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Background 

Conversational AI agents are envisioned to provide social support or functional 
service to human users via natural language interactions. Conversational agent 
research typically centers around a system's response capabilities, such as 
understanding the context of dialogue and generating appropriate responses to user 
requests. The popularity of conversational agents has grown unprecedentedly with 
the advent of ChatGPT, which showcases exceptional proficiency in the capabilities 
of context understanding and response generation with large language models 
(LLMs). However, typical conversational systems are built to follow instructions, which 
means that the conversation is led by the user, and the system simply follows the 
user’s instructions or intents.  

My research endows the conversational agent with the capabilities of creating 
or controlling the conversation to achieve the conversational goals by taking 
initiative and anticipating impacts on themselves or human users, namely 
Proactive Conversational Agents. Proactive conversational agents can not only 
largely improve user engagement and service efficiency in the conversation, but also 
empower the system to handle more complicated interactive tasks that involve 
strategic and motivational interactions.  

Key aims of my work include tackling the challenges of building human-centered 
proactive conversational agents [1] from the following perspectives: 
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Research Areas  
 
1. Intelligence – Proactive Conversational and Interactive Systems 

Proactive features in dialogue systems [2] have the potential to enhance user 
engagement and service efficiency across a wide range of conversational contexts. 
Additionally, they enable these systems to effectively navigate intricate conversational 
tasks, which encompass strategic and motivational interactions. Recognizing the 
manifold advantages of proactivity, my research is consistently dedicated to the 
advancement of proactive dialogue systems across the advent of large language 
models (LLMs): 

1)  Proactive conversational systems in the pre-LLM era 

To improve the efficiency and effectiveness of conversational recommender systems 
(CRS), I proposed a novel reinforcement learning (RL) paradigm to reformulate the 
decision making of recommending items and asking preference-eliciting questions 
into a unified policy learning problem [3], which is adopted as the standard backbone 
for most of the following studies of RL-based CRS [4]. Apart from RL-based 
approaches, another main-stream line of approaches was corpus-based learning. I 
proposed one of the earliest approaches [5] to unify all the natural language 
understanding problems in CRS into the sequence-to-sequence problems to be 
solved by generative pre-trained language models. Moreover, this was also the early 
attempt for multi-task instruction-tuning. My follow-up study [6] also applies this 
framework into proactive conversational question answering in finance domain. 

2)  Proactive conversational systems in the era of LLMs 

With the advent of LLMs, the paradigm of building dialogue systems has been 
revolutionized. I conducted the first comprehensive evaluation [7] of LLM-based 
dialogue systems in handling various proactive dialogue systems, including 
clarification in information-seeking dialogues, target-guided dialogues, and non-
collaborative dialogues. I have studies different in-context learning approaches [7,8] 
for proactive dialogue problems. Furthermore, I introduced a new dialogue policy 
planning paradigm [9] to strategize LLMs for proactive dialogue problems with a 
tunable language model plug-in as a plug-and-play dialogue policy planner, which can 
be supervisedly fine-tuned over available human-annotated data as well as conduct 
reinforcement learning from goal-oriented AI feedback with dynamic interaction data 
collected by the LLM-based self-play simulation. This framework is further applied into 
various applications, such as target-guided conversational recommendation [31], 
asking clarification questions in conversational information seeking [25], and non-
collaborative dialogues [34]. Another promising solution is to leverage LLMs for data 
augmentation [26,33]. 

 

2. Adaptivity – User-centric Information Seeking 

User-centric information seeking involves designing and developing systems in a way 
that involves human needs and preferences into information-seeking systems, rather 
than solely focusing on functional capabilities.  
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The system should explore and identify the human user's needs, preferences, and 
values, and should be able to leverage the user information to enhance the future 
interactions. Interactive systems must efficiently understand about interaction context, 
including the history of the interaction, online and offline user information beyond the 
language. My previous works focused on incorporating various types of user 
information into E-Commerce question answering systems for better aligning with 
individual user preferences and needs in product-related questions, thereby 
improving the overall user experience in online shopping environments. This included 
integrating a range of user opinions [10], constructing models that capture detailed 
user preferences [11], and estimating user satisfaction [12]. Furthermore, I also 
investigated some practical issues in exploiting user persona for LLM-based 
personalized dialogues, including the robustness of prompting with different orders of 
persona [13] and the source planning capability of LLMs with multi-source knowledge 
[14]. In addition, I also developed dialogue systems that strategically provide 
emotional support [15], focusing on enhancing the mental well-being of human users. 

 

3. Civility – Trust and Reliability of Large Language Models 

As Large Language Models (LLMs) serve as foundation of the conversational agents, 
the trust and reliability of LLMs becomes utmost important. We need to identify and 
understand the potential causes and mechanisms of unintended behaviors in the 
LLM-powered conversational agents and develop techniques to reduce the likelihood 
of such behaviors occurring and the potential harm that may be caused by them. 
LLMs often struggle with different trust and reliability issues, including generating 
factually incorrect content [16,17,30] and producing toxic or disruptive content [18]. 
Specifically, I investigate the knowledge boundary of LLMs, such as mitigating 
unknown questions [36] and supplementing additional knowledge [35]. Furthermore, 
it is also crucial to ensure transparency in system decision-making and reasoning 
processes [19-21] for explainable AI.    

 

4. Future Works 

1) Embodied Language Agents. Embodied agent is an artificial intelligence system 
that is designed to interact with a specific environment, while embodied 
conversational agent can further interact with the human user via natural language. 
These agents may integrate various capabilities, such as spatial reasoning for 
navigating physical environment [22,23], multimodal understanding for more natural 
and intuitive interactions [24], tool using for accomplishing real-world planning [29,32]. 
Additionally, there are different types of environments, including physical and virtual 
environments. Embodied conversational agents are expected to be capable of 
interacting with various environments.  

2) Proactive Interaction beyond Human-Agent Interaction. Proactive interactions 
not only are beneficial to human-agent conversations, but also contribute to various 
human-human and agent-agent interaction applications. As for human-human 
interactions, proactive AI mentor systems can proactively educate or train human to 
learn social skills, rather than just passively addressing user questions. As for agent-
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agent interactions, proactive multi-agent systems can proactively interact with other 
agents to achieve communicative objectives, such as collaborative tasks or society 
simulation, rather than just passively following user instructions. 

3) Applications of Proactive Conversational Agents in Vertical Domains. My 
dialogue research has also developed novel applications in various vertical domains 
such as finance [6], mental health [9,15,26], education [9,28]. For example, the 
proactive conversational question answering system [6] can initiate clarification 
questions for clarifying the ambiguity or uncertainty in financial information seeking. 
The proactivity of emotional support dialogue systems [9,15,26] lies in planning a 
sequence of mixed-initiative emotional support strategies. 
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