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1. Background

Humans are avid consumers of visual content, engaging daily with videos, digital games, and shared
photos on social media. However, there is a clear asymmetry—while nearly everyone can consume
visual data, only a select few possess the talent to express themselves effectively through visual medi-
ums. For the rest, attempts at creating or manipulating realistic visual content often fall short, deviating
from the natural manifold of images. My research seeks to bridge this gap by exploring human-centric
visual properties and interpreting generative models to create and manipulate images while preserving
visual realism. Specifically, my work focuses on three key areas:

(1) Developing new methods for machine understanding of multimedia content, structure, seman-
tics, and associated values.

(2) Designing generative models that enable easier creation of visual content and synthetic train-
ing data, producing photorealistic outputs (e.g., images, videos, 3D data, multimodal data) for
downstream applications.

In the following sections, | outline my contributions to these research areas and conclude with future
research directions.

2. Content Understanding

Creating a visual world first requires a deep understanding of it. My group develops algorithms to
interpret scenes in images and videos, which is fundamental for building socially aware agents, semantic
image and video retrieval, captioning, and question-answering systems. Our work spans three major
areas: (1) exploring human visual saliency, (2) understanding objects and regions in both image and
video domains, and (3) learning from imperfect data.

2.1. Visual Saliency. My research investigates how humans perceive important objects or areas within
scenes, simulating visual saliency. My early work introduced an alternative flash/no-flash stimulus that
better represented human visual attention [8]. | then contributed to one of the first methods leveraging
deep convolutional features for effective saliency detection [10]. To meet the demands of practical
applications, | developed a highly efficient saliency detection method capable of running at 30 FPS
on a CPU [32]. Recognizing that humans perceive depth and temporal information, my group explored
saliency across modalities such as RGBD data [27, 26] and video saliency [29, 34]. We applied our video
saliency methods to intelligent bullet chatting in partnership with Tencent and Huya [29], and explored
various other applications of saliency, including top-down saliency [11], salient object subitizing [7], and
saliency in visual question answering [6].

2.2. Object and Scene Analysis. Locating and segmenting objects and regions is a central theme in
computer vision. My journey in this field began with the design of an object tracker [12], later enhanced
with a gating mechanism [22]. | also developed the first orientation-aware, class-agnostic object detec-
tor (object proposal) [9], which was extended to stereo and temporal domains [13, 14]. My research
includes the development of application-specific algorithms for high-precision segmentation in various
contexts, such as ultra-high-resolution images [18], bird-view projection [47], glass surfaces [25], and
curvilinear structures [35]. | also contributed to temporal segmentation, proposing an efficient O(n) su-
pervoxel method that outperforms existing methods by 11x [33], and integrated spatial and temporal
information for video object segmentation [30].



2.3. Learning from Imperfect Data. Humans excel at learning and
adapting from limited or imperfect data, a capacity that remains a chal-
lenge for machine learning. | have addressed this by studying how to
improve vision algorithms across domains [24, 28], from zero or few-
shot samples [2, 42], and through self-supervised learning [37, 36].
My work includes network distillation methods for extracting knowl-
edge from cross-domain models [28], few-shot learning for video ob-
ject segmentation [2], and self-supervised representation learning from
spatio-temporal statistics [37, 36]. Recent efforts focus on few-shot
learning for complex scene object counting [52] and addressing do-
main gaps [44]. Our work also extends to conditional diffusion learning
under limited supervision [49].

3. Content Creation

Advances in machine modeling of the visual world offer exciting op-
portunities for creating, enhancing, and interacting with visual media.
My research has made significant contributions to image synthesis and
editing by integrating learning, vision, and graphics. Specifically, | have developed learning-based al-
gorithms for (1) generating data from limited observations, (2) manipulating images to achieve artistic
transformations, and (3) recovering corrupted or missing visual information.

Few-Shot Learning [2, 36, 49]

3.1. Visual Synthesis. To address the data-hungry demands of deep
learning, my group developed various synthesis methods for generat-
ing plausible data. For instance, | explored image reflection simulation
beyond previous linear constraints [38], and developed algorithms to
synthesize multi-view faces [43, 40]. In the area of crowd analysis, we :

created the first interactive crowd video synthesis method, CrowdGAN, W o fesults

which generates crowd behaviors with minimal user input [1]. Addition- |nteractive Crowd Synthesis [1]
ally, | pioneered an adversarial learning method that discovers multi-
class attributes beyond binary ones, applied to both face and cartoon
attributes [46]. Recently, we introduced a diffusion framework for syn-
thesizing wide-angle 3D photographs [16].

3.2. Visual Manipulation. Transforming visual content into artistic
styles has a wide range of applications in social media and entertain-
ment. | developed the first deep learning-based pixelization method for
transferring clipart into pixel art [5] and a cartoonization method that
learns from line tracing data [19]. To reduce the time spent on makeup
transfer in live streaming, my group created a robust, spatially-invariant
makeup transfer algorithm [3]. We also collaborated with Tencent to
design a video snapshot method that restores a short video from a sin-
gle image [53], reducing storage costs for video previews. My work
on GAN inversion [41] and extreme upscaling methods [48] highlights
the broader applications of pre-trained GANs for high-resolution face
synthesis and other use cases. Recently, we developed interactive
tools for point-based image editing [20] and synchronized 3D dance
animations with music beats [15].

