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1 Summary

Today, software is ubiquitous, powering everything from mobile devices and web applications to advanced
computer systems. The rise of intelligent systems such as healthcare, self-driving cars, and robotics has
made us increasingly reliant on the reliable and secure functioning of software. As these systems continue to
grow in size and complexity, ensuring their correctness and security has become a significant challenge. This
challenge is further amplified by the evolving nature of software. Traditional code-based software is now
complemented by AI-driven systems, such as large language models, which bring unprecedented capabilities
but also introduce new dimensions of complexity and unpredictability. Given the increasing complexity
and heterogeneity of modern software systems, the fundamental methodology for quality assurance and
trustworthiness of software systems is necessary.

Motivated by these challenges, my research aims to develop automated techniques and practical tools to
enhance the quality, reliability, and security of modern software systems, encompassing both traditional and
AI-driven software. To date, I have established foundational methods for software analysis and testing, which
have been successfully applied across diverse software systems, including open-source projects, autonomous
driving platforms, game software, web applications, and multi-agent systems.

Research Overview Software systems are often vulnerable to manipulation by malicious users due to
inherent quality and security issues, which can lead to severe consequences, particularly in environments
where safety and security are critical. To address these challenges, I am dedicated to building trustworthy
and secure systems. My research philosophy is to identify and tackle problems that are both fundamental
and practical, ensuring that my research work has significant impact. Figure 1 provides an overview of my
research roadmap, highlighting my contributions to quality assurance of diverse software systems.

For traditional software, my primary focus is on the fundamental research of program correctness:

• Fundamental Program Analysis [47, 42, 44]
• Program Termination Analysis [43, 53, 33].
• General-Purpose Software Testing [35, 36, 22, 1]
• Domain-Specific Software Testing [58, 40, 49, 24, 39, 50, 14, 27, 57, 51, 55, 56, 9, 32, 12, 54]
• Data-Driven Methods for Program Analysis [20, 25, 11, 28, 29, 37, 10]

For intelligent software, my research targets quality assurance across the entire machine learning lifecycle:

• Data Analysis and Selection [52, 18, 16, 17, 13, 19]
• Fundamental Abstraction and Model-based Analysis for Blackbox Deep Neural Networks [6, 5, 7, 26]
• General-Purpose Model Testing [48, 6, 59, 38, 46]
• Domain-Specific Intelligent System Testing [8, 3, 23, 30, 2, 15, 41]
• Model Repair [45, 34, 21]
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Figure 1: Overview of My Research

In what follows, I list some of my most representative lines of works.

2 Quality Assurance of Traditional Software

Program correctness is a critical factor that directly influences the quality, reliability, and security of software
systems. In theoretical computer science, establishing a program’s total correctness requires proving both
its functional correctness and its termination1. To address these challenges, I have developed theoretical
methodologies in the areas of static program analysis, software testing, and AI-driven techniques.

2.1 Theoretical Loop Analysis and Practical Termination Analysis

As part of my earlier research, I focused on foundational loop analysis, which is one of the most challenging
problems in program analysis. My primary contribution has been in static loop summarization, which
aims to compute the relationship between loop inputs and outputs without executing the loops. Given the
undecidability of this problem, I first conducted comprehensive study [42] to systematically assess the
complexity of various loop types. Then I developed a series of specialized summarization techniques tailored
for different types of loops, including: 1) summarization for string traversal loops [47] and 2) summarization
for inductive integer loops [42] and 3) extensions to non-inductive integer loops and nested loops [44].
These techniques have been instrumental in enhancing the performance of symbolic execution, vulnerability
detection, and program verification. This fundamental research was recognized with the ACM SIGSOFT
Distinguished Paper Award (FSE 2016) for the integer loop summarization work [42].

1https://en.wikipedia.org/wiki/Correctness_(computer_science)
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Termination analysis, a crucial aspect of program correctness, is a classical and challenging problem (i.e.,
the halting problem). Despite extensive research over the years, existing methods have primarily focused
on theoretical aspects, often lacking practical applicability. Consequently, these techniques are typically
effective only on simplified toy examples and struggle to handle real-world programs. My research addresses
this gap by developing practical approaches for termination analysis. I began by developing a lightweight
static loop termination analysis method [43], which significantly improves the performance of existing
tools by over 20 times. To move one step further, my most recent work further tackles the complexities of
real-world software. We conducted an in-depth study to characterize real-world non-termination bugs [33],
gaining insights into the root causes of infinite loops and recursions, as well as identifying the limitations
of state-of-the-art tools. Based on these insights, we developed the first practical non-termination detection
method [53] capable of identifying infinite loops and recursion issues in real-world applications. The key
innovation is the development of two novel non-termination oracles, which are integrated into dynamic
fuzzing, allowing for the effective detection of non-termination bugs in real-world software systems. This
work has been recognized for its practical impact, wining the ACM SIGSOFT Distinguished Paper Award
(ASE 2023) and successfully identifying 8 previously unknown non-termination bugs in OSS projects.

