

Research Statement

Antoine Ledent

School of Computing and Information Systems, Singapore Management University

Tel: (65) 6826-4914; Email: aledent@smu.edu.sg

19th of December 2025

Background

My research passion lies in **Machine Learning** (ML), a subfield of Artificial Intelligence (AI) which studies algorithms that learn from data without being explicitly programmed. My main research areas with machine learning are **Statistical Learning Theory** and **Recommender Systems**. Having moved to the field of AI from a background in mathematics, I see a natural connection between the statistical theory of ML models and algorithm design.

Statistical Learning Theory (SLT) broadly concerns the estimation of the number of samples required to train an ML model if we are to guarantee with high probability that it will *generalize* well on test data (this is referred to as the “sample complexity”). In short, I am interested in understanding why ML algorithms work, and in using the insights derived to obtain gains in *interpretability* and new *theoretically motivated algorithms*. In addition, statistical guarantees can often help practitioners choose between several architectures for a given problem. In terms of specific classes of ML models, much of both my theoretical and practical research has recently focused on Matrix Completion and Recommender Systems.

Recommender Systems (RS) aim to guide users in a personalized way to items maximizing user satisfaction while providing business value (e.g. increased revenue, engagement) for the recommendation provider. For instance, streaming companies such as Netflix or Douban recommend movies to customers based on previous feedback (clicks, “likes”, etc.), allowing users to discover and watch movies they are more likely to enjoy and which would otherwise have been difficult to single out from the multitude of possibilities. In the simplest case, the recommendation task consists in predicting the user-item *ratings* based only on the existing observed ratings. This *explicit feedback prediction* task can be viewed as completing the missing entries of a partially observed matrix, a simple and elegant problem with a surprisingly rich (and yet not quite complete) mathematical theory. In practice, real-world recommender systems rely on much more than the explicit feedback contained in the observed ratings. The *implicit feedback* implied by the subset of items which each user has chosen to interact with arguably contains just as much information, and can be used both as an additional modality to inform the explicit feedback prediction task, and as a prediction task on its own, where we attempt to predict which items a user will interact with next. In addition, in the current paradigm of Web 2.0, users contribute content and interact with each other in various ways in blogs, Twitter, social media websites and other platforms, providing a wealth of heterogeneous information which is relevant to the recommendation task. Incorporating such information into well-principled RS and MC models presents an unparalleled source of opportunities and challenges in both theory and practice.

Within Statistical Learning Theory, I also have a strong interest in the theoretical properties of deep neural networks (NN). In general, classic methods struggle to fully explain why such models perform so well even when the number of parameters is much more than the number of samples: it is increasingly clear that underlying structure in the data has as much effect as algorithm construction on the statistical properties and behavior of deep learning models. For instance, Convolutional Neural Networks (CNN) exhibit especially strong success in image recognition due to the presence of repetitive patterns in the data. Defining and quantifying such effects is especially difficult due to the surprising generality of the phenomenon for many types of ‘natural’ data. The Neural Tangent Kernel (NTK) provides both partial answers to these theoretical questions and huge application potential. Most importantly, many of these questions regarding data-dependency and overparametrisation are also highly relevant to the recent successes of Transformer architectures, and I have several ongoing works in this direction.

My recent research can be categorized into three interconnected directions: Statistical Learning Theory, Matrix Completion/Recommender Systems, and other Applications (e.g. interpretability, CV). My most distinctive work usually concerns the study of the **sample complexity of matrix completion** methods, since such works lie at the intersection of both of my main research areas: learning theory and recommendation. Previously during my PhD, I have also worked on Stochastic Analysis, the study of random processes in continuous time.

Research Areas

On recommender systems, matrix completion and low-rank methods

In classic MC, a typical assumption is that the ground truth matrix has an *approximate low-rank structure*: there is a small (unknown) number of unobserved hidden user and item features that determine the rating via a simple inner product function. This type of low-rank constraint is ubiquitous in ML applications beyond MC and RS.

