
RESEARCH STATEMENT
December 18, 2024

School of Computing and Information Systems, Singapore Management University
Tel: (65) 6826-4861; Email: xfxie@smu.edu.sg

1 Summary

Today, software is ubiquitous, powering everything from mobile devices and web applications to advanced
computer systems. The rise of intelligent systems such as healthcare, self-driving cars, and robotics has
made us increasingly reliant on the reliable and secure functioning of software. As these systems continue to
grow in size and complexity, ensuring their correctness and security has become a significant challenge. This
challenge is further amplified by the evolving nature of software. Traditional code-based software is now
complemented by AI-driven systems, such as large language models, which bring unprecedented capabilities
but also introduce new dimensions of complexity and unpredictability. Given the increasing complexity
and heterogeneity of modern software systems, the fundamental methodology for quality assurance and
trustworthiness of software systems is necessary.

Motivated by these challenges, my research aims to develop automated techniques and practical tools to
enhance the quality, reliability, and security of modern software systems, encompassing both traditional and
AI-driven software. To date, I have established foundational methods for software analysis and testing, which
have been successfully applied across diverse software systems, including open-source projects, autonomous
driving platforms, game software, web applications, and multi-agent systems.

Research Overview Software systems are often vulnerable to manipulation by malicious users due to
inherent quality and security issues, which can lead to severe consequences, particularly in environments
where safety and security are critical. To address these challenges, I am dedicated to building trustworthy
and secure systems. My research philosophy is to identify and tackle problems that are both fundamental
and practical, ensuring that my research work has significant impact. Figure 1 provides an overview of my
research roadmap, highlighting my contributions to quality assurance of diverse software systems.

For traditional software, my primary focus is on the fundamental research of program correctness:

• Fundamental Program Analysis [47, 42, 44]
• Program Termination Analysis [43, 53, 33].
• General-Purpose Software Testing [35, 36, 22, 1]
• Domain-Specific Software Testing [58, 40, 49, 24, 39, 50, 14, 27, 57, 51, 55, 56, 9, 32, 12, 54]
• Data-Driven Methods for Program Analysis [20, 25, 11, 28, 29, 37, 10]

For intelligent software, my research targets quality assurance across the entire machine learning lifecycle:

• Data Analysis and Selection [52, 18, 16, 17, 13, 19]
• Fundamental Abstraction and Model-based Analysis for Blackbox Deep Neural Networks [6, 5, 7, 26]
• General-Purpose Model Testing [48, 6, 59, 38, 46]
• Domain-Specific Intelligent System Testing [8, 3, 23, 30, 2, 15, 41]
• Model Repair [45, 34, 21]

1



SMU Classification: Restricted

Research 1:
QA of

Traditional
Software

Research 2:
QA of

Intelligent
Software

SE
for
LLM

Robustness

Fairness

Backdoor

Explanation

Code
Models

Federated 
Learning

Multi-Agent
System

Autonomous 
Driving

DRL
Application

Practical Program
Termination Analysis Cloud

Security

Game
Software

OSS
Software

Malware
Detection

Web
Security

DL Libraries

Large
Language

M
odels

LLM
for
SE

Improving LLM
Reasoning on Code

LLM-based
Vulnerability
Detection

AI Governance

Data
Collection

Model Training
& Evaluation

Model
Deployment

Model Update&
Repair

Fundamental Program Analysis Coverage-guided
Testing/Fuzzing

Data-Driven DL
Methods

Data Analysis and Selection Model Abstraction Model Testing &
Repair

Research 3: Future Work

Domain-Specific Application

Domain-Specific Evaluation

ProgramCorrectness

= +Program Termination Functional Correctness Problem1:
Software Quality

Problem2:
Trustworthy AI

Figure 1: Overview of My Research

In what follows, I list some of my most representative lines of works.

2 Quality Assurance of Traditional Software

Program correctness is a critical factor that directly influences the quality, reliability, and security of software
systems. In theoretical computer science, establishing a program’s total correctness requires proving both
its functional correctness and its termination1. To address these challenges, I have developed theoretical
methodologies in the areas of static program analysis, software testing, and AI-driven techniques.

