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Background 

Modern software systems play a crucial role in our daily lives, powering everything 
from search engines to communication platforms. Even minor failures in these 
systems can significantly impact millions of users, making software reliability a critical 
area of research. Traditional software reliability engineering methods often require 
extensive manual inspection of software performance data. However, the introduction 
of deep learning has opened new avenues for automating failure management. My 
research concentrates on developing AI-based techniques that provide reliability 
assurance in an extensive, practical, and generalizable way. In general, the goal of 
my research is to improve the efficiency and reliability for software development and 
operations. 

To achieve the target, I have worked on language models to analyze textual software 
data, such as generating functional code, repairing buggy code, detecting anomalies 
in software logs, and automatically managing runtime failures. Additionally, I am 
exploring multimodal software engineering, particularly in user interface and web 
applications that respond to human instructions. In the following, I outline three of my 
main research areas, i.e., context-aware code intelligence, AIOps, and multimodal 
software development.  
 

Research Areas  
 
1. Context-aware Code Intelligence 
 
Code production is a critical stage in software development that directly impacts 
software reliability. Learning-based techniques, especially LLMs, demonstrate 
advancements in understanding programming patterns and generating code. 
However, these models are trained on general textual data, neglecting domain 
knowledge in code practice; for example, they overlook the unique structure and 
syntax of programming languages. This gap can lead to compromised code quality 
and introduce errors. To bridge the gap, my research on context-aware code 
intelligence focuses on two key aspects, current capabilities of LLMs and the domain 
knowledge that can enhance code production. Specifically, I aim to answer three 
questions: How can we better understand the programming capabilities of LLMs? 
How can we integrate useful domain knowledge into these models for improved code 
generation? 
 
Understanding code models’ capabilities. To understand the programming 
capabilities of code models, we established a series of benchmarks across different 
tasks. For instance, we conducted the first empirical study on using LLMs to generate 
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logging statements from code inputs [1]. This study created a large-scale benchmark 
to assess the effectiveness and generalization of LLMs in logging. The analysis 
revealed limitations in the models’ ability to capture complete code semantics, 
highlighting the necessity of incorporating broader programming contexts and control 
flow information to improve logging performance. 
 
Domain knowledge for code intelligence. We aim at enhancing learning-based 
models by integrating domain knowledge from program analysis. More specifically, 
we are interested in identifying valuable programming resources and improving 
existing NLP techniques for code production. The first question drives me looking into 
knowledge mining from open forums like StackOverflow. For instance, one of our 
research projects [2] develop an automated API resolution tool to link diverse APIs to 
their official documentation, enabling swift comprehension of API usage patterns. The 
second question leads us to incoporate extensive static contexts [5] (such as call 
graphs and type information) beyond individual method boundaries for generating 
logging statements [3]. We also integrate domain knowledge into prompts for fixing 
program errors, using clustering and failure templates to repair buggy code [4]. 
 
Future Perspectives. While recent years have many works on generative code 
models with promising results, these LLMs struggle with complex tasks due to their 
limited sequential reasoning capabilities. To maximize their potential, there is a 
growing trend toward developing agent systems that have evolved from standalone 
assistants into nearly autonomous agents, capable of outsourcing tasks and adapting 
their behavior for more sophisticated human requirements. In this framework, an LLM 
acts as the main controller or “brain”, managing the sequence of operations necessary 
to complete a task. Future work could focus on creating end-to-end agent-based 
solutions that assist users in completing daily engineering tasks effectively. 

 
 
2. AIOps (AI for IT Operations) 
 
Fault tolerance is a crucial aspect in reliability engineering, which involves a system’s 
capability to sustain its intended functionality despite failures (i.e., manifestations of 
faults). Enhancing this resilience requires timely and accurate detection and diagnosis 
of failures to implement appropriate mitigations, such as recovery through redundant 
mechanisms or rolling back to a previous state. Traditional methods often depend on 
manual monitoring of software telemetry data; however, the growing complexity of 
systems and the vast amounts of output data make manual inspection increasingly 
impractical. 
 
In my pursuit of enhancing fault tolerance, my research focuses on developing 
learning-based log management techniques, as logs serve as primary resources for 
software monitoring. These semi-structured logs contain both developer-written 
events and automatically generated runtime parameters. Current studies oversimplify 
log sequences as character strings, neglecting the intricate semantics embedded in 
these events. Therefore, my work aims to pioneer practical, adaptable, and scalable 
log analytical methods by thinking three questions: (1) How do semantics in logs 
facilitate log analysis? (2) Can log techniques adapt to complex and evolving software 
demands? (3) How do we bridge the gap between academic tools and real-world 
deployment?  
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Semantic-aware log parsers. As the fundamental step of log analysis, log parsing 
aims to extract structured templates and parameters from raw log messages. 
However, existing log parsers are syntax-based, missing valuable semantic details in 
logs. To address this limitation, our work, SemParser [6], extracts log semantics 
through a two-step process: pairing parameters and their descriptions within individual 
logs, and inferring implicit semantics and computing structural outputs based on 
historical logs. We further explore LLMs for parsing. For example, DivLog [7] 
harnesses LLMs’ in-context learning (ICL) ability by sampling parsing examples for 
each target log, creating prompts for LLMs to parse logs. Additionally, LILAC [8] 
tackles the LLM inefficiencies problem with an adaptive parsing cache. The core idea, 
adaptive parsing cache, is to store previous log templates and employ tailored 
matching and adaptive updating operations. LILAC outperforms state-of-the-art 
methods in terms of parsing accuracy while maintaining higher efficiency. 
 