There are several ways to implicitly induce approximately low-rank solutions. Several classic approaches include convex relaxations such as the Nuclear Norm or the Max norm, which are the most widely studied in the statistics literature. However, popular alternatives such as the Schatten p quasi norm for $p < 1$ can provide solutions with a stricter low-rank structure. Notably, for $p = 2/d$ for some integer d , Schatten p quasi norm regularization is equivalent to the popular *deep matrix factorization* framework of depth d . This observation is relevant not just to matrix completion but also to other areas of machine learning such as deep neural networks, where the implicit rank sparsity inducing effects of depth are being researched intensely. In [ICML’24] we study such effects in the context of deep matrix factorization. Specifically, we prove a sample complexity of $\tilde{O}(r^{1-\frac{p}{2}}n^{1+\frac{p}{2}})$ for Schatten p constrained matrix completion. Here n is the size of the matrix and r is a quantity derived from the Schatten constraint which scales like the rank of the ground truth. When $p \rightarrow 1$, we recover the famous rate of $\tilde{O}(r^{1/2}n^{3/4})$ from Shamir and Schalev-Schwarz JMLR’14. When $p \rightarrow 0$, we recover the complexity converges to a much milder $\tilde{O}(rn)$ which aligns with a parameter counting argument: the bounds capture the rank sparsity effect of depth. We also prove a rate of $\tilde{O}(rn)$ for the uniform sampling case and for a weighted

Schatten p quasi norm. In the same paper, we also study various more complex models which apply nonlinear functions to latent matrices, demonstrating that the sample complexity contributions of the latent matrices and the nonlinear functions combine additively.

The Inductive Matrix Completion (IMC) model is a generalization of the basic MC model where side information is provided for the users and the items in the form of a set of feature vectors corresponding to each user and to each item. The assumption is that users with similar feature vectors will also exhibit similar rating behaviors. Thus, this mathematical model represents a first step towards incorporating user information from the web into RS, assuming only that such information has been preprocessed into feature vectors. Interestingly, this similarity assumption coexists in parallel with the low-rank assumption. Until our paper [NeurIPS'21a], the theoretical analysis of MC and IMC relied on nearly distinct approaches, and sample complexity guarantees for IMC did not take the low-rank constraint into account at all.

In our paper [NeurIPS'21a] we have proved several generalization bounds for the IMC model and introduced an improved regularization strategy for IMC. The first contribution is a bound which incorporates both the low-rank constraint and the side information: ignoring logarithmic terms, the sample complexity is $\tilde{O}(d^{3/2}\sqrt{r})$ in (the distribution-free case) where d is the dimension of the side information, and r is the rank of the ground truth matrix. Thus, the bound is non-trivial when the side information approaches the identity, unlike existing IMC bounds in this distribution-free setting. The second contribution is both theoretical and algorithmic: we have introduced a modification of the regularization strategy which counters the effects of non-uniformity. The strategy involves a data-dependent geometric transformation of predictors before the evaluation of the regularization term. Thus, our model relies on the empirical distribution of the observed entries to adapt the behavior of the regularization term. The solution to this modified optimization problem exhibits a sample complexity which is as good as in the uniform sampling case. Although the algorithm is theoretically motivated, it leads to gains in accuracy in the experiments we ran on classic RS datasets such as MovieLens, LastFM and Douban.

In [AAAI'26], we pioneer a new learning framework for *semi-supervised matrix completion*. Here, we assume that the sampling distribution $P \in [0,1]^{m \times n}$ over entries (which models how likely each user is to interact with each item) is **related** to the latent ground truth ratings $G \in \mathbb{R}^{m \times n}$ (which model how highly each user would rate each item if they were to interact with them). The relationship is modelled by assuming that P and G *share a low-rank subspace*. We further assume that the model has access to a large number M of unlabelled samples $(i_1, j_1), \dots, (i_M, j_M) \in [m] \times [n]$ drawn i.i.d. from the distribution P (i.e., the users have watched/interacted with a larger number of movies/items), together with a smaller number N of *labelled samples*. Under some reasonable assumptions, we show that the sample complexity can be disentangled into two terms corresponding to the estimation of the subspace with the unlabelled samples and the estimation of the matrix with the labelled samples: a total of $\tilde{O}(dr)$ labelled samples and $\tilde{O}([m+n]r)$ unlabelled samples are needed, where d is the rank of the shared subspace and r is the rank of the ground truth matrix.

In [AAAI'23], we performed a more detailed theoretical analysis of the sample complexity of IMC where the noise in the observations is assumed to be small. So-called ‘exact recovery results’ show that if the entries of a matrix are observed exactly (from a uniform distribution), there is a high probability of recovering the full ground truth matrix exactly, so long as the number of samples exceeds a given threshold. This is in contrast to ‘approximate recovery results’ such as those of [NeurIPS’21a] which prove that the error decays at a certain rate (typically $N^{-1/2}$ where N denotes the sample size). In [AAAI’23], we bridge this gap between approximate and exact recovery for IMC by observing and characterizing a threshold phenomenon: the error drops sharply past the exact recovery threshold and continues to decay at the classic $N^{-1/2}$ rate afterwards, with a multiplicative constant proportional to the variance of the noise.