2.1 Theoretical Loop Analysis and Practical Termination Analysis

As part of my earlier research, I focused on foundational loop analysis, which is one of the most challenging
problems in program analysis. My primary contribution has been in static loop summarization, which
aims to compute the relationship between loop inputs and outputs without executing the loops. Given the
undecidability of this problem, I first conducted comprehensive study [42] to systematically assess the
complexity of various loop types. Then I developed a series of specialized summarization techniques tailored
for different types of loops, including: 1) summarization for string traversal loops [47] and 2) summarization
for inductive integer loops [42] and 3) extensions to non-inductive integer loops and nested loops [44].
These techniques have been instrumental in enhancing the performance of symbolic execution, vulnerability
detection, and program verification. This fundamental research was recognized with the ACM SIGSOFT
Distinguished Paper Award (FSE 2016) for the integer loop summarization work [42].

1https://en.wikipedia.org/wiki/Correctness_(computer_science)

2

https://en.wikipedia.org/wiki/Correctness_(computer_science)


Termination analysis, a crucial aspect of program correctness, is a classical and challenging problem (i.e.,
the halting problem). Despite extensive research over the years, existing methods have primarily focused
on theoretical aspects, often lacking practical applicability. Consequently, these techniques are typically
effective only on simplified toy examples and struggle to handle real-world programs. My research addresses
this gap by developing practical approaches for termination analysis. I began by developing a lightweight
static loop termination analysis method [43], which significantly improves the performance of existing
tools by over 20 times. To move one step further, my most recent work further tackles the complexities of
real-world software. We conducted an in-depth study to characterize real-world non-termination bugs [33],
gaining insights into the root causes of infinite loops and recursions, as well as identifying the limitations
of state-of-the-art tools. Based on these insights, we developed the first practical non-termination detection
method [53] capable of identifying infinite loops and recursion issues in real-world applications. The key
innovation is the development of two novel non-termination oracles, which are integrated into dynamic
fuzzing, allowing for the effective detection of non-termination bugs in real-world software systems. This
work has been recognized for its practical impact, wining the ACM SIGSOFT Distinguished Paper Award
(ASE 2023) and successfully identifying 8 previously unknown non-termination bugs in OSS projects.

2.2 Software Testing for Bug Detection

To ensure functional correctness, I have focused on developing testing methods for detecting bugs that violate
specifications, including both general-purpose fuzz testing and domain-specific testing.

General-Purpose Fuzz Testing. In my earlier works, I developed automated fuzzing techniques [35, 1,
22, 36] for bug detection and analysis. My primary focus has been on enhancing the testing optimization
through effective guidance [1, 35] and seed prioritization [22]. A representative project is the development of
a technique [35] for detecting use-after-free (UAF) vulnerabilities. In this approach, we modeled UAF as
an automaton, which is then used to guide test generation, effectively covering the abnormal states within
the automaton. Beyond detecting vulnerabilities, I also developed a root cause analysis technique [36] to
facilitate more efficient debugging and root cause localization. These efforts have led to the identification of
over 50 critical security vulnerabilities in open-source projects. For instance, the PHP project recognized my
contributions with a USD 1,500 bug bounty award.

Domain-Specific Software Testing. Due to the diverse nature of software applications, such as mobile
apps, web applications and cloud platforms, general-purpose testing methods often fall short in addressing
domain-specific challenges. My recent work has focused on tackling these challenges and developing
specialized testing algorithms to ensure quality and security in various domains. Key contributions include:

• Game Software. Ensuring the quality of game software is crucial, as bugs can significantly impact user
experience (with over 3.3 billion players in 2023), result in financial losses, and even pose security risks.
However, existing game software testing largely relies on manual efforts and simple scripts, which are both
costly and inefficient. To address this, we developed the first scalable and effective technique for testing
large-scale game software [58]. Our method combines evolutionary algorithms and deep reinforcement
learning to generate diverse and intelligent policies for playing games, thereby increasing test coverage.
Additionally, we addressed the challenge of game regression testing, where frequent software updates
(e.g., up to three versions per day in NetEase) significantly increase testing requirements. We proposed
a differential testing technique [40] and regression test selection method [50] to identify regression bugs.
Specifically, GameRTS [50] is the first work on game regression test selection, modeling the game as a
transition state graph to select regression tests by identifying changed states and actions. We also explored
methods for testing mobile game software [49, 39] by detecting widget-related issues. To further advance

3



game testing research, we released the first comprehensive game bug dataset [24] derived from real-world
games. The method [58] received the ACM SIGSOFT Distinguished Paper Award (ASE 2019) for its
pioneering approach to testing real-world games.