2.2 Software Testing for Bug Detection

To ensure functional correctness, I have focused on developing testing methods for detecting bugs that violate
specifications, including both general-purpose fuzz testing and domain-specific testing.

General-Purpose Fuzz Testing. In my earlier works, I developed automated fuzzing techniques [35, 1,
22, 36] for bug detection and analysis. My primary focus has been on enhancing the testing optimization
through effective guidance [1, 35] and seed prioritization [22]. A representative project is the development of
a technique [35] for detecting use-after-free (UAF) vulnerabilities. In this approach, we modeled UAF as
an automaton, which is then used to guide test generation, effectively covering the abnormal states within
the automaton. Beyond detecting vulnerabilities, I also developed a root cause analysis technique [36] to
facilitate more efficient debugging and root cause localization. These efforts have led to the identification of
over 50 critical security vulnerabilities in open-source projects. For instance, the PHP project recognized my
contributions with a USD 1,500 bug bounty award.

Domain-Specific Software Testing. Due to the diverse nature of software applications, such as mobile
apps, web applications and cloud platforms, general-purpose testing methods often fall short in addressing
domain-specific challenges. My recent work has focused on tackling these challenges and developing
specialized testing algorithms to ensure quality and security in various domains. Key contributions include:

• Game Software. Ensuring the quality of game software is crucial, as bugs can significantly impact user
experience (with over 3.3 billion players in 2023), result in financial losses, and even pose security risks.
However, existing game software testing largely relies on manual efforts and simple scripts, which are both
costly and inefficient. To address this, we developed the first scalable and effective technique for testing
large-scale game software [58]. Our method combines evolutionary algorithms and deep reinforcement
learning to generate diverse and intelligent policies for playing games, thereby increasing test coverage.
Additionally, we addressed the challenge of game regression testing, where frequent software updates
(e.g., up to three versions per day in NetEase) significantly increase testing requirements. We proposed
a differential testing technique [40] and regression test selection method [50] to identify regression bugs.
Specifically, GameRTS [50] is the first work on game regression test selection, modeling the game as a
transition state graph to select regression tests by identifying changed states and actions. We also explored
methods for testing mobile game software [49, 39] by detecting widget-related issues. To further advance
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game testing research, we released the first comprehensive game bug dataset [24] derived from real-world
games. The method [58] received the ACM SIGSOFT Distinguished Paper Award (ASE 2019) for its
pioneering approach to testing real-world games.

• Cloud Security. As many services are now deployed in the cloud, ensuring their quality and security is
critical. To address this, I have contributed methods from various perspectives, including bug detection in
cloud infrastructure and network security. We first proposed a fuzzing method [31] to identify vulnerabilities
in SSL/TLS implementations by a syntax-aware certificate mutations. We systematically investigated bugs
in container runtime systems [51], providing valuable insights for developing new detection methods. To
detect cloud-based attacks not related to software vulnerabilities, we further developed intrusion detection
systems [56, 55] and malware detection methods [9], which are designed to identify attacks stemming
from malicious behaviors. Our methods have successfully identified over 16 real-world bugs in SSL/TLS
implementations and container systems, contributing to the security and stability of cloud services.

• Web Security. Web applications are among the most widely used software types. I have developed several
testing methods to enhance web security. We proposed an effective method [57] that combines automata-
guided exploitation with curiosity-driven exploration to effectively test web applications. To address the
oracle problem in detecting logic bugs, we developed a method [27] that leverages large language models
(LLMs) to infer invariants within the context of web applications, allowing the detection of complex logic
errors. We also introduced a fuzzing method [14] for identifying vulnerabilities in JavaScript engines, a
critical component in web browsers. By designing reflection-based mutation, it generates high-quality test
cases for testing. These tools have resulted in the identification of over 12 previously unknown bugs in web
applications and 51 vulnerabilities in popular JavaScript engines.

• Deep Learning Libraries. Deep learning libraries, such as TensorFlow and PyTorch, are fundamental
to the development of AI applications. To ensure their quality and security, I have conducted extensive
research into bugs present in these libraries. For example, we investigated bugs in TensorFlow.js [32] and
developed detection methods [12] that have successfully identified over 100 bugs across TensorFlow and
PyTorch. In our most recent work, we have discovered very novel code injection attacks [60] through
abusing TensorFlow APIs, posing significant security risks to large language models.

2.3 AI-based Methods for Software Analysis

While traditional static analysis and dynamic testing methods have proven effective, they still face significant
challenges when applied to large-scale software systems. With the advent of AI, data-driven approaches
are increasingly being used in software engineering tasks. My contributions in this area include AI-based
methods such as code search [29], code summarization [28], code review [10], type inference [25], and
code completion [11]. One representative work addresses the cross-lingual problem by proposing a transfer
learning-based method that transfers knowledge from one programming language to another. This innovative
approach won the ACM SIGSOFT Distinguished Paper Award (ISSTA 2022). Another key contribution is
the development of a novel retrieval-augmented generation framework for code completion [11]. This work
tackles the critical problem of determining what information to retrieve and how to augment model outputs
based on retrieved data, derived from a theoretical analysis of the fine-tuning process. Our method achieved
a over 2× increase in Exact Match performance compared to the state-of-the-art methods.

