Yang, Yintong Huo, Chengyu Zhang, and Pinjia He, “DivLog:
Log Parsing with Prompt Enhanced In-Context Learning.” In Proceedings of the 2024
International Conference on Software Engineering, pp. 2457-2468.

8. Zhihan Jiang, Jinyang Liu, Zhuangbin Chen, Yichen Li, Junjie Huang, Yintong Huo, Pinjia
He, Jiazhen Gu, and Michael R Lyu, “Lilac: Log parsing using llms with adaptive parsing
cache.” Proceedings of the ACM on Software Engineering, FSE, pp. 137-160.

9. Yintong Huo, Cheryl Lee, Yuxin Su, Shiwen Shan, Jinyang Liu and Michael R. Lyu.
“EvLog: Identifying Anomalous Logs over Software Evolution”, Proceedings of 34th IEEE
International Symposium on Software Reliability Engineering, pp. 391-402, 2023

10. Jinyang Liu, Junjie Huang, Yintong Huo, Zhihan Jiang, Jiazhen Gu, Zhuangbin Chen,
Cong Feng, Minzhi Yan, and Michael R Lyu. “Scalable and adaptive log-based anomaly
detection with expert in the loop”. Arxiv, 2023.

11. Yintong Huo*, Yichen Li*, Yuxin Su, Pinjia He, Zifan Xie, and Michael R. Lyu. “AutoLog:
A Log Sequence Synthesis Framework for Anomaly Detection”, Proceedings of 38th
IEEE/ACM International Conference on Automated Software Engineering, pp. 497-509,
2023.

12. Yuxuan Wan, Chaozheng Wang, Yi Dong, Wenxuan Wang, Shuqing Li, Yintong Huo, and
Michael R Lyu. “Automatically generating UI code from screenshot: A divide-and-conquer-
based approach”. Arxiv, 2024

13. Jingyu Xiao, Yuxuan Wan, Yintong Huo, Zhiyao Xu, Michael R Lyu. “Interaction2Code:
How Far Are We from Automatic Interactive Webpage Generation?”. Arxiv, 2024.