• Cloud Security. As many services are now deployed in the cloud, ensuring their quality and security is
critical. To address this, I have contributed methods from various perspectives, including bug detection in
cloud infrastructure and network security. We first proposed a fuzzing method [31] to identify vulnerabilities
in SSL/TLS implementations by a syntax-aware certificate mutations. We systematically investigated bugs
in container runtime systems [51], providing valuable insights for developing new detection methods. To
detect cloud-based attacks not related to software vulnerabilities, we further developed intrusion detection
systems [56, 55] and malware detection methods [9], which are designed to identify attacks stemming
from malicious behaviors. Our methods have successfully identified over 16 real-world bugs in SSL/TLS
implementations and container systems, contributing to the security and stability of cloud services.

• Web Security. Web applications are among the most widely used software types. I have developed several
testing methods to enhance web security. We proposed an effective method [57] that combines automata-
guided exploitation with curiosity-driven exploration to effectively test web applications. To address the
oracle problem in detecting logic bugs, we developed a method [27] that leverages large language models
(LLMs) to infer invariants within the context of web applications, allowing the detection of complex logic
errors. We also introduced a fuzzing method [14] for identifying vulnerabilities in JavaScript engines, a
critical component in web browsers. By designing reflection-based mutation, it generates high-quality test
cases for testing. These tools have resulted in the identification of over 12 previously unknown bugs in web
applications and 51 vulnerabilities in popular JavaScript engines.

• Deep Learning Libraries. Deep learning libraries, such as TensorFlow and PyTorch, are fundamental
to the development of AI applications. To ensure their quality and security, I have conducted extensive
research into bugs present in these libraries. For example, we investigated bugs in TensorFlow.js [32] and
developed detection methods [12] that have successfully identified over 100 bugs across TensorFlow and
PyTorch. In our most recent work, we have discovered very novel code injection attacks [60] through
abusing TensorFlow APIs, posing significant security risks to large language models.

2.3 AI-based Methods for Software Analysis

While traditional static analysis and dynamic testing methods have proven effective, they still face significant
challenges when applied to large-scale software systems. With the advent of AI, data-driven approaches
are increasingly being used in software engineering tasks. My contributions in this area include AI-based
methods such as code search [29], code summarization [28], code review [10], type inference [25], and
code completion [11]. One representative work addresses the cross-lingual problem by proposing a transfer
learning-based method that transfers knowledge from one programming language to another. This innovative
approach won the ACM SIGSOFT Distinguished Paper Award (ISSTA 2022). Another key contribution is
the development of a novel retrieval-augmented generation framework for code completion [11]. This work
tackles the critical problem of determining what information to retrieve and how to augment model outputs
based on retrieved data, derived from a theoretical analysis of the fine-tuning process. Our method achieved
a over 2× increase in Exact Match performance compared to the state-of-the-art methods.

3 Quality Assurance of Intelligent Software

Machine learning (ML) has been widely applied in many applications. However, ML models (e.g., DNNs)
remain vulnerable to various attacks. My research focuses on the quality assurance of ML software throughout

4



the entire lifecycle, including data collection, model training, deployment, and updates.

3.1 Data Analysis and Selection

Data collection and labeling are crucial steps in the machine learning pipeline, as the quality of the data
significantly impacts model performance. However, most real-world data is unlabeled, and manual labeling
is both time-consuming and costly. My research focuses on selecting a minimal subset of data for labeling,
optimizing it for tasks such as accuracy estimation [13, 19], data distribution analysis [4], robustness evalua-
tion [18], and robustness enhancement [18, 17]. One of my representative works proposes an unsupervised
method to estimate the accuracy of an unlabeled dataset based solely on the original test data. This unsuper-
vised method utilizes the relationship between the distance from the data to the decision boundary and the
model’s capability for these data to perform accuracy estimation on new data. Additionally, we analyzed the
characteristics of benign and adversarial samples based on the uncertainty. A method has been developed to
generate robust adversarial examples [52] that are difficult to detect.

