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Background 
Understanding human preferences and predicting human behavior in complex and interactive 
environments has been a longstanding focus across econometrics, social science, and machine 
learning, with successful applications in various domains such as resource planning and infrastructure 
development. Nowadays, the modeling problem becomes more and more complex given the 
availability of massive amounts of data collected from various channels (mobile phones, online 
platforms, social networks, etc.), especially when humans now can have access to various sources of 
information and even interact with AI agents when making decisions. My long-term aim is to address 
the following questions: (i) How can we efficiently model and predict human behavior in complex, 
dynamic, and interactive environments? (ii) How can we make the modeling and prediction process 
adaptive and robust to handle different circumstances of data availability and human behavior 
constraints? And (iii) how can we make the behavioral models useful for various downstream decision-
making tasks? These questions pose several new challenges that necessity new methodologies, and 
my strategies are to address these challenges through methods rooted in Econometrics, Operations 
Research, and Machine Learning, focusing on applications in transportation behavioral modeling, 
location planning, revenue management, and game theory. 

Research Areas  
My research encompasses three main directions: human behavioral modeling, human-driven 
decision-making, and imitation learning. While the first direction was the focus of my PhD studies, 
the second addresses the question of how to efficiently solve decision-making problems that involve 
human behavioral models, and the last direction reflects my new explorations into a broader context 
of behavioral modeling where advanced machine learning techniques can be leveraged. Figure 1 
below illustrates these three research directions and how they evolve over time.  
 
Human Behavior Modeling and Prediction 
This research direction is the main topic of my PhD dissertation, focusing on the use of discrete choice 
models to analyze and predict people's choice behavior. These models have been widely used in 
various research fields to describe, explain, and predict how decision-makers choose between two or 
more discrete alternatives. Examples include selecting a transport mode, buying a car, choosing a 
route, deciding whether to enter the labor market, or selecting a product from a set of options.  
Discrete choice models have found extensive application across domains like marketing, revenue 
management, game theory, transportation planning, environmental studies, energy forecasting, and 
policymaking. 
 
Along this direction, my research primarily focuses on using discrete choice models to analyze and 
predict traveler behavior in large-scale transportation networks. This modeling is often referred to as 
the route choice problem, which has been a longstanding issue in transportation studies with 
applications in various domains such as traffic simulation, traffic signal control, and infrastructure 
planning. Prior to my Ph.D. studies, existing works typically relied on a sampling approach, often 
referred to as a path-based approach, where an algorithm is designed and used to generate a set of 
paths for modeling and estimation. The main issue with this approach is that the estimation results 
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are biased and strongly depend on the algorithms used to generate the sample paths, leading to 
inconsistency issues. In a seminal work preceding my PhD studies, it has been shown that it is possible 
to achieve consistent estimates by employing techniques from dynamic programming. However, 
despite this promising result, utilizing these techniques in the route choice problem poses several 
challenging research questions. Namely, how to model network correlation—an important aspect in 
route choice modeling—within dynamic programming methods? How to speed up the 
computation—as employing dynamic programming is typically costly, especially with large-scale 
networks? Additionally, how to extend the approach to address the stochastic and dynamic nature 
of large urban networks, where travel times may change over the day and be uncertain to travelers? 
 
My collaborators and I have been at the forefront of addressing these questions, leading to the 
development of several recursive route choice models that are now considered state-of-the-art 
(SOTA) behavioral models in the route choice modeling literature. Specifically, our contributions 
include: (i) an efficient and interpretable way to capture the correlation between path utilities in a 
complex network [23, 22, 20], (ii) novel algorithms that significantly accelerate the estimation process 
(up to 30 times faster) [19, 11], and (iii) new models and estimation techniques for stochastic and/or 
dynamic networks [17, 15]. Moreover, extending beyond the route choice problem, we have 
broadened the modeling framework to demonstrate a connection between route choice and a 
general context of network-based demand modeling. This has led to new methods for quickly 
estimating very large-scale demand models [22, 21]. 
 
