

 1

SMU Classification: Restricted

Research Statement

David Lo
School of Computing and Information Systems

Singapore Management University
Tel: (65) 6828-0599; Email: davidlo@smu.edu.sg

 Updated on December 20, 2024

Background

Software and software development activities produce a huge amount of data
daily. The amount of new software code written by software companies and open
source projects easily goes to millions of lines of code daily. Modern software
development practices often include deployment of repositories, e.g., Git, etc,
which contains other forms of information aside from the code. These include
information on when a piece of code is written, who is writing into what file, etc.
Bug reports and bug tracking information stored in systems like Bugzilla and Jira
are also widely available. These data sources covering people, processes,
products, provide a rich source of information to be analyzed.

Software development itself faces many challenges. Difficulties in managing
legacy systems and presence of bugs have cost billions of dollars annually. It is
estimated that a substantial proportion of software cost is due to the difficulties in
understanding existing/legacy systems especially during maintenance tasks, i.e.
when new feature updates, bug fix, etc. are performed. US National Institute of
Standards and Technology (NIST) estimated that software bugs have caused US
economy to lose 59.5 billion dollars annually.

As a step forward to reduce software maintenance cost and detect bugs, machine
learning and data mining techniques have been employed to mine knowledge from
existing program artifacts (either from source code, execution traces, bug reports,
comments, developer socio-technical network, etc). This is termed as software
analytics and has been one of the new, hot topics in software engineering. The
mined knowledge can be used for understanding legacy systems, reducing
software maintenance cost, re-engineering legacy system, improving regression
tests, aiding verification of programs, detecting bugs, etc.

Motivated by the above mentioned challenges and opportunities, application-wise,
my research goal focuses on this area of software analytics; in particular, I’m
interested in extending data analytics solution to transform the wealth of data
available and could be collected from software and its development activities into
actionable knowledge useful for software developers and other stakeholders in the
software development process. Algorithm-wise, I work on improving frequent
pattern mining, extending it to mine for more expressive patterns more efficiently

 2

SMU Classification: Restricted

from various data sources related to primarily, but not limited to, software
engineering, and also: social network, spatio-temporal information, text data, etc.

Figure 1. My Research Goals

Research Areas

Most of my work could be grouped into 5 topics: mining software specifications,
bug management, code search, frequent pattern mining algorithms, and social
network mining. I describe these five topics in more detail in the following
paragraphs. These studies were performed together with various collaborators
around the globe.

Figure 2. My Current Research Topics of Interest

Mining Software Specifications. Software specifications are often not available,
incomplete, or outdated in the industry. I’m interested in reverse engineering or
mining specifications from programs. I especially focus on the mining of
specifications from program behaviors exhibited in systems’ execution traces. In
the past, we have mined specifications in various formats ranging from: finite state

Software
Mining

 Data
Mining &

Applications

Mining
Software

Specifications

Bug
Management

Social
Network
Mining

Frequent
Pattern Mining

Algorithms

Code Search

Software Engineering
Spectrum

Data Mining
 Spectrum

 3

SMU Classification: Restricted

machines, temporal rules, frequent usage patterns, and sequence diagrams [1-
7,40-41,52,65].

Bug Management. Bugs are prevalent. We are interested in managing bugs in
the various phases of its lifecycle: identification/detection, reporting, localization,
and fixing. I have been working on the four phases. For bug identification, we have
proposed various approaches that automatically find likely bugs from programs
[8,9,42,56,57,68]. For bug reporting, we have investigated the problem of duplicate
bug reports and propose approaches to detect those duplicates using a
combination of information retrieval and data mining approaches [10,25,26,29,71].
More recently, we have also developed a novel approach to identify invalid bug
reports [61]. We have also proposed approaches to recommend the best
developers to work on a bug report [46,47]. For bug localization, we have
investigated various approaches that localize bugs from failure reports
[11,12,30,37,38,39,43,48,58,66,69]. In addition to the above, we have also
performed an empirical study on types of bugs that appear in real systems [31]
and proposed an approach that can categorize bugs into types [32]. For bug fixing,
we have proposed various solutions that leverage historical bug fixing data and
utilize program synthesis engines and deductive verification [49,50,51]. More
recently, we have also looked into fixing bugs in specialized software, e.g., smart
contracts [62]. We have also investigated practitioners’ perception on bug report
management techniques highlighting numerous opportunities for future work in this
area [63]. We have also developed techniques to manage vulnerabilities,
especially considering the software supply chain [72,73]. Furthermore, we
developed large language models (LLM) powered methods to find and repair
vulnerabilities [74,75].