3.2 Model-based Analysis for Deep Neural Networks

Compared to traditional software, the primary challenge in analyzing DNNs is their black-box nature. To
address this, I developed fundamental state abstraction and model-based analysis methods that aim to
extract an abstract model from black-box DNN. This enables us to improve further analysis such as testing,
explanation, attack, and repair. Specifically, we propose the methods [6, 45, 7, 5] that model a Recurrent
Neural Network (RNN) as an abstract state transition system, effectively characterizing its internal behaviors.
Using this abstract model, we have conducted further analysis, including: Effective techniques to test and
defense defects in RNNs [6]; A method for repairing RNNs to improve performance and reliability [45]; A
framework for analyzing and enhancing the robustness of RNNs [5]; Techniques to detect backdoor attacks
in DNNs [7]. Furthermore, we extend model-based analysis to enhance deep reinforcement learning [26] by
calculating more accurate rewards based on abstract state measurements.

3.3 Testing and Repair of Intelligent Systems

General-Purpose Model Testing To address the unique challenges of testing deep learning models, I
have contributed to the development of novel testing methods specifically designed for DNNs. For the
new software, I designed new testing coverage criteria [46, 6] that analyze the decision logic of neural
networks, including neuron activations and state transitions, to effectively measure test adequacy. In addition,
I developed several general-purpose testing methods [59, 48, 6, 38] to detect defects in DNNs. A notable
example is DeepHunter [48], the first general fuzzing framework for DNNs. Our recent work, DistXplore [38],
reconsiders existing issues in DNN testing and redefines testing objectives to focus on generating robust
defects and improving model robustness. We further proposed a distribution-guided approach to effectively
test and enhance model robustness. By comparing DistXplore to 14 state-of-the-art methods, we demonstrated
its effectiveness and set a new direction for future DNN testing research.

Domain-Specific Testing of Intelligent Software Given the diverse applications of DNNs, we have
developed specialized testing methods for various domains, such as autonomous driving systems (ADS) [3,
23], multi-agent systems (MAS) [30, 2], federated learning enhancement [15, 41]. For ADS testing, we
introduced the first diversity-driven testing method by designing an abstraction-based approach to measure
vehicle driving diversity and generate failure scenarios with high coverage. While existing methods primarily

5



focus on maximizing the number of failures, we emphasize the need to improve the diversity of failure cases
to ensure comprehensive testing. For MAS testing, we developed MASTest [30], a novel framework that
innovatively considers both individual agent behaviors and group dynamics to characterize MAS behavior
diversity, providing a more holistic evaluation of multi-agent systems. In addition, we have developed repair
methods to enhance model performance in terms of robustness and fairness [45, 21, 34].

4 Future Work

My future research will primarily focus on leveraging LLMs to advance program analysis and software testing.
LLMs have shown significant potential in various software engineering tasks, but their current limitations in
understanding code semantics need to be addressed. 1) Given the current limitations of LLMs in semantic
code understanding, I aim to enhance their reasoning capabilities, such as through fine-tuning and RAG.
This will involve incorporating more reasoning-relevant information during the training phase, enabling
LLMs to better comprehend and analyze complex code structures. 2) Building on these enhanced reasoning
capabilities, I aim to develop the next generation of LLM-driven vulnerability detection frameworks. This
approach will integrate LLMs with traditional program analysis, testing, and fuzzing techniques to boost the
detection of vulnerabilities. 3) On the other hand, as LLMs become increasingly integrated into software
systems, their ethical and security implications must be carefully managed. I will focus on AI governance,
addressing the gap between government regulations and existing evaluation methods. My goal is to bridge
this gap by creating comprehensive frameworks and tools that align AI development and deployment with
governance standards, ensuring safe, secure, and ethical AI applications.

6



References

[1] H. Chen, Y. Xue, Y. Li, B. Chen, X. Xie, X. Wu, and Y. Liu. Hawkeye: Towards a desired directed grey-box
fuzzer. In CCS, pages 2095–2108. ACM, 2018.