Scalability and adaptivity in log analytics. In handling large daily logs, identifying 
critical failures among anomalies poses a key challenge for engineers. Within 
software evolution process, parsing errors, shifting log events, and unstable 
sequences further complicate the process. EvLog [9] addresses these hurdles using 
a multi-level representation extractor to retain log semantics and a one-to-all 
anomalous log classifier with an attention mechanism to handle unstable sequences. 
The evaluation across two systems shows that, EvLog maintains the effectiveness in 
analyzing evolving-software log files without further training. Besides, we developed 
SeaLog [10] to build an accurate, lightweight, and adaptable anomaly detection 
framework. The core component of SeaLog is a Trie-based Detection Agent, using a 
dynamically expanding Trie structure for real-time detection. It also incorporates 
expert feedback to handle evolving log data. Its deployment within real-world cloud 
company futher demonstrates practical applicability. 
 
Log sequence simulator. Log analysis grapples with a significant challenge—
insufficient practical data due to privacy constraints in industrial logs and the simplistic 
nature of publicly available lab logs. AutoLog [11] tackles this issue by leveraging 
program analysis techniques to simulate log sequences based on the execution order 
of logging statements. In experiments across 50 popular Java projects, AutoLog 
significantly outperforms existing log datasets, acquiring 9-58 times more log events 
from the same system and generating log messages 15 times faster using a single 
machine. 
 
Future perspectives. Modern software systems produce a variety of data modalities, 
including logs, typologies, KPIs, and incident tickets. While these data types are often 
interconnected, previous research has typically addressed them in isolation. My 
upcoming research aims to develop multimodal operational strategies to enhance 
software reliability, such as performing root cause analysis by analyzing combined 
service dependency graphs and logs. Additionally, I plan to explore the integration of 
development and operations (DevOps), utilizing operational data (like logs) to 
formulate strategies for addressing software bugs. This approach leverages valuable 
feedback from software operations to help identify and eliminate potential faults during 
the development phase. 
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3. Multimodal Software Development 
 
Websites are integral to the modern digital landscape, with over 1.11 billion active 
sites and approximately 252,000 new ones launched daily. The process of developing 
a graphical user interface (GUI) for websites typically begins with graphic designers 
creating the visual layout, which is then handed off to programmers to implement. 
This translation from design to code is often time-consuming and prone to errors, 
especially for those without specialized expertise.  
 
While multimodal LLMs have shown significant advancements in handling image and 
code, their application to GUI understanding and generation remains unexplored. As 
an emerging area, developing MLLM-based GUI-to-code applicable to real-world 
scenarios involves several challenges. First, there lacks benchmark that mimics 
comprehensive and realistic development scenarios, which can include mobile app 
design and desktop UI design. Webpages may feature a variety of elements and 
visual designs, each with differing complexities. It is crucial to categorize the levels of 
automatic GUI generation to capture this diversity effectively. Second, there exists a 
modality gap between visual features in screenshots and code snippets. Webpages 
often include intricate layouts and styles, requiring the model to have a deep 
understanding of a GUI framework's components. Such understanding must be 
sufficient to accurately reproduce elements with detailed attributes such as colors, 
fonts, margins, and positioning. 
 
Autonomous webpage development. My initial work on this problem resulted in the 
first MLLM-based segment-aware method for web UI generation. While existing 
MLLMs struggle with generating accurate UI code, our study observes that breaking 
down full screenshots into smaller visual segments will improve performance. This 
decomposition allows models to conduct more reasoning steps, each focused on a 
manageable sub-generation task. Motivated by the traditional “divide and conquer” 
algorithm, our method, DCGen [12], decomposes a complicated screenshot into 
smaller, doable visual segments, solves each part individually, and then combines the 
solutions for the original problem. 
 
Comprehensive dataset and benchmarks. High-quality and representative web 
development dataset are the crucial resources and for multimodal software 
engineering research. We introduce a benchmark consisting of complicated real-
world static webpages, as well as the first collection of user-interactive webpages [13] 
for this area. Upon these benchmarks, we empirically analyze the effectiveness and 
common failures of MLLMs-generated UI code, revealing several current limitations 
and implications for future improvements. 
  
Future perspective. While code generation from natural language instructions has 
been extensively studied, developing software that meets multi-modal requirements 
remains an unexplored area. Future research could focus on the end-to-end software 
development process, aiming to simultaneously optimize front-end design, back-end 
architecture, and resource management. Additionally, the development of GUI agents 
presents another promising research direction. These agents aim to understand 
software interfaces and execute user instructions by mimicking human interactions, 
such as searching, clicking and typing. This area could significantly enhance user 
experience and streamline the software development process. 
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