Code Search. Just like a regular search engine helps users in finding information
that they want, a code search engine helps developers locate desired pieces of
code in a code base. This would greatly help in performing maintenance tasks,
e.g., finding a piece of code to be changed. We have proposed approaches that
allow for dependency and basic textual search on a code base [13,27,44]. We are
planning to extend this approach further to support more advanced queries. We
have also proposed an approach that can recover similar software applications
leveraging collaborative tagging [33]. Our recent work introduces advanced code
search solutions that leverage the power of crowd-generated contents in
StackOverflow [53-54,70] and YouTube [60], and a search-and-replace solution to
perform many similar transformations across a large code base [59,67]. We have
also designed an approach that can convert a piece of code to its embedding
(distributed representation) that can improve several downstream code search
tasks [64].

Frequent Pattern Mining. I also work on novel pattern mining algorithms,
especially sequential pattern mining. Along with co-authors, I have worked on
mining sequence generators [14] and repetitive sequential patterns (closed
patterns [15] and generators [16]). We also work on mining rules; different from

 4

SMU Classification: Restricted

patterns, a significant rule must have sufficient confidence. We’ve investigated
non-redundant sequential rules [17] and temporal rule mining [18,19]. We are also
interested in mining discriminative patterns; we have worked on mining
discriminative sequential patterns [20], and dyadic sequential patterns [21]. We
have applied discriminative graph mining to the problem of bug localization [11].

Social Network Mining. Recently, I’m also interested to mine patterns from social
networks. We mine for patterns from software developer networks [22]. We also
mine friendship propagation rules in social networks [23]. Furthermore, we also
extract antagonistic communities from social networks [24,28,34,45]. Our recent
work proposes an advanced method to recommend who-to-follow in the software
engineering Twitter space [55].

For the above studies, I benefited from collaborations with co-authors from
Zhejiang University, National University of Singapore, Inria, University of Illinois
Urbana-Champaign, University of California-Berkeley, NASA, Tel Aviv University,
Chinese University of Hong Kong, University of Milano-Biccoca, Peking University,
University of Copenhagen, etc.

In addition to the above, I’m interested with the following research directions:

• Large language model for software engineering
• Software engineering methodologies to develop, test, and deploy machine

learning and AI solutions (aka. SE4AI and MLOps), including large
language models

• Application of existing mining techniques to interesting research problems
in:

o Security and intrusion detection
o Program comprehension
o Verification
o Debugging
o Testing
o Re-engineering

• Further improvement to the efficiency and accuracy of existing mining
techniques and expressiveness of mined specifications and patterns.

• Utilization of the synergy of static and dynamic analysis in specification
mining

• Investigation of new context-based automated debugging approaches
• Merging social network mining and analysis to software engineering
• Analyzing textual software engineering data
• Empirical studies in software engineering
• Big software data analytics
• Construction of more research “bridges” joining the areas of data mining,

information retrieval, programming languages, and software engineering

 5

SMU Classification: Restricted

Selected Publications and Research Outputs

[1] David Lo and Siau-Cheng Khoo. QUARK: Empirical Assessment of Automaton-

based Specification Miners. In proceedings of the 13th Working Conference on
Reverse Engineering (WCRE'06) . Benevento, Italy. Oct 23-27, 2006.

[2] David Lo and Siau-Cheng Khoo. SMArTIC: Towards Building an Accurate,
Robust and Scalable Specification Miner. In proceedings of the 14th SIGSOFT
Symposium on Foundation of Software Engineering (FSE'06). Portland, Oregon.
Nov 5-11, 2006.