[2] J. Chen, Y. Wang, J. Wang, X. Xie, D. Wang, Q. Wang, and F. Xu. Demo2test: Transfer testing of agent
in competitive environment with failure demonstrations. ACM Transactions on Software Engineering and
Methodology, 2024.

[3] M. Cheng, Y. Zhou, and X. Xie. Behavexplor: Behavior diversity guided testing for autonomous driving systems.
In Proceedings of the 32nd ACM SIGSOFT International Symposium on Software Testing and Analysis, pages
488–500, 2023.

[4] B. David, X. Xie, L. Ma, L. Zhou, Y. Liu, C. Xu, and J. Zhao. Cats are not fish: Deep learning testing calls for
out-of-distribution awareness. In ASE, 2020.

[5] X. Du, Y. Li, X. Xie, L. Ma, Y. Liu, and J. Zhao. Marble: Model-based robustness analysis of stateful deep learning
systems. In Proceedings of the 35th IEEE/ACM International Conference on Automated Software Engineering,
pages 423–435, 2020.

[6] X. Du, X. Xie, Y. Li, L. Ma, Y. Liu, and J. Zhao. Deepstellar: model-based quantitative analysis of stateful deep
learning systems. In ESEC/FSE, pages 477–487. ACM, 2019.

[7] M. Fan, Z. Si, X. Xie, Y. Liu, and T. Liu. Text backdoor detection using an interpretable rnn abstract model. IEEE
Transactions on Information Forensics and Security, 16:4117–4132, 2021.

[8] M. Fan, W. Wei, X. Xie, Y. Liu, X. Guan, and T. Liu. Can we trust your explanations? sanity checks for interpreters
in android malware analysis. IEEE Transactions on Information Forensics and Security, 16:838–853, 2020.

[9] R. Feng, S. Chen, X. Xie, G. Meng, S.-W. Lin, and Y. Liu. A performance-sensitive malware detection system
using deep learning on mobile devices. IEEE Transactions on Information Forensics and Security, 16:1563–1578,
2020.

[10] Q. Guo, J. Cao, X. Xie, S. Liu, X. Li, B. Chen, and X. Peng. Exploring the potential of chatgpt in automated code
refinement: An empirical study. In Proceedings of the 46th IEEE/ACM International Conference on Software
Engineering, pages 1–13, 2024.

[11] Q. Guo, X. Li, X. Xie, S. Liu, Z. Tang, R. Feng, J. Wang, J. Ge, and L. Bu. Ft2ra: A fine-tuning-inspired approach
to retrieval-augmented code completion. In Proceedings of the 33rd ACM SIGSOFT International Symposium on
Software Testing and Analysis, pages 313–324, 2024.

[12] Q. Guo, X. Xie, Y. Li, X. Zhang, Y. Liu, X. Li, and C. Shen. Audee: Automated testing for deep learning
frameworks. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering,
pages 486–498, 2020.

[13] Y. Guo, Q. Hu, X. Xie, M. Cordy, M. Papadakis, and Y. Le Traon. Kape: k nn-based performance testing for deep
code search. ACM Transactions on Software Engineering and Methodology, 33(2):1–24, 2023.

[14] X. He, X. Xie, Y. Li, J. Sun, F. Li, W. Zou, Y. Liu, L. Yu, J. Zhou, and W. Shi. Sofi: Reflection-augmented fuzzing
for javascript engines. In Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications
Security, pages 2229–2242, 2021.

[15] M. Hu, Z. Yue, X. Xie, C. Chen, Y. Huang, X. Wei, X. Lian, Y. Liu, and M. Chen. Is aggregation the only choice?
federated learning via layer-wise model recombination. In Proceedings of the 30th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, pages 1096–1107, 2024.

[16] Q. Hu, Y. Guo, X. Xie, M. Cordy, L. Ma, M. Papadakis, and Y. Le Traon. Active code learning: Benchmarking
sample-efficient training of code models. IEEE Transactions on Software Engineering, 2024.

