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Background 
 
Software and software development activities produce a huge amount of data 
daily. The amount of new software code written by software companies and open 
source projects easily goes to millions of lines of code daily. Modern software 
development practices often include deployment of repositories, e.g., Git, etc, 
which contains other forms of information aside from the code. These include 
information on when a piece of code is written, who is writing into what file, etc. 
Bug reports and bug tracking information stored in systems like Bugzilla and Jira 
are also widely available. These data sources covering people, processes, 
products, provide a rich source of information to be analyzed. 
 
Software development itself faces many challenges. Difficulties in managing 
legacy systems and presence of bugs have cost billions of dollars annually. It is 
estimated that a substantial proportion of software cost is due to the difficulties in 
understanding existing/legacy systems especially during maintenance tasks, i.e. 
when new feature updates, bug fix, etc. are performed. US National Institute of 
Standards and Technology (NIST) estimated that software bugs have caused US 
economy to lose 59.5 billion dollars annually.  
 
As a step forward to reduce software maintenance cost and detect bugs, machine 
learning and data mining techniques have been employed to mine knowledge from 
existing program artifacts (either from source code, execution traces, bug reports, 
comments, developer socio-technical network, etc). This is termed as software 
analytics and has been one of the new, hot topics in software engineering. The 
mined knowledge can be used for understanding legacy systems, reducing 
software maintenance cost, re-engineering legacy system, improving regression 
tests, aiding verification of programs, detecting bugs, etc.  
 
Motivated by the above mentioned challenges and opportunities, application-wise, 
my research goal focuses on this area of software analytics; in particular, I’m 
interested in extending data analytics solution to transform the wealth of data 
available and could be collected from software and its development activities into 
actionable knowledge useful for software developers and other stakeholders in the 
software development process. Algorithm-wise, I work on improving frequent 
pattern mining, extending it to mine for more expressive patterns more efficiently 
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from various data sources related to primarily, but not limited to, software 
engineering, and also: social network, spatio-temporal information, text data, etc. 
 

 
Figure 1. My Research Goals 

 

Research Areas 
 
Most of my work could be grouped into 5 topics: mining software specifications, 
bug management, code search, frequent pattern mining algorithms, and social 
network mining. I describe these five topics in more detail in the following 
paragraphs. These studies were performed together with various collaborators 
around the globe. 
 

 
Figure 2. My Current Research Topics of Interest 

 
 
Mining Software Specifications. Software specifications are often not available, 
incomplete, or outdated in the industry. I’m interested in reverse engineering or 
mining specifications from programs. I especially focus on the mining of 
specifications from program behaviors exhibited in systems’ execution traces. In 
the past, we have mined specifications in various formats ranging from: finite state 
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machines, temporal rules, frequent usage patterns, and sequence diagrams [1-
7,40-41,52,65]. 
 
Bug Management. Bugs are prevalent. We are interested in managing bugs in 
the various phases of its lifecycle: identification/detection, reporting, localization, 
and fixing. I have been working on the four phases. For bug identification, we have 
proposed various approaches that automatically find likely bugs from programs 
[8,9,42,56,57,68]. For bug reporting, we have investigated the problem of duplicate 
bug reports and propose approaches to detect those duplicates using a 
combination of information retrieval and data mining approaches [10,25,26,29,71]. 
More recently, we have also developed a novel approach to identify invalid bug 
reports [61]. We have also proposed approaches to recommend the best 
developers to work on a bug report [46,47]. For bug localization, we have 
investigated various approaches that localize bugs from failure reports 
[11,12,30,37,38,39,43,48,58,66,69]. In addition to the above, we have also 
performed an empirical study on types of bugs that appear in real systems [31] 
and proposed an approach that can categorize bugs into types [32]. For bug fixing, 
we have proposed various solutions that leverage historical bug fixing data and 
utilize program synthesis engines and deductive verification [49,50,51]. More 
recently, we have also looked into fixing bugs in specialized software, e.g., smart 
contracts [62]. We have also investigated practitioners’ perception on bug report 
management techniques highlighting numerous opportunities for future work in this 
area [63]. We have also developed techniques to manage vulnerabilities, 
especially considering the software supply chain [72,73]. Furthermore, we 
developed large language models (LLM) powered methods to find and repair 
vulnerabilities [74,75]. 
 
Code Search. Just like a regular search engine helps users in finding information 
that they want, a code search engine helps developers locate desired pieces of 
code in a code base. This would greatly help in performing maintenance tasks, 
e.g., finding a piece of code to be changed. We have proposed approaches that 
allow for dependency and basic textual search on a code base [13,27,44]. We are 
planning to extend this approach further to support more advanced queries. We 
have also proposed an approach that can recover similar software applications 
leveraging collaborative tagging [33]. Our recent work introduces advanced code 
search solutions that leverage the power of crowd-generated contents in 
StackOverflow [53-54,70] and YouTube [60], and a search-and-replace solution to 
perform many similar transformations across a large code base [59,67]. We have 
also designed an approach that can convert a piece of code to its embedding 
(distributed representation) that can improve several downstream code search 
tasks [64].  
 
Frequent Pattern Mining. I also work on novel pattern mining algorithms, 
especially sequential pattern mining. Along with co-authors, I have worked on 
mining sequence generators [14] and repetitive sequential patterns (closed 
patterns [15] and generators [16]). We also work on mining rules; different from 
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patterns, a significant rule must have sufficient confidence. We’ve investigated 
non-redundant sequential rules [17] and temporal rule mining [18,19]. We are also 
interested in mining discriminative patterns; we have worked on mining 
discriminative sequential patterns [20], and dyadic sequential patterns [21]. We 
have applied discriminative graph mining to the problem of bug localization [11]. 
 
Social Network Mining. Recently, I’m also interested to mine patterns from social 
networks. We mine for patterns from software developer networks [22]. We also 
mine friendship propagation rules in social networks [23]. Furthermore, we also 
extract antagonistic communities from social networks [24,28,34,45]. Our recent 
work proposes an advanced method to recommend who-to-follow in the software 
engineering Twitter space [55]. 
 
For the above studies, I benefited from collaborations with co-authors from 
Zhejiang University, National University of Singapore, Inria, University of Illinois 
Urbana-Champaign, University of California-Berkeley, NASA, Tel Aviv University, 
Chinese University of Hong Kong, University of Milano-Biccoca, Peking University, 
University of Copenhagen, etc. 
 
In addition to the above, I’m interested with the following research directions: 
 

• Large language model for software engineering 
• Software engineering methodologies to develop, test, and deploy machine 

learning and AI solutions (aka. SE4AI and MLOps), including large 
language models 

• Application of existing mining techniques to interesting research problems 
in: 

o Security and intrusion detection 
o Program comprehension 
o Verification 
o Debugging 
o Testing 
o Re-engineering 

• Further improvement to the efficiency and accuracy of existing mining 
techniques and expressiveness of mined specifications and patterns. 

• Utilization of the synergy of static and dynamic analysis in specification 
mining 

• Investigation of new context-based automated debugging approaches 
• Merging social network mining and analysis to software engineering 
• Analyzing textual software engineering data 
• Empirical studies in software engineering 
• Big software data analytics  
• Construction of more research “bridges” joining the areas of data mining, 

information retrieval, programming languages, and software engineering 
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