[3] David Lo, Siau-Cheng Khoo and Chao Liu. Efficient Mining of Iterative Patterns
for Software Specification Discovery. In proceedings of the 13th SIGKDD
International Conference on Knowledge Discovery and Data Mining (KDD'07).
San Jose, California. Aug 12-15, 2007.

[4] David Lo, Siau-Cheng Khoo, Chao Liu. Mining temporal rules for software
maintenance, Journal of Software Maintenance and Evolution: Research and
Practice, vol. 20, no. 4, pp. 227–247, John Wiley & Sons, Inc., New York, NY,
USA, 2008

[5] David Lo, Shahar Maoz and Siau-Cheng Khoo. Mining Modal Scenario-based
Specifications from Execution Traces of Reactive Systems. In proceedings of the
22nd IEEE/SIGSOFT International Conference on Automated Software
Engineering (ASE'07). Atlanta, Georgia. Nov 5-9, 2007.

[6] David Lo and Shahar Maoz. Mining Scenario-Based Triggers and Effects. In
proceedings of the 23rd IEEE/SIGSOFT International Conference on Automated
Software Engineering (ASE'08). L'Aquila, Italy. September 15-19, 2008.

[7] David Lo and Shahar Maoz. Scenario-based and value-based specification
mining: better together, in proceedings of the 25th IEEE/ACM International
Conference on Automated Software Engineering (ASE’10). Antwerp, Belgium.
September 20-24, 2010.

[8] Julia L. Lawall and David Lo. An automated approach for finding variable-constant
pairing bugs, in proceedings of the 25th IEEE/ACM International Conference on
Automated Software Engineering (ASE’10). Antwerp, Belgium. September 20-24,
2010.

[9] David Lo, Ganesan Ramalingam, Venkatesh-Prasad Ranganath, and Kapil
Vaswani. Mining Quantified Temporal Rules: Formalism, Algorithms, and
Evaluation, in Science of Computer Programming (SCP), 2011.

[10] Chengnian Sun, David Lo, Xiaoyin Wang, Jing Jiang, and Siau-Cheng Khoo. A
Discriminative Model Approach for Accurate Duplicate Bug Report Retrieval, in
proceedings of the ACM/IEEE International Conference on Software Engineering
(ICSE’10), Cape Town, South Africa

[11] Hong Cheng, David Lo, Yang Zhou, Xiaoyin Wang, and Xifeng Yan. Identifying
Bug Signatures using Discriminative Graph Mining. In proceedings of the ACM
SIGSOFT International Symposium on Software Testing and Analysis
(ISSTA’09), Chicago, IL

[12] Lucia, David Lo, Lingxiao Jiang, and Aditya Budi. Comprehensive Evaluation of
Association Measures for Fault-Localization, in proceedings of the 26th IEEE
International Conference on Software Maintenance (ICSM’10). Timisoara,
Romania. September 12-18, 2010.

[13] Xiaoyin Wang, David Lo, Jiefeng Cheng, Lu Zhang, Hong Mei, and Jeffrey Xu Yu.
Matching dependence-related queries in the system dependence graph, in

 6

SMU Classification: Restricted

proceedings of the 25th IEEE/ACM International Conference on Automated
Software Engineering (ASE’10). Antwerp, Belgium. September 20-24, 2010.

[14] David Lo, Siau-Cheng Khoo and Jinyan Li. Mining and Ranking Generators of
Sequential Patterns. In proceedings of the 8th SIAM International Conference on
Data Mining (SDM'08). Atlanta, USA. April 24-26, 2008.

[15] Bolin Ding, David Lo, Jiawei Han and Siau-Cheng Khoo. Efficient Mining of
Closed Repetitive Gapped Subsequences from a Sequence Database. In
proceedings of the 25th International Conference on Data Engineering (ICDE'09),
Shanghai, China. March 29-April 4, 2009

[16] David Lo, Jinyan Li, Limsoon Wong, and Siau-Cheng Khoo. Mining Iterative
Generators and Representative Rules for Software Specification Discovery. IEEE
Transaction on Knowledge and Data Engineering, Feb 2011.