[17] Q. Hu, Y. Guo, X. Xie, M. Cordy, L. Ma, M. Papadakis, and Y. Le Traon. Test optimization in dnn testing: a
survey. ACM Transactions on Software Engineering and Methodology, 33(4):1–42, 2024.

7



[18] Q. Hu, Y. Guo, X. Xie, M. Cordy, M. Papadakis, and Y. Le Traon. Laf: Labeling-free model selection for automated
deep neural network reusing. ACM Transactions on Software Engineering and Methodology, 33(1):1–28, 2023.

[19] Q. Hu, Y. Guo, X. Xie, M. Cordy, M. Papadakis, L. Ma, and Y. Le Traon. Aries: Efficient testing of deep neural
networks via labeling-free accuracy estimation. In 2023 IEEE/ACM 45th International Conference on Software
Engineering (ICSE), pages 1776–1787. IEEE, 2023.

[20] S. Li, X. Xie, Y. Lin, Y. Li, R. Feng, X. Li, W. Ge, and J. S. Dong. Deep learning for coverage-guided fuzzing:
How far are we? IEEE Transactions on Dependable and Secure Computing, 2022.

[21] T. Li, X. Xie, J. Wang, Q. Guo, A. Liu, L. Ma, and Y. Liu. Faire: Repairing fairness of neural networks via neuron
condition synthesis. ACM Transactions on Software Engineering and Methodology, 33(1):1–24, 2023.

[22] Y. Li, Y. Xue, H. Chen, X. Wu, C. Zhang, X. Xie, H. Wang, and Y. Liu. Cerebro: context-aware adaptive fuzzing
for effective vulnerability detection. In ESEC/FSE, pages 533–544. ACM, 2019.

[23] Z. Li, X. Wu, D. Zhu, M. Cheng, S. Chen, F. Zhang, X. Xie, L. Ma, and J. Zhao. Generative model-based
testing on decision-making policies. In 2023 38th IEEE/ACM International Conference on Automated Software
Engineering (ASE), pages 243–254. IEEE, 2023.

[24] Z. Li, Y. Wu, L. Ma, X. Xie, Y. Chen, and C. Fan. Gbgallery: A benchmark and framework for game testing.
Empirical Software Engineering, 27(6), 2022.

[25] Z. Li, X. Xie, H. Li, Z. Xu, Y. Li, and Y. Liu. Retracted on march 14, 2023: Cross-lingual transfer learning for
statistical type inference. In Proceedings of the 31st ACM SIGSOFT International Symposium on Software Testing
and Analysis, ISSTA 2022, page 239–250, New York, NY, USA, 2022. Association for Computing Machinery.

[26] Z. LI, D. ZHU, Y. HU, X. XIE, L. MA, Y. ZHENG, Y. SONG, Y. CHEN, and J. ZHAO. Neural episodic control
with state abstraction. Proceedings of the 11th International Conference on Learning Representations, 2023.

[27] Y. Liao, M. Xu, Y. Lin, X. Teoh, X. Xie, R. Feng, F. Liauw, H. Zhang, and J. S. Dong. Detecting and explaining
anomalies caused by web tamper attacks via building consistency-based normality. In Proceedings of the 39th
IEEE/ACM International Conference on Automated Software Engineering, 2024.

[28] S. LIU, Y. CHEN, X. XIE, J. SIOW, and Y. LIU. Retrieval-augmented generation for code summarization via
hybrid gnn. Proceedings of the Ninth International Conference on Learning Representations, pages 1–16, 2021.

[29] S. Liu, X. Xie, J. Siow, L. Ma, G. Meng, and Y. Liu. Graphsearchnet: Enhancing gnns via capturing global
dependencies for semantic code search. IEEE Transactions on Software Engineering, 49(4):2839–2855, 2023.

[30] X. Ma, Y. Wang, J. Wang, X. Xie, B. Wu, S. Li, F. Xu, and Q. Wang. Enhancing multi-agent system testing with
diversity-guided exploration and adaptive critical state exploitation. In Proceedings of the 33rd ACM SIGSOFT
International Symposium on Software Testing and Analysis, pages 1491–1503, 2024.