3 Quality Assurance of Intelligent Software

Machine learning (ML) has been widely applied in many applications. However, ML models (e.g., DNNs)
remain vulnerable to various attacks. My research focuses on the quality assurance of ML software throughout
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the entire lifecycle, including data collection, model training, deployment, and updates.

3.1 Data Analysis and Selection

Data collection and labeling are crucial steps in the machine learning pipeline, as the quality of the data
significantly impacts model performance. However, most real-world data is unlabeled, and manual labeling
is both time-consuming and costly. My research focuses on selecting a minimal subset of data for labeling,
optimizing it for tasks such as accuracy estimation [13, 19], data distribution analysis [4], robustness evalua-
tion [18], and robustness enhancement [18, 17]. One of my representative works proposes an unsupervised
method to estimate the accuracy of an unlabeled dataset based solely on the original test data. This unsuper-
vised method utilizes the relationship between the distance from the data to the decision boundary and the
model’s capability for these data to perform accuracy estimation on new data. Additionally, we analyzed the
characteristics of benign and adversarial samples based on the uncertainty. A method has been developed to
generate robust adversarial examples [52] that are difficult to detect.

3.2 Model-based Analysis for Deep Neural Networks

Compared to traditional software, the primary challenge in analyzing DNNs is their black-box nature. To
address this, I developed fundamental state abstraction and model-based analysis methods that aim to
extract an abstract model from black-box DNN. This enables us to improve further analysis such as testing,
explanation, attack, and repair. Specifically, we propose the methods [6, 45, 7, 5] that model a Recurrent
Neural Network (RNN) as an abstract state transition system, effectively characterizing its internal behaviors.
Using this abstract model, we have conducted further analysis, including: Effective techniques to test and
defense defects in RNNs [6]; A method for repairing RNNs to improve performance and reliability [45]; A
framework for analyzing and enhancing the robustness of RNNs [5]; Techniques to detect backdoor attacks
in DNNs [7]. Furthermore, we extend model-based analysis to enhance deep reinforcement learning [26] by
calculating more accurate rewards based on abstract state measurements.

3.3 Testing and Repair of Intelligent Systems

General-Purpose Model Testing To address the unique challenges of testing deep learning models, I
have contributed to the development of novel testing methods specifically designed for DNNs. For the
new software, I designed new testing coverage criteria [46, 6] that analyze the decision logic of neural
networks, including neuron activations and state transitions, to effectively measure test adequacy. In addition,
I developed several general-purpose testing methods [59, 48, 6, 38] to detect defects in DNNs. A notable
example is DeepHunter [48], the first general fuzzing framework for DNNs. Our recent work, DistXplore [38],
reconsiders existing issues in DNN testing and redefines testing objectives to focus on generating robust
defects and improving model robustness. We further proposed a distribution-guided approach to effectively
test and enhance model robustness. By comparing DistXplore to 14 state-of-the-art methods, we demonstrated
its effectiveness and set a new direction for future DNN testing research.

Domain-Specific Testing of Intelligent Software Given the diverse applications of DNNs, we have
developed specialized testing methods for various domains, such as autonomous driving systems (ADS) [3,
23], multi-agent systems (MAS) [30, 2], federated learning enhancement [15, 41]. For ADS testing, we
introduced the first diversity-driven testing method by designing an abstraction-based approach to measure
vehicle driving diversity and generate failure scenarios with high coverage. While existing methods primarily
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focus on maximizing the number of failures, we emphasize the need to improve the diversity of failure cases
to ensure comprehensive testing. For MAS testing, we developed MASTest [30], a novel framework that
innovatively considers both individual agent behaviors and group dynamics to characterize MAS behavior
diversity, providing a more holistic evaluation of multi-agent systems. In addition, we have developed repair
methods to enhance model performance in terms of robustness and fairness [45, 21, 34].

4 Future Work

My future research will primarily focus on leveraging LLMs to advance program analysis and software testing.
LLMs have shown significant potential in various software engineering tasks, but their current limitations in
understanding code semantics need to be addressed. 1) Given the current limitations of LLMs in semantic
code understanding, I aim to enhance their reasoning capabilities, such as through fine-tuning and RAG.
This will involve incorporating more reasoning-relevant information during the training phase, enabling
LLMs to better comprehend and analyze complex code structures. 2) Building on these enhanced reasoning
capabilities, I aim to develop the next generation of LLM-driven vulnerability detection frameworks. This
approach will integrate LLMs with traditional program analysis, testing, and fuzzing techniques to boost the
detection of vulnerabilities. 3) On the other hand, as LLMs become increasingly integrated into software
systems, their ethical and security implications must be carefully managed. I will focus on AI governance,
addressing the gap between government regulations and existing evaluation methods. My goal is to bridge
this gap by creating comprehensive frameworks and tools that align AI development and deployment with
governance standards, ensuring safe, secure, and ethical AI applications.
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