My research in behavioral modeling has been published in leading transportation research journals 
(Transportation Science, Transportation Research Part B&C). My work in this field has received some 
of the most prestigious awards offered by the community, including the INFORMS-TSL Dissertation 
Prize (1st place), the oldest and most prestigious honor for doctoral dissertations in the 
transportation science and logistics area. 
 
This research direction remains a primary focus of my work, and future endeavors will aim to address 
even more general and inclusive settings. This includes modeling multi-mode, dynamic, and 
stochastic transportation systems, where individuals may utilize multiple modes of transport and may 
be sensitive to uncertainties regarding future travel information. Furthermore, considering the 
relationship between route choice modeling and imitation learning (a major research area in the 
machine learning), we plan to explore advanced and recent machine learning techniques to further 
enhance generality and scalability, making these behavioral models applicable in modern, large, and 
dynamic urban networks such as the Singapore’s transportation system. 
 
Human-driven Decision-Making 
I have been pursuing this direction since completing my Ph.D. studies. My primary motivation was to 
explore how human behavioral models can be efficiently leveraged in downstream decision-making 
problems, noting that this is an intriguing research topic in Operations Research (OR) and Artificial 
Intelligence (AI) over recent decades. Leveraging my advanced background and experience in 
behavioral modeling, I have identified several gaps in the literature, particularly regarding the 
integration of advanced behavioral models into optimization to achieve tractable, robust and 
trustworthy decision-making. While advanced behavioral models offer more accurate predictions, 
they often complicate the decision-making process, necessitating the development of new and 
innovative optimization methods. My research has been dedicated to bridging these gaps, focusing 
on applications in facility location, product assortment planning, and security games, which stand as 
some of the most important problems within the OR and AI communities. 
 
Facility location is a major problem in both OR and AI communities, focusing on selecting an optimal 
subset of locations from a given pool of candidates to establish new facilities. This problem has many 
real-world applications and has been studied extensively for decades. However, most of existing 
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studies assume that customer demand is fixed with certainty, which is not the case when using 
behavioral models (i.e., discrete choice models) to predict demand. Integrating choice models into 
facility location problems poses several challenges, primarily due to the resulting objective functions 
becoming highly nonlinear and difficult to solve using standard techniques. Additionally, existing 
methods often employ simple behavioral models (e.g., multinomial logit), which have limitations in 
capturing complex human behavior. Employing more advanced behavioral models further increases 
the problem's complexity, necessitating the development of new solution methods. 
 
Given these challenges and research gaps, my students, collaborators, and I have focused on bringing 
generalized discrete choice models into the context. Our primary efforts have been concentrated on 
devising new algorithms to efficiently solve these novel facility location challenges. Some major 
contributions include [18] where we have developed a novel algorithm based on the outer-
approximation scheme that significantly outperforms existing state-of-the-art algorithms. In [16], we 
made the pioneering effort to incorporate a general class of discrete choice models (i.e., the GEV 
family) into competitive facility location. To address the challenging problem, we have developed an 
efficient local search procedure with performance guarantees that surpasses prior methods. We have 
also explored solution methods to address uncertainty issues [12, 7], and developed new models and 
solution methods for a joint facility location and cost optimization problem under a new class of 
discrete choice models [8]. 
 
Product pricing and assortment planning is another major application of interest that I have been 
exploring. This key problem in revenue management involves choosing an optimal subset of products 
and their prices to offer customers, with the goal of maximizing expected revenue based on customer 
preferences. While the literature on assortment and price optimization is extensive, including 
approximation and exact methods developed for various choice models, it lacks a practical algorithm 
that works with multiple behavioral models simultaneously. This motivated us to develop a trust-
region-based local search algorithm that efficiently solves the problem under various choice models 
[1]. Additionally, we have proposed new, general, and practical algorithms for solving a broader class 
of nonlinear decision-making problems. These algorithms are applicable to both assortment and 
pricing, as well as facility location problems [12]. 
 