[31] L. Quan, Q. Guo, H. Chen, X. Xie, X. Li, Y. Liu, and J. Hu. Sadt: syntax-aware differential testing of certificate
validation in ssl/tls implementations. In Proceedings of the 35th IEEE/ACM International Conference on
Automated Software Engineering, pages 524–535, 2020.

[32] L. Quan, Q. Guo, X. Xie, S. Chen, X. Li, and Y. Liu. Towards understanding the faults of javascript-based
deep learning systems. In Proceedings of the 37th IEEE/ACM International Conference on Automated Software
Engineering, pages 1–13, 2022.

[33] X. Shi, X. Xie, Y. Li, Y. Zhang, S. Chen, and X. Li. Large-scale analysis of non-termination bugs in real-world
oss projects. In Proceedings of the 30th ACM Joint European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, pages 256–268, 2022.

[34] C. X. Tian, H. Li, X. Xie, Y. Liu, and S. Wang. Neuron coverage-guided domain generalization. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 45(1):1302–1311, 2022.

[35] H. Wang, X. Xie, Y. Li, C. Wen, Y. Li, Y. Liu, S. Qin, H. Chen, and Y. Sui. Typestate-guided fuzzer for discovering
use-after-free vulnerabilities. In ICSE, accepted. ACM, 2020.

[36] H. Wang, X. Xie, S.-W. Lin, Y. Lin, Y. Li, S. Qin, Y. Liu, and T. Liu. Locating vulnerabilities in binaries via
memory layout recovering. In ESEC/FSE, pages 718–728, New York, NY, USA, 2019. ACM.

8



[37] J. Wang, S. Liu, X. Xie, S. Kai, K. Liu, and Y. Li. Ratchet: Retrieval augmentedtransformer for program repair.
In Proceedings of the 46th IEEE/ACM International Conference on Software Engineering, pages 1–13, 2024.

[38] L. Wang, X. Xie, X. Du, M. Tian, Q. Guo, Z. Yang, and C. Shen. Distxplore: Distribution-guided testing for
evaluating and enhancing deep learning systems. In Proceedings of the 31st ACM Joint European Software
Engineering Conference and Symposium on the Foundations of Software Engineering, pages 68–80, 2023.

[39] X. Wu, J. Ye, K. Chen, X. Xie, Y. Hu, R. Huang, L. Ma, and J. Zhao. Widget detection-based testing for industrial
mobile games. In 2023 IEEE/ACM 45th International Conference on Software Engineering: Software Engineering
in Practice (ICSE-SEIP), pages 173–184. IEEE, 2023.

[40] Y. Wu, Y. Chen, X. Xie, B. Yu, C. Fan, and L. Ma. Regression testing of massively multiplayer online role-playing
games. In 2020 IEEE international conference on software maintenance and evolution (ICSME), pages 692–696.
IEEE, 2020.

[41] Z. Xia, M. Hu, D. Yan, X. Xie, T. Li, A. Li, J. Zhou, and M. Chen. Cabafl: Asynchronous federated learning via
hierarchical cache and feature balance. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 2024.

[42] X. Xie, B. Chen, Y. Liu, W. Le, and X. Li. Proteus: computing disjunctive loop summary via path dependency
analysis. In FSE, pages 61–72. ACM, 2016.

[43] X. Xie, B. Chen, L. Zou, S.-W. Lin, Y. Liu, and X. Li. Loopster: Static loop termination analysis. In ESEC/FSE,
pages 84–94, New York, NY, USA, 2017. ACM.

[44] X. Xie, B. Chen, L. Zou, Y. Liu, W. Le, and X. Li. Automatic loop summarization via path dependency analysis.
IEEE Transactions on Software Engineering, 45(6):537–557, June 2019.

[45] X. Xie, W. Guo, L. Ma, W. Le, J. Wang, L. Zhou, Y. Liu, and X. Xing. Rnnrepair: Automatic rnn repair via
model-based analysis. In International Conference on Machine Learning, pages 11383–11392. PMLR, 2021.

[46] X. Xie, T. Li, J. Wang, L. Ma, Q. Guo, F. Juefei-Xu, and Y. Liu. Npc: N euron p ath c overage via characterizing
decision logic of deep neural networks. ACM Transactions on Software Engineering and Methodology (TOSEM),
31(3):1–27, 2022.