[17] David Lo, Siau-Cheng Khoo, and Limsoon Wong. Non-Redundant Sequential
Rules - Theory and Algorithms, Information Systems, vol. 34, no. 4-5, pp. 438–
453, Elsevier, 2009

[18] David Lo, Siau-Cheng Khoo and Chao Liu. Efficient Mining of Recurrent Rules
from a Sequence Database. In proceedings of the 13rd International Conference
on Database Systems for Advance Applications (DASFAA'08). New Delhi, India.
March 19-21, 2008.

[19] David Lo, Bolin Ding, Lucia, and Jiawei Han. Bidirectional Mining of Non-
Redundant Recurrent Rules from a Sequence Database. In proceedings of the
27th International Conference on Data Engineering (ICDE’11). Hannover,
Germany. April 11-16, 2011.

[20] David Lo, Hong Cheng, Jiawei Han, Siau-Cheng Khoo, and Chengnian Sun.
Classification of Software Behaviors for Failure Detection: A Discriminative
Pattern Mining Approach. In Proceedings of the 15th ACM SIGKDD Conference
on Knowledge Discovery and Data Mining (KDD'09), Paris, France. June 28-
July 1, 2009

[21] David Lo, Hong Cheng and Lucia, “Mining Closed Discriminative Dyadic
Sequential Patterns”, Proceedings of the 2011 International Conference on
Extending Data Base Technology (EDBT 11). Uppsala, Sweden, Mar. 2011.

[22] Didi Surian, David Lo, and Ee-Peng Lim. Mining Collaboration Patterns from a
Large Developer Network, in proceedings of the 17th IEEE Working Conference
on Reverse Engineering (WCRE’10) (Short Paper). Boston, USA. October 13-
16, 2010.

[23] Cane Wing-ki Leung, Ee-Peng Lim, David Lo and Jianshu Weng. Mining
Interesting Link Formation Rules in Social Networks, in Proceedings of the 19th
ACM International Conference on Information and Knowledge Management
(CIKM 2010). Toronto, Canada. October 26-30, 2010.

[24] Kuan Zhang, David Lo, and Ee-Peng Lim. Mining Antagonistic Communities
from Social Networks, in proceedings of the Pacific Asia Conference on
Knowledge Discovery and Data Mining (PAKDD’10), Hyderabad

[25] Chengnian Sun, David Lo, Siau-Cheng Khoo, and Jing Jiang. Towards More
Accurate Retrieval of Duplicate Bug Reports, in proceedings of the 26th
IEEE/ACM International Conference on Automated Software Engineering (ASE
2011), Lawrence, USA.

[26] Tian Yuan, Chengnian Sun, and David Lo. Improved Duplicate Bug Report
Identification, in Proceedings of 15th European Conference on Software
Maintenance and Reengineering (CSMR 2012), ERA Track, Szeged, Hungary

http://sites.google.com/site/caneleung/link-formation-rules
http://sites.google.com/site/caneleung/link-formation-rules

 7

SMU Classification: Restricted

[27] Shaowei Wang, David Lo, and Lingxiao Jiang. Code Search via Topic-Enriched
Dependency Graph Matching, in Proceedings of the 18th IEEE Working
Conference on Reverse Engineering (WCRE 2011), Limerick, Ireland

[28] David Lo, Didi Surian, Zhang Kuan, and Ee Peng Lim. Mining Direct Antagonistic
Communities in Explicit Trust Network, in Proceedings of the 20th ACM
International Conference on Information and Knowledge Management (CIKM
2011), Glasgow, United Kingdom

[29] Anh Tuan Nguyen, Tung Nguyen, Tien Nguyen, David Lo and Chengnian Sun.
Duplicate Bug Report Detection with a Combination of Information Retrieval and
Topic Modeling, in Proceedings of the 27th IEEE/ACM International Conference
on Automated Software Engineering (ASE 2012), Essen, Germany

[30] Liang Gong, David Lo, Lingxiao Jiang and Hongyu Zhang. Diversity
Maximization Speedup for Fault Localization, in Proceedings of the 27th
IEEE/ACM International Conference on Automated Software Engineering (ASE
2012), Essen, Germany

[31] Ferdian Thung, Shaowei Wang, David Lo, and Lingxiao Jiang. An Empirical
Study of Bugs in Machine Learning Systems, in Proceedings of the 23rd IEEE
International Symposium on Software Reliability Engineering (ISSRE 2012),
Dallas, Texas, USA

