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Background 
In recent years, there has been a growing interest in applying neural heuristics based 
on deep (reinforcement) learning to solve combinatorial optimization problems 
(COPs), a field commonly known as Learning to Optimize (L2Opt). This trend is 
inspired by the success of deep neural networks in other domains. The rationale 
behind L2Opt is threefold: (1) many COPs can be interpreted as the optimization of a 
sequence (of nodes or elements), which bears similarity to tasks in natural language 
processing (NLP); (2) certain classes of COP instances share structural similarities, 
differing only in their data, such as vehicle routing problems (VRPs) in logistics; and 
(3) neural heuristics based on deep learning models can discover underlying patterns 
in COP classes, often generating algorithms that outperform traditional hand-crafted 
heuristics. 
Like traditional heuristics, neural heuristics are typically categorized into two types: 
neural construction heuristics and neural improvement heuristics. For example, in 
solving VRPs, neural construction heuristics sequentially build a solution by adding 
nodes (customers) to the route until a complete solution is formed. In contrast, neural 
improvement heuristics begin with an initial complete solution and iteratively refine it 
by selecting nodes or operators to improve the solution's quality. 

Phase I Research: Specialized Neural Solvers  
Focusing on L2Opt, we have developed a range of specialized neural heuristic 
solvers, utilizing deep learning models, to address various COPs, including the 
vehicle routing problem (VRP), job shop scheduling problem (JSSP), bin packing 
problem (BPP), integer programming (IP), constraint satisfaction problem (CSP), and 
multi-objective COP (MOCOP). Notably, many of these contributions are considered 
pioneering within their respective domains. 

 
 
                     Figure 1. Phase I research focus – Specialized neural solvers for different COPs. 
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A. Neural Solvers for Vehicle Routing Problem (TSP, CVRP, PDP) 
The goal of VRPs is to determine the shortest path for a fleet of vehicles, which depart 
from a depot to serve customers at different locations with varying demands, while 
adhering to constraints such as vehicle capacity. After serving all customers, the 
vehicles return to the depot. The classic VRP variants include the travelling salesman 
problem (TSP), capacitated vehicle routing problem (CVRP), and pickup and delivery 
problem (PDP). 
 
A.1 Multi-Decoder Attention Model (Construction): TSP, CVRP 
A key limitation of existing neural construction heuristics is the lack of diversity in the 
generated solutions. A more diverse set of solutions increases the likelihood of finding 
optimal ones, especially since VRPs and other COPs often have multiple optimal 
solutions. To address this, we propose the Multi-Decoder Attention Model (MDAM), 
which trains multiple construction policies simultaneously. Using a Transformer to 
encode node information, MDAM employs multiple identical attention decoders with 
unshared parameters to sample different solution trajectories. During training, each 
decoder learns distinct solution patterns and is regularized using a Kullback-Leibler 
divergence loss, ensuring the decoders output diverse probability distributions for 
node selection in the solution construction process. 
 
A.2 Dual-Aspect Collaborative Transformer (Improvement): TSP, CVRP 
Standard transformers are less effective for learning improvement models for VRPs 
due to limitations in positional encoding (PE), which struggles to represent VRP 
solutions accurately. To overcome this, we propose the Dual-Aspect Collaborative 
Transformer (DACT), which independently learns embeddings for node and positional 
features, avoiding noise and incompatible correlations that arise from their fusion. 
Additionally, DACT incorporates a novel cyclic positional encoding (CPE) method, 
allowing it to effectively capture the circularity and symmetry inherent in VRP solutions 
(i.e., cyclic sequences). 
 
A.3 Efficient Neural Neighborhood Search (Improvement): PDP 
Most neural methods primarily focus on the TSP or CVRP, with limited research on 
efficient solvers for pickup and delivery problems (PDPs). To fill this gap, we introduce 
the Neural Neighborhood Search (N2S) approach, specifically designed for PDPs. 
N2S leverages a powerful Synthesis Attention mechanism, enabling the vanilla self-
attention to integrate various route features. We also develop two customized 
decoders that autonomously learn how to remove and reinsert pickup-delivery node 
pairs, effectively addressing the precedence constraints of PDPs.  
 
 
B. Neural Solvers for Job Shop Scheduling Problem (JSSP) 
Learning to Dispatch (L2D, Construction). Priority dispatching rules (PDRs) are 
commonly used to solve real-world JSSPs. However, designing effective PDRs is a 
complex and time-consuming task that requires specialized knowledge and often 
yields suboptimal results. To address this, we propose an end-to-end deep 
reinforcement learning (DRL) agent that automatically learns PDRs. We model the 
decision-making process—determining which job should be assigned to which 
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machine at each step—as selecting arc directions in a disjunctive graph. A graph 
neural network is then employed to embed the problem states during solving, resulting 
in a size-agnostic policy network capable of generalizing to large-scale instances. 
 