[NeurIPS’21b] deals with density estimation under the assumption that the density is approximately low-rank, i.e. the sampling distribution is well approximated by a mixture of processes each of which has independent components. We obtained sample complexity guarantees for a low-rank histogram model with polynomial dependence on the ambient dimension, whilst traditional guarantees for the standard histogram suffer from the curse of dimensionality. This work is closer to traditional mathematical statistics and not directly related to RSs, but it relies on matrix and tensor decompositions that are commonly used in RS and even other ML applications.

In [TNNLS’25], we introduced Conv4Rec, an autoencoder-based Recommender System model which incorporates both implicit feedback (engagement, viewing behavior, interactions) and explicit feedback (explicit ratings/reviews). The model is not only able to learn from this multi-modal information, but also to make predictions for both tasks simultaneously: to the best of our knowledge, this is the first model which can achieve reasonable performance at both the implicit feedback prediction task (measured by Recall) and the explicit feedback prediction task (measured by RMSE) with a single training run.

In [TNNLS’21], we introduced a novel matrix completion method for the situation where side information is available in the form of a partition of users and items into distinct categories, or ‘communities’ according to established terminology. For instance, movies might be categorized by genre (romance, comedy, action, etc.), and items might be divided by gender or nationality. Our model is a sum of several components, including a component for community effects and a component that corresponds to purely low-rank effects independent of the community structure. Thus, our model can disentangle community behavior from individual behavior. Differently from existing works, both community and individual behavior coexist and are combined additively. We also proposed an efficient and scalable optimization implementation based on iterative imputation which takes the ‘sparse plus low-rank’ structure of the iterates into account. In the spinoff paper [PMLR’21] we extended this paradigm to the situation where the communities must be learned by the model.

Statistical Learning Theory for neural networks and kernel methods

I have proved generalization bounds for various machine learning models, including CNNs and kernel methods in various scenarios matching popular ML models. I have focused on the so-called “norm-based” approach, which is better suited to the near-

infinite parameter spaces ubiquitous in state-of-the-art ML models. In addition, I have paid especially strong attention to applications with extremely large output spaces: extreme multi-class classification, extreme multi-label learning and structured output prediction. The settings are particularly adapted to applications such as handwriting recognition of words, document tagging and Natural Language Processing (NLP) respectively. In all cases, a central concern is to obtain generalization bounds with a dependency on the number of classes that is as mild as possible.

In [NeurIPS’25], we studied the implications of the rank-collapse phenomenon in Neural Networks for sample complexity. Indeed, neural networks weights and activations are known to converge towards approximately low-rank representations under mild conditions on the training data and learning algorithm. We quantify the extent to which this explains the generalization properties of networks. The bounds capture not only the exactly low-rank case, but are sensitive to the speed of the spectral decay of the weight matrices. The proofs involve parametric interpolation, i.e., splitting the class associated to each layer into a low-rank and a low-norm component, treating the former parametrically and the latter nonparametrically. In particular, the bounds do not fully belong to either of the main categories of norm-based or parameter-counting bounds, instead exhibiting a mix of properties of both.

Our contribution [ICML’25] studies the contrastive learning framework from a learning theory perspective. It is the first work to examine the concentration of the unsupervised risk constructed as a generalized U-statistic from a fixed pool of labelled samples. The estimator is constructed class by class, and achieves a sample complexity of $\tilde{O}(d \max(\rho_{\min}^{-1}, k[1 - \rho_{\max}]^{-1}))$, where d is the number of parameters in the model, k is the number of negative samples in each tuple and ρ_{\min} (resp. ρ_{\max}) is the smallest (resp. largest) class probability. The analysis consists in generalized arguments along Hoeffding decompositions with particular care to avoid class collisions. Therefore, the techniques pioneered in this work are not only applicable to contrastive learning, but more generally attack the problem of concentration of incomplete U-statistics with non-trivial constraints on the tuple construction.