[32] Ferdian Thung, David Lo, and Lingxiao Jiang. Automatic Defect Categorization,
in Proceedings of the 19th Working Conference on Reverse Engineering
(WCRE 2012), Kingston, Ontario, Canada

[33] Ferdian Thung, David Lo, and Lingxiao Jiang. Detecting Similar Applications
with Collaborative Tagging, in Proceedings of the 28th IEEE International
Conference on Software Maintenance (ICSM 2013), Riva del Garda, Trento,
Italy

[34] Zhang Kuan, David Lo, Ee-Peng Lim, and Philips K. Prasetyo. Mining Indirect
Antagonistic Communities from Social Interactions, in Knowledge and
Information Systems (KAIS), 2013.

[35] Ferdian Thung, David Lo, and Julia Lawall. Automatic Recommendation of API
Methods from Feature Requests, in Proceedings of the 28th IEEE/ACM
International Conference on Automated Software Engineering (ASE 2013), Palo
Alto, California, USA

[36] Yuan Tian, David Lo, and Julia Lawall. DRONE: Predicting Priority of Reported
Bugs by Multi-factor Analysis, in Proceedings of the 29th IEEE International
Conference on Software Maintenance (ICSM 2013), Eindhoven, Netherland

[37] Shaowei Wang and David Lo. Version history, similar report, and structure:
putting them together for improved bug localization, in Proceedings of the 22nd
International Conference on Program Comprehension (ICPC 2014), Hyderabad,
India

[38] Shaowei Wang, David Lo, Julia Lawall. Compositional Vector Space Models for
Improved Bug Localization, in Proceedings of the 30th International Conference
on Software Maintenance and Evolution (ICSME 2014), Victoria, Canada

[39] Xin Xia, David Lo, Xingen Wang, Chenyi Zhang, Xinyu Wang. Cross-language
bug localization, in Proceedings of the 22nd International Conference on
Program Comprehension (ICPC 2014), Hyderabad, India

[40] Tien-Duy B. Le, Xuan-Bach D. Le, David Lo, and Ivan Beschastnikh. Synergizing
Specification Miners through Model Fissions and Fusions, in Proceedings of the
30th IEEE/ACM International Conference on Automated Software Engineering
(ASE 2015), Lincoln, USA.

 8

SMU Classification: Restricted

[41] Tien-Duy B. Le and David Lo. Beyond Support and Confidence: Exploring
Interestingness Measures for Specification Mining, in Proceedings of the 22nd
IEEE International Conference on Software Analysis, Evolution, and
Reengineering (SANER 2015), Montreal, Canada.

[42] Xinli Yang, David Lo, Xin Xia, Yun Zhang and Jianling Sun. Deep Learning for
Just-In-Time Defect Prediction, in Proceedings of IEEE International Conference
on Software Quality, Reliability, and Security (QRS 2015), Vancouver, Canada.

[43] Tien-Duy B. Le, Richard J. Oentaryo, and David Lo. Information Retrieval and
Spectrum Based Bug Localization: Better Together, in Proceedings of the 10th
Joint Meeting of the European Software Engineering Conference and ACM
SIGSOFT Symposium on Foundations of Software Engineering (ESEC-FSE
2015), Bergamo, Italy.

[44] Wing-Kwan Chan, Hong Cheng, and David Lo. Searching Connected API
Subgraph via Text Phrases, in Proceedings of the 20th ACM International
Symposium on the Foundations of Software Engineering (FSE 2012), Cary, USA.

[45] Ming Gao, Ee-Peng Lim, David Lo, Philips K. Prasetyo. On Detecting Maximal
Quasi Antagonistic Communities in Signed Graphs. Data Mining and Knowledge
Discovery. (DMKD), 2016.

[46] Xin Xia, David Lo, Xinyu Wang, Bo Zhou. Dual Analysis for Recommending
Developers to Resolve Bugs. Journal of Software: Evolution and Process (JSEP),
2015

[47] Yuan Tian, Dinusha Wijedasa, David Lo, Claire Le Goues. Learning to Rank for
Bug Report Assignee Recommendation, in Proceedings of 24th IEEE
International Conference on Program Comprehension (ICPC 2016), Austin, USA.