[47] X. Xie, Y. Liu, W. Le, X. Li, and H. Chen. S-looper: Automatic summarization for multipath string loops. In
ISSTA, pages 188–198. ACM, 2015.

[48] X. Xie, L. Ma, F. Juefei-Xu, M. Xue, H. Chen, Y. Liu, J. Zhao, B. Li, J. Yin, and S. See. Deephunter: a
coverage-guided fuzz testing framework for deep neural networks. In ISSTA, pages 146–157. ACM, 2019.

[49] J. Ye, K. Chen, X. Xie, L. Ma, R. Huang, Y. Chen, Y. Xue, and J. Zhao. An empirical study of gui widget detection
for industrial mobile games. In Proceedings of the 29th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering, pages 1427–1437, 2021.

[50] J. Yu, Y. Wu, X. Xie, W. Le, L. Ma, Y. Chen, J. Hu, and F. Zhang. Gamerts: A regression testing framework
for video games. In 2023 IEEE/ACM 45th International Conference on Software Engineering (ICSE), pages
1393–1404. IEEE, 2023.

[51] J. Yu, X. Xie, C. Zhang, S. Chen, Y. Li, and W. Shen. Bugs in pods: Understanding bugs in container runtime
systems. In Proceedings of the 33rd ACM SIGSOFT International Symposium on Software Testing and Analysis,
pages 1364–1376, 2024.

[52] X. Zhang, X. Xie, L. Ma, X. Du, Q. Hu, Y. Liu, J. Zhao, and M. Sun. Towards characterizing adversarial defects
of deep learning software from the lens of uncertainty. In ICSE, accepted. ACM, 2020.

[53] Y. Zhang, X. Xie, Y. Li, S. Chen, C. Zhang, and X. Li. Endwatch: A practical method for detecting non-termination
in real-world software. In 2023 38th IEEE/ACM International Conference on Automated Software Engineering
(ASE), pages 686–697. IEEE, 2023.

[54] Y. Zhang, X. Xie, Y. Li, Y. Lin, S. Chen, Y. Liu, and X. Li. Demystifying performance regressions in string
solvers. IEEE Transactions on Software Engineering, 49(3):947–961, 2022.

9



[55] Z. Zhao, Z. Li, X. Xie, J. Yu, F. Zhang, R. Zhang, B. Chen, X. Luo, M. Hu, and W. Ma. Towards fine-grained
unknown class detection against the open-set attack spectrum with variable legitimate traffic. IEEE/ACM
Transactions on Networking, 2024.

[56] Z. Zhao, Z. Li, J. Yu, F. Zhang, X. Xie, H. Xu, and B. Chen. Cmd: co-analyzed iot malware detection and
forensics via network and hardware domains. IEEE Transactions on Mobile Computing, 2023.

[57] Y. Zheng, Y. Liu, X. Xie, Y. Liu, L. Ma, J. Hao, and Y. Liu. Automatic web testing using curiosity-driven
reinforcement learning. In 2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE),
pages 423–435. IEEE, 2021.

[58] Y. Zheng, X. Xie, T. Su, L. Ma, J. Hao, Z. Meng, Y. Liu, R. Shen, Y. Chen, and C. Fan. Wuji: Automatic online
combat game testing using evolutionary deep reinforcement learning. In ASE. ACM, 2019.

[59] Y. Zhi, X. Xie, C. Shen, J. Sun, X. Zhang, and X. Guan. Seed selection for testing deep neural networks. ACM
Transactions on Software Engineering and Methodology, 33(1):1–33, 2023.

[60] R. Zhu, G. Chen, W. Shen, X. Xie, and R. Chang. My model is malware to you: Transforming ai models into
malware by abusing tensorflow apis. In Proceedings of the 46th IEEE Symposium on Security and Privacy, 2025.

10


	Summary
	Quality Assurance of Traditional Software
	Theoretical Loop Analysis and Practical Termination Analysis
	Software Testing for Bug Detection
	AI-based Methods for Software Analysis

	Quality Assurance of Intelligent Software
	Data Analysis and Selection
	Model-based Analysis for Deep Neural Networks
	Testing and Repair of Intelligent Systems

	Future Work