In [AAAI’21a], we have proved norm-based bounds for CNNs with two main improvements over the state of the art: (1) they take the weight sharing into account, and (2) they have near optimal dependence on the number of classes. Up to logarithmic terms, the bounds do not change much if an identical set of trainable weights is applied to many different areas of an input image. This work was thus the first one to provide statistical guarantees for neural networks which take the translational invariance of CNNs into account in a norm-based context. In addition, in a class-balanced scenario, the dependence on the number of classes is linear (up to log factors) when expressed in terms of sample complexity, which is clearly optimal (as one needs to observe at least one sample from each class in that case). There are plenty of other refined bounds in the paper, including insights on the effect of local Lipschitzness and appropriate batch normalization on generalization performance.

In [AAAI’21b], the multi-class aspect of the above work was extended to the multi-label case, where each input can be associated with an arbitrary number of labels. In [IJCAI’21a], we pushed similar techniques to the extreme, providing bounds with optimal dependence on the dictionary size for structured output prediction for both

kernel methods and simple NN architectures. In [NeurIPS'20], we provided model-agnostic generalization bounds for the Stochastic Gradient Descent algorithm.

In [AISTATS'24], we rely on adversarial smoothing to provide some of the first non-vacuous PAC-Bayesian generalization bounds for neural networks in the adversarial setting.

In Computer Vision (CV), interpretability, and other applications

In [AAAI'25b], we study a sparse generalization of the Neural Additive Model (NAM), incorporating feature selection into the pipeline. Notably, we also derive generalization bounds for our model, which demonstrate that the interpretability gains of NAM-type models are accompanied by strong generalization properties. Indeed, the bounds are independent of the number of parameters of the neural network components, relying only on their Lipschitz constants.

In [WWW'24], we propose a model of web time series such as twitter feeds or YouTube views which posits that external events such as viral trends not only cause short burst of activity, but also alter the underlying dynamics of the consistent audience of the relevant channel. Mathematically, the model is a combination of a three interacting point processes: two Non-homogeneous Poisson Processes and an SFP process. The model is fitted through an EM algorithm, demonstrating compelling results on various datasets extracted from Google Trends and other sources.

In [IJCAI'24] we study interpretable multimodal learning with controlled modality interactions. More specifically, we apply an algebraic manipulation to the outer products of each modality's features which ensures that outer products formed from multiple modalities cannot mimic the features of smaller subsets of the same modalities: this allows us to *disentangle the contributions* from each modality or combination thereof whilst preventing the model from always choosing the most inclusive combinations. We experimentally validate the success of the method at isolating relevant modalities or combinations on synthetic datasets, and showcase the results on real life sentiment analysis datasets.

In video tracking, target appearance can vary over time. For instance, a person may be slowly turning, sometimes facing the camera and sometimes having their back to it. Furthermore, since models must rely on the previous positions of the target (which can only be estimated by the model and are not labeled), errors can propagate and amplify through time. In [AAAI'21c], we proposed a video tracker based on a Siamese architecture that adapts to such situations by constructing an aggregate feature representation based on a representative sample of previous frames. The model also incorporates an estimation of uncertainty which is then used by different model components to improve robustness. In [IJCAI'21b] we investigated various notions of interpretability in NN models for computer vision: for instance, some neurons can be shown to learn concepts corresponding to scenes or objects or colors, or to be scouting for certain specific patterns. The main novelty in our work is that we proposed several regularization strategies that induce greater interpretability during training.

In Stochastic Analysis (PhD)

During my PhD, I proved upper bounds for the densities of low-dimensional projections of high-dimensional Stochastic Differential Equations (SDE) under conditions on the driving vector fields which are analogous to ellipticity or hypoellipticity. The idea is that no matter how complex a system of SDEs is, ‘low-dimensional snapshots’ of its solution still have ‘almost as well-behaved’ densities as those of solutions to SDEs directly constructed in the low-dimensional target space. Although the thesis itself is technical due to the great generality of the results, specific systems of SDEs have been used to model both biological neural networks and financial markets.

Selected Publications and Outputs

On Recommender Systems, Matrix Completion and low-rank methods:

[AAAI'26] LEDENT, Antoine and SOO, Mun Chong and NONG MINH, Hieu. Generalization Bounds for Semi-supervised Matrix Completion with Distributional Side Information (2026). Proceedings of the 40th AAAI Conference on Artificial Intelligence (AAAI'26), *to appear*.