[48] Tien-Duy B. Le, David Lo, Claire Le Goues, Lars Grunske. A Learning-to-Rank
Based Fault Localization Approach using Likely Invariants, in Proceedings of the
25th International Symposium on Software Testing and Analysis (ISSTA 2016),
Saarbrucken, Germany.

[49] Xuan-Bach D. Le, David Lo, Claire Le Goues. History Driven Program Repair, in
Proceedings of the 23rd International Conference on Software Analysis, Evolution,
and Reengineering (SANER 2016), Osaka, Japan.

[50] Xuan-Bach D. Le, David Lo and Claire Le Goues. Empirical Study on Synthesis
Engines for Semantics-based Program Repair, in Proceedings of the 32nd IEEE
International Conference on Software Maintenance and Evolution (ICSME 2016),
Raleigh, USA.

[51] Xuan-Bach D. Le, Quang Loc Le, David Lo and Claire Le Goues. Enhancing
Automated Program Repair with Deductive Verification, in Proceedings of the
32nd IEEE International Conference on Software Maintenance and Evolution
(ICSME 2016), Raleigh, USA.

[52] Tien-Duy B. Le, and David Lo. Deep Specification Mining, in Proceedings of the
27th ACM SIGSOFT International Symposium on Software Testing and Analysis
(ISSTA 2018), Amsterdam, Netherlands.

[53] Qiao Huang, Xin Xia, Zhenchang Xing, David Lo, and Xinyu Wang. API Method
Recommendation without Worrying about the Task-API Knowledge Gap, in
Proceedings of the 33rd ACM/IEEE International Conference on Automated
Software Engineering (ASE 2018), Montpellier, France.

[54] Raphael Sirres, Tegawendé F. Bissyandé, Dongsun Kim, David Lo, Jacques
Klein, Kisub Kim, and Yves Le Traon. Augmenting and Structuring User Queries
to Support Efficient Free-Form Code Search. Empirical Software Engineering
23(5): 2622-2654 (2018)

 9

SMU Classification: Restricted

[55] Abhishek Sharma, Yuan Tian, Agus Sulistya, Dinusha Wijedasa, and David Lo.
Recommending Who to Follow in the Software Engineering Twitter Space. ACM
Transactions of Software Engineering Methodology 27(4): 16:1-16:33 (2018).

[56] Shu-Ting Shi, Ming Li, David Lo, Ferdian Thung, Xuan Huo. Automatic Code
Review by Learning the Revision of Source Code, in Proceedings of the 33rd AAAI
Conference on Artificial Intelligence (AAAI 2019), Hawaii, USA.

[57] Thong Hoang, Julia Lawall, Richard Jayadi Oentaryo, Yuan Tian, David Lo.
PatchNet: A Tool for Deep Patch Classification, in Proceedings of the 41st
International Conference on Software Engineering (ICSE 2019), Montreal,
Canada.

[58] Thong Hoang, Richard Jayadi Oentaryo, Tien-Duy B. Le, David Lo. Network-
Clustered Multi-Modal Bug Localization. IEEE Transactions on Software
Engineering 45(10): 1002-1023 (2019).

[59] Hong Jin Kang, Ferdian Thung, Julia Lawall, Gilles Muller, Lingxiao Jiang, David
Lo: Semantic Patches for Java Program Transformation. 33rd European
Conference on Object-Oriented Programming (ECOOP 2019), London, UK.