3.3. Visual Restoration. Restoring images from corrupted or missing Universal Restoration [4]
information is a longstanding challenge in computer vision. My work

addresses this through the design of learning structures and image

priors [17, 31], as well as methods for vehicle recovery and downscaling [21, 45]. Recent efforts focus
on integrating multiple types of image degradation into a single restoration framework [4] and restoring
3D content from 2D formats for efficient storage and processing [23].



4. Interpretable Generative Models

Deep neural network models are often criticized for being "black
boxes" due to their millions of unexplained parameters, which hinder
interpretability. This lack of transparency is particularly pronounced
in generative models, where training demands massive datasets and
substantial computational resources, limiting their broader applicabil-
ity. My research addresses this gap by interpreting the latent seman-
tics of generative models, enabling the reuse of pre-trained large-scale
models for diverse applications. Specifically, | focus on three core di-
rections: 1) discovering interpretable latent directions, 2) inverting real . _ .
images into latent codes, and 3) reusing and extending generative pri- Editing with Interpretable Di-
ors for novel tasks. rections [46]

4.1. Interpretable Generative Directions. Despite being trained to
generate images from noise, the latent spaces of well-trained genera- H A -
tive models exhibit semantically structured organization. My research < \
aims to uncover these meaningful latent directions within pre-trained BHBH-H
models. Unlike earlier approaches limited to binary attributes derived
from paired data, | developed an adversarial learning method capable Video Inversion [41]
of discovering a broader spectrum of attributes, including style varia- ,
tions [46]. Building on this, | extended the exploration to interpretable
subspaces, enabling the creation of 3D-aware and animatable art-
forms [50]. These discovered directions have proven effective not only
in manipulating face attributes but also in enhancing the expressive-
ness of cartoon-style attributes.

Extreme Rescaling with gener-
4.2. Generative Model Inversion. To unlock the powerful editing ca- ative priors [51]
pabilities of generative models for real images, it is essential to invert a
real image into a corresponding latent code. However, achieving faith-
ful reconstructions while preserving editability poses significant challenges. Observing that the conti-
nuity of consecutive frames in videos can guide better constraints, | introduced the first video-based
inversion method, which ensures both reconstruction fidelity and editability in GANs [41].

In another line of work, | addressed the generative inversion problem as an extreme super-resolution
task, mapping low-resolution inputs to high-resolution latent codes. By leveraging StyleGAN’s ability to
synthesize high-resolution random faces, | developed a progressive upscaling method that achieves up
to 64x resolution enhancement [48]. This method optimizes the latent code to produce high-resolution
outputs that closely match the originals, demonstrating the potential of generative inversion for real-
world applications.

4.3. Generative Priors. Beyond editing pre-trained generative models, their latent spaces hold un-
tapped potential for a variety of applications. To push the boundaries of reconstruction, | explored
generative priors in an invertible rescaling framework, achieving superior reconstruction fidelity [51].
Additionally, | disentangled these priors into identity and style representations, significantly advancing
applications in anime and cartoon generation [39]. These findings not only improve the flexibility and
utility of generative models but also provide insights into their encoding structures, paving the way for
novel applications leveraging generative priors.

5. Ongoing and Future Directions

In summary, my research goal is to develop algorithms that can both understand and recreate the
visual world. To date, | have addressed key challenges by: (1) exploiting internal data structures and
latent associations, (2) leveraging unlabeled or imperfect visual data, and (3) generating data for task-
specific augmentation. Looking ahead, | am excited to explore the following research questions:

(1) How can we synthesize the visual world using multiple modalities? Humans, especially
babies and toddlers, learn to perceive the world not by memorizing millions of labeled images
but through interaction with their environment, engaging multiple sensory modalities—vision,
sound, touch, smell, and language. While my research in imperfect supervision (such as few-
shot, zero-shot, and self-supervised learning) has primarily focused on image data, | aim to
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extend this by developing algorithms that leverage rich, unlabeled multimodal signals. The goal
is to create robust generative models capable of synthesizing the visual world by integrating
diverse sensory data.

(2) How can we recreate the visual world with artistic styles? My long-term vision is to enable
the manipulation of visual data in various artistic styles. However, current methods lack precise,
robust stylistic representations, limiting their practical use. | plan to address these issues by sim-
ulating the creative processes of professional artists and embedding professional experiences
into the workflow. This approach will bridge the gap between theoretical models and real-world
artistic practices, enabling the seamless integration of style transfer and artistic manipulation
into industrial workflows.

(3) How can we embed generative models in robots for open-environment tasks? A key area
of interest for me is the intersection of generative models and robotics. Specifically, | aim to
design a drawing robot capable of creating visual art on any surface in open environments. This
robot would integrate generative models with real-time sensory input, allowing it to adapt its
artistic output to different surfaces and contexts. Such a system would require robust algorithms
for real-world visual recognition, spatial understanding, and surface adaptability, paving the way
for practical applications in interactive art, education, and industrial design.

Building on my prior contributions, | am excited to continue exploring these research directions in
collaboration with my students, colleagues, and partners. In addition to addressing the core questions
outlined above, | look forward to cross-disciplinary collaborations that can lead to innovative and practi-
cal solutions to pressing research challenges.
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