Learning to Improve (L2I, Improvement). While the L2D approach can be effective, 
its performance may still fall short of optimality due to the limitations of its graph 
representation in modeling partial solutions during the construction process. To 
overcome this, we propose a novel DRL-guided improvement heuristic for JSSPs. 
This approach employs a graph neural network-based representation scheme with 
two modules, designed to capture the dynamic topology and node types in the 
problem’s graph. Additionally, we introduce a message-passing mechanism that 
enables the simultaneous evaluation of multiple solutions, allowing our method to 
scale linearly with problem size. 
 
C. Neural Solvers for Bin Packing Problem (BPP) 
DRL with Multimodal Encoder (Construction). Existing DRL methods for 3D bin 
packing problems (BPPs) are limited by computationally heavy encoders and large 
action spaces, which restrict them to handling only small instances (up to 50 boxes). 
To address these limitations, we propose a DRL agent that sequentially solves three 
subtasks: sequencing, orientation, and positioning of the boxes. Specifically, we use 
a multimodal encoder, where a sparse attention sub-encoder embeds the box states 
to reduce computational costs, while a convolutional neural network sub-encoder 
captures spatial information. We also incorporate action representation learning in the 
decoder to manage the large action space of the positioning subtask. 
 
D. Neural Solvers for Integer Programming (IP) 
DRL guided Large Neighborhood Search (Improvement). To accelerate the 
solution process for integer programming (IP) problems, we propose a high-level, 
learning-based large neighborhood search (LNS) method. Using DRL, we train a 
policy network to act as the destroy operator in LNS, identifying a subset of variables 
in the current solution for re-optimization. A solver is then used as the repair operator 
to solve sub-IP problems and reoptimize the selected variables. Although heuristic in 
nature, our method effectively handles large-scale IP problems by breaking them 
down into smaller, more manageable sub-problems. 
 
E. Neural Solvers for Constraint Satisfaction Problems (CSP) 
DRL guided Backtracking Search. Backtracking search algorithms are widely used 
for solving constraint satisfaction problems (CSPs), with their efficiency heavily 
dependent on variable ordering heuristics. Traditionally, these heuristics are hand-
crafted based on expert knowledge. We propose a DRL-based approach to 
automatically discover variable ordering heuristics that are better suited to specific 
CSP instances, eliminating the need for hand-crafted rules. Our approach leverages 
a graph neural network to process CSP instances of varying sizes and constraint 
arities, capturing the complex relationships between variables and constraints. 
 
 
F. Multi-objective Combinatorial Optimization Problems (MOCOP) 
DRL guided Diversity Enhancement. Existing neural methods for multi-objective 
combinatorial optimization problems (MOCOPs) rely heavily on decomposition, often 
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resulting in repetitive solutions for individual subproblems and yielding a limited 
Pareto set. To improve diversity, we propose a novel neural heuristic with diversity 
enhancement (NHDE) that generates more Pareto solutions from two perspectives. 
First, to prevent redundant solutions, we introduce an indicator-enhanced DRL 
method that guides the model, alongside a heterogeneous graph attention 
mechanism to capture the relationships between the instance graph and the Pareto 
front. Second, we implement a multiple Pareto optima strategy to explore and 
preserve desirable solutions in each subproblem’s neighborhood. Our NHDE 
framework is generic and can be applied across different neural methods for multi-
objective combinatorial optimization. 
 

Phase II Research: Generalizable Neural Solvers  
Unlike fields such as computer vision and natural language processing, where deep 
learning has made significant strides, solving combinatorial optimization problems like 
the VRP remains challenging due to their NP-hard nature and computational 
complexity. While neural heuristics based on deep models are relatively new, 
traditional methods, including heuristics and exact algorithms, have been developed 
and refined for decades. As a result, it is difficult for specialized neural heuristics to 
consistently outperform these well-established methods under arbitrary conditions. 
 
Building on the foundation of our earlier work and insights from Phase I, my current 
research focuses on improving the generalization capabilities of neural solvers for 
combinatorial optimization problems. Although previous specialized neural solvers 
have shown promising results, their performance is often confined to idealized, 
synthetic problem instances. In contrast, real-world applications demand solvers that 
can generalize across varying distributions, instance sizes, constraints, and metrics. 
 

                    
                                  Figure 2. Phase II research focus – Generalizable neural solvers. 
 