[60] Lingfeng Bao, Zhenchang Xing, Xin Xia, David Lo, Minghui Wu, Xiaohu Yang:
psc2code: Denoising Code Extraction from Programming Screencasts. ACM
Transactions Software Engineering Methodology 29(3): 21:1-21:38 (2020)

[61] Yuanrui Fan, Xin Xia, David Lo, Ahmed E. Hassan: Chaff from the Wheat:
Characterizing and Determining Valid Bug Reports. IEEE Transactions on
Software Engineering 46(5): 495-525 (2020)

[62] Xiao Liang Yu, Omar I. Al-Bataineh, David Lo, Abhik Roychoudhury: Smart
Contract Repair. ACM Transactions Software Engineering Methodology 29(4):
27:1-27:32 (2020)

[63] Weiqin Zou, David Lo, Zhenyu Chen, Xin Xia, Yang Feng, Baowen Xu: How
Practitioners Perceive Automated Bug Report Management Techniques. IEEE
Transactions on Software Engineering 46(8): 836-862 (2020)

[64] Thong Hoang, Hong Jin Kang, David Lo, Julia Lawall: CC2Vec: Distributed
Representations of Code Changes. Proceedings of the 42nd International
Conference on Software Engineering (ICSE 2020), Seoul, South Korea.

[65] Hong Jin Kang, David Lo: Adversarial Specification Mining. ACM Transactions on
Software Engineering Methodology 30(2): 16:1-16:40 (2021)

[66] Xuan Huo, Ferdian Thung, Ming Li, David Lo, Shu-Ting Shi: Deep Transfer Bug
Localization. IEEE Transactions on Software Engineering 47(7): 1368-1380
(2021)

[67] Stefanus A. Haryono, Ferdian Thung, David Lo, Julia Lawall, Lingxiao Jiang:
Characterization and Automatic Updates of Deprecated Machine-Learning API
Usages, in Proceedings of the 37nd IEEE International Conference on Software
Maintenance and Evolution (ICSME 2021), Luxembourg.

[68] Hong Jin Kang, David Lo: Active Learning of Discriminative Subgraph Patterns
for API Misuse Detection. IEEE Transactions on Software Engineering 48(8):
2761-2783 (2022)

[69] Darryl Jarman, Jeffrey Berry, Riley Smith, Ferdian Thung, David Lo: Legion:
Massively Composing Rankers for Improved Bug Localization at Adobe. IEEE
Transactions on Software Engineering 48(8): 3010-3024 (2022)

[70] Bowen Xu, Thong Hoang, Abhishek Sharma, Chengran Yang, Xin Xia, David Lo:
Post2Vec: Learning Distributed Representations of Stack Overflow Posts. IEEE
Transactions on Software Engineering 48(9): 3423-3441 (2022)

[71] Ting Zhang, DongGyun Han, Venkatesh Vinayakarao, Ivana Clairine Irsan,
Bowen Xu, Ferdian Thung, David Lo, Lingxiao Jiang: Duplicate Bug Report

 10

SMU Classification: Restricted

Detection: How Far Are We? ACM Transactions on Software Engineering
Methodologies 32(4): 97:1-97:32 (2023)

[72] Truong Giang Nguyen, Thanh Le-Cong, Hong Jin Kang, Ratnadira Widyasari,
Chengran Yang, Zhipeng Zhao, Bowen Xu, Jiayuan Zhou, Xin Xia, Ahmed E.
Hassan, Xuan-Bach Dinh Le, David Lo: Multi-Granularity Detector for
Vulnerability Fixes. IEEE Transactions on Software Engineering 49(8): 4035-
4057 (2023)

[73] Yunbo Lyu, Thanh Le-Cong, Hong Jin Kang, Ratnadira Widyasari, Zhipeng Zhao,
Xuan-Bach Dinh Le, Ming Li, David Lo: CHRONOS: Time-Aware Zero-Shot
Identification of Libraries from Vulnerability Reports. Proceedings of the 45th
International Conference on Software Engineering (ICSE 2023), Melbourne,
Australia.

[74] Xin Zhou, Kisub Kim, Bowen Xu, DongGyun Han, David Lo: Out of Sight, Out of
Mind: Better Automatic Vulnerability Repair by Broadening Input Ranges and
Sources. Proceedings of the 46th International Conference on Software
Engineering (ICSE 2024), Lisbon, Portugal.

[75] Xin Zhou, Ting Zhang, David Lo: Large Language Model for Vulnerability
Detection: Emerging Results and Future Directions. Proceedings of the 46th
International Conference on Software Engineering (ICSE 2024), Lisbon, Portugal.

	Background
	Research Areas
	Selected Publications and Research Outputs