[TNNLS'25] LEDENT, Antoine and KASALICKY, Petr and ALVES, Rodrigo and LAUW, Hady. Conv4Rec: A 1-by-1 Convolutional AutoEncoder for User Profiling through Joint Analysis of Implicit and Explicit Feedbacks (2025). Transactions on Neural Networks and Learning Systems (TNNLS), Volume: 36, Issue: 12, pp 20035–20049.

[RecSys LBR'25a] POERNOMO, J. and TAN, N. G. L. and ALVES, Rodrigo and LEDENT, Antoine. Probabilistic Modeling, Learnability and Uncertainty Estimation for Interaction Prediction in Movie Rating Datasets. In Proceedings of the Nineteenth ACM Conference on Recommender Systems (RecSys '25). Association for Computing Machinery, New York, NY, USA, 1261–1266. <https://doi.org/10.1145/3705328.3759332>. (Late Breaking Results).

[RecSys LBR'25b] ZMESKALOVA, Tereza and LEDENT, Antoine and SPISAK, Martin and KORDIK, Pavel and ALVES, Rodrigo. Recurrent Autoregressive Linear Model for Next-Basket Recommendation. In Proceedings of the Nineteenth ACM Conference on Recommender Systems (RecSys '25). Association for Computing Machinery, New York, NY, USA, 1273–1278. <https://doi.org/10.1145/3705328.3759313>. (Late Breaking Results).

[ICML'24] LEDENT, Antoine and ALVES, Rodrigo. Generalization Analysis of Deep Nonlinear Matrix Completion. Proceedings of the 41st International Conference on Machine Learning (ICML), PMLR 235:26290-26360, 2024.

[TNNLS'24] ALVES, Rodrigo; LEDENT, Antoine; and KLOFT, Marius. Context-Aware Representation: Jointly Learning Item Features and Selection From Triplets. IEEE Transactions on Neural Networks and Learning Systems. Published: April 10, 2024. Pages: 1-14. DOI: 10.1109/TNNLS.2023.3288769.

[TNNLS'23] ALVES, Rodrigo; LEDENT, Antoine; and KLOFT, Marius. Uncertainty-Adjusted Recommendation via Matrix Factorization With Weighted Losses. IEEE Transactions of Neural Networks and Learning Systems. Pages: 1-14. DOI: 10.1109/TNNLS.2023.3288769.

[RecSys'23] KASALICKY, Petr; LEDENT, Antoine; and ALVES, Rodrigo. Uncertainty-adjusted Inductive Matrix Completion with Graph Neural Networks. Proceedings of the 17th ACM Conference on Recommender Systems, 1169-1174 (Late Breaking Results).

[AAAI'23] LEDENT, Antoine; ALVES, Rodrigo; LEI, Yunwen; GUERMEUR, Yann; and KLOFT, Marius (2023). Generalization Bounds for Inductive Matrix Completion in Low-Noise Regimes. Proceedings of the AAAI Conference, to appear.

[NeurIPS'21a] LEDENT, Antoine; ALVES, Rodrigo; LEI, Yunwen and KLOFT (2021). Fine-grained generalisation analysis of inductive matrix completion. Advances in Neural Information Processing Systems (NeurIPS) 34, 2021. 25540—25552

[TNNLS'21] LEDENT, Antoine; ALVES, Rodrigo; and KLOFT, Marius (2021). Orthogonal Inductive Matrix Completion. IEEE Transactions on Neural Networks and Learning Systems. Pages : 1-12, DOI : 10.1109/TNNLS.2021.3106155.

[NeurIPS'21b] VANDERMEULEN, Rob; and LEDENT, Antoine (2021). Beyond Smoothness : Incorporating Low-Rank Analysis into Nonparametric Density Estimation. Advances in Neural Information Processing Systems (NeurIPS) 34, 12180—12193.

[RecSys'21] ALVES, Rodrigo; LEDENT, Antoine; and KLOFT, Marius (2021). Burst-induced Multi-Armed Bandit for Learning Recommendation. Recommender Systems Conference (RecSys) 2021, 292-301. DOI: <https://doi.org/10.1145/3460231.3474250>

[PMLR'21] ALVES, Rodrigo; LEDENT, Antoine; ASSUNÇÃO, Renato; and KLOFT, Marius (2021). An Empirical Study of the Discreteness Prior in Low-Rank Matrix Completion. NeurIPS 2020 Preregistration Workshop. Proceedings of Machine Learning Research (PMLR) 148:111-125, 2021.