The third topic of interest is security games, which involve a defender aims to allocate security 
resources to protect facilities from potential attacks by an adversary. I began exploring this 
application domain with a colleague upon joining SMU. Through this exploration, I discovered that 
discrete choice (or quantal response) models are widely utilized in Stackelberg security games (SSG) 
to capture adversary behavior, but the existing literature only focuses on simple discrete choice 
models. Consequently, the vast body of literature on discrete choice modeling would offer promising 
avenues for effectively and intuitively modeling adversary behavior. Motivated by this observation, 
we embarked on the first effort to introduce the nested logit model, from the family of discrete choice 
models, into SSG to address some limitations of previously employed quantal response models [13]. 
Additionally, we incorporated dynamic discrete choice concepts to model network-based adversary 
behavior [2]. Furthermore, we developed a model and solution algorithms that enable the defender 
to select operational locations, thereby significantly reducing the cost of potential attacks [9]. 
 
Our work along this direction have been published in leading OR venues (EJOR, COR, Math Prog) and 
major Machine Learning conferences (AAAI, NeurIPS, IJCAI, AAMAS). This has been and remains one 
of my long-term research focuses. There are several unanswered questions I aim to explore, 
particularly considering the increasing complexity of behavioral models, which necessitates the 
development of new algorithms to address resulting decision-making challenges. One major 
challenge is on how to efficiently integrate dynamic and stochastic behavioral models, such as 
advanced route choice models and those derived from the imitation learning literature (as will be 
discussed in the next section), into decision-making. Such integration would lead to highly complex 
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optimization problems, but it would also offer valuable opportunities for real-world applications 
involving intricate human behavior. 
 
Imitation/Inverse Reinforcement Learning  
Since completing my Ph.D. studies, I have been exploring ways to move beyond classical behavioral 
models (i.e., discrete choice models) to find more scalable and efficient modeling techniques capable 
of handling massive amounts of data collected from interactive multi-agent environments, for which 
classical behavioral models are limited to handle. Imitation learning (IL) emerged as an appealing 
direction since it shares a similar objective with classical behavioral models: replicating a policy from 
demonstration data. Moreover, IL techniques have been known for their scalability and accuracy. 
Particularly, the integration of modern deep learning techniques into IL algorithms further enhances 
their efficiency in handling large parameter sets, offering the potential to better predict human 
behavior within complex systems. In my research, delving into IL not only brings forth novel 
techniques for behavioral modeling and decision-making, but also fosters opportunities for 
collaboration with colleagues who specialize in reinforcement learning and deep learning. 
 
The literature on IL is extensive and profound, yet it still has limitations in addressing my specific 
topics of interest, particularly about whether IL can be leveraged to enhance decision-making 
processes. This inquiry has led to some notable findings where I demonstrate that IL can indeed assist 
agents in better learning and making actions. For example, in [14], we explore a class of capacitated 
vehicle routing problems (VRP) – a major challenge in OR – and propose a method to employ imitation 
learning to mimic the behavior of heuristic operators. This marks the first exploration of IL in the VRP 
context, opening up several new promising research avenues. In [10, 4, 3], we investigate multi-agent 
games where we introduce novel IL-enhanced algorithms where an imitator agent is trained to learn 
and predict the behavior of the players, thereby aiding the victim agent in achieving higher win rates. 
In [6, 5], we demonstrate how IL can be utilized to solve reinforcement learning problems, resulting 
in SOTA results. 

My current research in this domain focuses on the development of novel IL algorithms tailored to 
handle multi-agent settings and scenarios where learning needs to be done without interaction with 
environments (offline learning) or with low-quality demonstrations. I believe I am still in an early 
stage of exploring this direction. My long-term goal is not only to advance state-of-the-art IL 
algorithms to accurately mimic human (or expert system) behavior, but also to connect IL techniques 
with classical behavioral modeling and decision-making, enabling applications in much more complex 
and inclusive settings. 
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