 
To address these challenges, using VRPs as an example, my focus is on developing 
generalizable neural solvers by improving cross-domain generalization through 
several approaches: 
 
(1) Cross-distribution generalization: Existing neural solvers are typically trained 

on instances with a single, fixed distribution of node locations, such as uniform 
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distribution. Their performance degrades significantly when applied to instances 
with different distributions. To enhance cross-distribution generalization, 

• We introduce an Adaptive Multi-Distribution Knowledge Distillation 
(AMDKD) scheme to train more generalizable deep models. AMDKD 
leverages knowledge from multiple teacher models trained on exemplar 
distributions to create a lightweight yet robust student model. An adaptive 
strategy is employed to allow the student model to focus on more 
challenging distributions, absorbing difficult-to-master knowledge more 
effectively. AMDKD achieves competitive results on both in-distribution and 
out-of-distribution instances, including synthetic and benchmark datasets 
(e.g., TSPLIB and CVRPLIB). Additionally, it requires fewer computational 
resources for inference. 

• We also propose an ensemble-based deep reinforcement learning method 
for VRPs, which learns a diverse set of sub-policies to handle different 
instance distributions. To prevent parameter convergence, we enforce 
diversity across sub-policies using Bootstrap with random initialization, and 
apply regularization during training to further promote sub-policy inequality. 
This method outperforms state-of-the-art neural baselines on randomly 
generated distributions and generalizes well to benchmark datasets from 
TSPLib and CVRPLib. 

 
(2) Cross-size generalization: Neural solvers are often trained on small, fixed-sized 

instances (e.g., 20, 50, or 100 nodes), resulting in poor performance when applied 
to larger instances. To improve cross-size generalization,  

• We propose a continual learning framework that incrementally trains 
models on instances of increasing size. An inter-task regularization scheme 
retains knowledge from smaller problem sizes, while an intra-task 
regularization consolidates model performance by mimicking desirable 
behaviors from earlier training. We also use experience replay to revisit 
previously trained instances, mitigating catastrophic forgetting. 
Experimental results demonstrate superior performance across various 
problem sizes, including both seen and unseen instances, compared to 
state-of-the-art models.  

• We also propose GLOP (Global and Local Optimization Policies), a unified 
hierarchical framework that scales efficiently to large routing problems. 
GLOP partitions large problems into Travelling Salesman Problems and 
further into Shortest Hamiltonian Path Problems, combining non-
autoregressive neural heuristics for coarse-grained partitions and 
autoregressive heuristics for fine-grained route construction. GLOP 
achieves state-of-the-art real-time performance on large-scale routing 
problems, including TSP, ATSP, CVRP, and PCTSP. 

 
(3) Cross-constraint generalization: Neural solvers are usually trained for specific 

problem constraints or tasks, requiring re-training from scratch for different VRP 
variants. To enhance cross-constraint generalization, 

• We propose a unified neural solver for VRP variants, based on a multi-task 
vehicle routing solver with a mixture-of-experts (MVMoE) architecture. This 
approach enhances model capacity without proportional increases in 
computation, using a hierarchical gating mechanism to balance 
performance and complexity. Our method significantly improves zero-shot 
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generalization on 10 unseen VRP variants and delivers strong results in 
both few-shot settings and on real-world benchmark instances. The 
extensive studies on MVMoE configurations also show the superiority of 
hierarchical gating for out-of-distribution data. 

• We also introduce cross-problem learning, which leverages transferable 
knowledge across different VRP variants. We modularize the neural 
architecture, separating the backbone Transformer for TSP from 
lightweight modules that handle problem-specific features in complex 
VRPs. The backbone Transformer is pre-trained for TSP and fine-tuned for 
each target VRP variant. Extensive experiments demonstrate that fully fine-
tuning the backbone Transformer outperforms training from scratch, while 
an adapter-based approach offers comparable performance with improved 
parameter efficiency. This method enhances cross-distribution applicability 
and model versatility. 

 
(4) Cross-metric generalization: Neural solvers are often trained on instances with 

Euclidean coordinates, yet real-world problems frequently lack coordinate data or 
use non-Euclidean distance metrics. To improve cross-metric generalization,  

• We propose a novel lifelong learning framework that incrementally trains 
neural solvers to manage VRPs in various contexts. Our framework utilizes 
a Transformer-based lifelong learner (LL) with an inter-context self-
attention mechanism to transfer knowledge from previously solved VRPs 
to new ones. A dynamic context scheduler (DCS) with cross-context 
experience replay further enhances the model’s ability to recall past 
policies. Extensive results on synthetic and benchmark instances show that 
this lifelong learner discovers effective policies for handling generic VRPs 
across different metrics, outperforming other neural solvers and achieving 
superior performance on most VRPs. 
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