On the statistical theory of neural networks and kernel methods:

[NeurIPS'25] LEDENT, Antoine; ALVES, Rodrigo; and LEI, Yunwen. Generalization Bounds for Rank-sparse Neural Networks (2025). Proceedings of the Thirty-ninth Annual Conference on Neural Information Processing Systems (NeurIPS 2025), to appear.

[ICML'25] NM Hieu and A. Ledent. “Generalization Analysis for Supervised Contrastive Representation Learning under Non-IID Settings” (2025). Proceedings of the Fourty Second International Conference on Machine Learning (ICML 2025), PMLR 267:23179-23218.

[AAAI'25a] HIEU, N. M. and LEDENT, Antoine and LEI, Yunwen and KU, C. Y. Generalization Analysis for Deep Contrastive Representation Learning (2025). Proceedings of the 39th AAAI conference on Artificial Intelligence (AAAI'25), Philadelphia, Pennsylvania, 2025 February 25 - March 4. 39, 17186-17194.

[AISTATS'24] MUSTAFA, Waleed; LIZNERSKI, Philipp; LEDENT, Antoine; WAGNER, Dennis; WANG, Puyu; and KLOFT, Marius (2024). Non-vacuous Generalization Bounds for Adversarial Risk in Stochastic Neural Networks. Proceedings of The 27th International Conference on Artificial Intelligence and Statistics, Pages: 4528—4536. DOI: 10.48550/arXiv.1703.11008.

[AAAI'21a] LEDENT, Antoine; MUSTAFA, Waleed; LEI, Yunwen; and KLOFT, Marius (2021). Norm-based generalisation bounds for convolutional neural networks, by Proceedings of the AAAI Conference on Artificial Intelligence (AAAI), 35(9), 8279-8287.

[AAAI'21b] WU, Liang; LEDENT, Antoine; LEI, Yunwen and KLOFT, Marius (2021). Fine-grained Generalization Analysis of Vector-valued Learning (2021). Proceedings of the AAAI Conference on Artificial Intelligence, 35(12): 10338-10346.

[IJCAI'21a] MUSTAFA, Waleed; LEI, Yunwen; LEDENT, Antoine; and KLOFT, Marius (2021). Fine-grained Analysis of Structured Output Prediction. Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence, IJCAI-21. 2841-2847.

[NeurIPS'20] LEI, Yunwen; LEDENT, Antoine; and KLOFT, Marius (2020). Sharper generalisation bounds for pairwise learning. Advances in Neural Information Processing Systems (NeurIPS) 33, 21236–21246.

In Interpretability, Computer Vision and time series analysis, and other applications:

[AAAI'25b] LEDENT, Antoine* and LIU, Peng*. Explainable Neural Networks with Guarantees: A Sparse Estimation Approach (2025). Proceedings of the AAAI Conference on Artificial Intelligence (AAAI'25), 39(17), 18044-18052.

[WWW'24] ALVES, Rodrigo; LEDENT, Antoine; ASSUNÇÃO, Renato; VAZ-DE-MELO, Pedro; KLOFT, Marius. Unraveling the Dynamics of Stable and Curious Audiences in Web Systems (2024). Proceedings of the ACM on Web Conference 2024, 2464-2475.

[IJCAI'24] VARSHNEYA, Saurabh; LEDENT, Antoine; LIZNERSKI, Philipp; BALINSKY, Andriy; MEHTA, Purvanshi; MUSTAFA, Waleed; KLOFT, Marius (2024). Interpretable Tensor Fusion. Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24).

[AAAI'21c] ZHOU, Lijun; LEDENT, Antoine; HU, Qintao; LIU, Ting; ZHANG, Jianlin; and KLOFT, Marius (2021). Model Uncertainty Guides Visual Object Tracking. Proceedings of the AAAI Conference on Artificial Intelligence, 35(4): 3581-3589.

[IJCAI'21b] VARSHNEYA, Saurabh; LEDENT, Antoine; VANDERMEULEN , Rob; LEI, Yunwen; ENDERS Matthias; BORTH Damian; and KLOFT, Marius (2021). Learning Interpretable Concept Groups in CNNs. Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence, IJCAI-21, 1061-1067.

In Stochastic Analysis:

[PhD'17] LEDENT, Antoine. Sharper Kusuoka-Stroock type bounds for densities related to low-dimensional projections of high dimensional SDEs (2017). PhD Thesis, University of Luxembourg.