
Research Statement

Chris Poskitt

School of Computing and Information Systems​
Singapore Management University

Tel: (65) 6828-1376; Email: cposkitt@smu.edu.sg

 16th December 2025

Research Overview

My research focuses on engineering correct and secure software systems, aiming to make them

reliable and trustworthy, especially in contexts where dependability is crucial. I am particularly

interested in adapting traditional software quality techniques to non-traditional and complex

systems such as autonomous vehicles, critical infrastructure, and (more recently) AI agents. I work at

the intersection of theory and practice, applying rigorous software theory to develop practical

solutions for emerging domains. For instance, using signal temporal logic to formally define traffic

laws, then fuzzing to find ways an autonomous vehicle could inadvertently violate them. Additionally,

I explore how insights from my research can be translated to the classroom and help prepare the

next generation of software engineers.

Some of the key overarching questions my research aims to address include:

●​ How can traditional approaches for software quality be generalised to complex

cyber-physical systems?

●​ How do we build defence mechanisms for critical infrastructure that effectively

detect/prevent attacks?

●​ How do we intelligently fuzz cyber-physical systems to uncover rare (but feasible) scenarios

that violate safety properties?

●​ How can undergraduate curricula better prepare students to engineer correct, secure, and

maintainable code?​

mailto:cposkitt@smu.edu.sg

Recent Research Highlights

In the following, I summarise some recent results from projects I have collaborated on.

Fuzzing, Enforcing, and Repairing Autonomous Vehicles
Our research on autonomous vehicles adapts rigorous

software engineering techniques to the problem of driving

safety, spanning specification, testing, enforcement,

explanation, and repair. We began by formalising traffic

laws using signal temporal logic and developing

LawBreaker [1], a fuzzing framework for systematically

uncovering law violations by autonomous driving systems

(ADS). We then moved from detection to prevention with

REDriver [2], a runtime enforcement framework that

monitors planned trajectories and applies minimal, gradient-based corrections when violations are

predicted. To explain why violations and accidents occur, we proposed ACAV [3], which performs

automated causal analysis on AV accident records to identify the events responsible for safety

failures. Most recently, in FixDrive [4], we closed the loop by introducing an automated repair

framework that analyses near-misses/violations and generates general, interpretable driving-strategy

repairs. FixDrive leverages multimodal large language models to translate critical moments from

driving records into high-level rules that generalise beyond individual incidents, integrate with

existing ADS architectures, and can be computed efficiently offline, enabling practical and iterative

improvement of autonomous driving behaviour.

1.​ LawBreaker: An Approach for Specifying Traffic Laws and Fuzzing Autonomous Vehicles, Y.

Sun, C.M. Poskitt, J. Sun, Y. Chen, Z. Yang. ASE'22

2.​ REDriver: Runtime Enforcement for Autonomous Vehicles, Y. Sun, C.M. Poskitt, Z. Zhang, and

J. Sun. ICSE’24

3.​ ACAV: A Framework for Automatic Causality Analysis in Autonomous Vehicle Accident

Recordings, H. Sun, C.M. Poskitt, Y. Sun, J. Sun, and Y. Chen. ICSE’24

4.​ FixDrive: Automatically Repairing Autonomous Vehicle Driving Behaviour for $0.08 per

Violation, Y. Sun, C.M. Poskitt, K. Wang, and J. Sun. ICSE'25​

Engineering Robust Cyber-Physical Systems
Our research on cyber-physical systems (CPS), particularly

in the context of critical infrastructure, focuses on

strengthening system dependability through principled

testing, semantic foundations, and adaptive defence. We

first addressed the problem of inadequate test diversity in

industrial control systems by developing a causality-guided

fuzzing approach [5] that identifies the minimal causal

events responsible for unsafe physical states and actively

steers the search toward causally distinct tests,

substantially improving coverage on a real-world water

treatment system. To underpin rigorous analysis and testing of CPS software, we introduced K-ST [6],

a formal executable semantics for the Structured Text language used in PLCs, enabling systematic

validation of compiler correctness and uncovering previously unknown defects. More recently, we

have shifted from testing in isolation to strengthening CPS defences themselves: in Evo-Defender [7],

we proposed an evolutionary attacker–defender framework in which guided fuzzing and incremental

learning are coupled to iteratively harden anomaly detectors against increasingly subtle and diverse

attacks, achieving significantly improved detection on realistic CPS testbeds. Complementing these

technical contributions, we conducted a systematic literature review of CPS security modelling [8],

synthesising the fragmented landscape of threat and attack modelling approaches and identifying

fundamental gaps in how existing methods capture the dynamic, multi-stage, and cross-domain

nature of real CPS attacks.

5.​ Finding Causally Different Tests for an Industrial Control System, C.M. Poskitt, Y. Chen, J. Sun,

and Y. Jiang. ICSE’23

6.​ K-ST: A Formal Executable Semantics of the Structured Text Language for PLCs, K. Wang, J.

Wang, C.M. Poskitt, X. Chen, J. Sun, and P. Cheng. TSE’23

7.​ Developing a Strong CPS Defender: An Evolutionary Approach, Q. Hu, C.M. Poskitt, J. Sun, and

Y. Chen. RAID’25

8.​ Security Modelling for Cyber-Physical Systems: A Systematic Literature Review, S. Huang, C.M.

Poskitt, and L.K. Shar. TCPS’25​

Software Engineering Education
Our research in software engineering education

focuses on designing learning interventions and

tools that help students actively develop core

engineering skills—such as refactoring, debugging,

and independent learning—rather than passively

consuming solutions. In one line of work [9], we

addressed the challenge of teaching code

refactoring to novices through a mistake-based

approach in which students first construct

functionally correct but intentionally “smelly” code

before refactoring it, improving familiarity, confidence, and transfer to their own practice. In a

complementary strand, we investigated how students learn to debug programs, proposing Simulated

Interactive Debugging [10], an AI-assisted approach that guides students step-by-step through the

debugging process without revealing solutions. Building on this, we developed CodeHinter [11], an

interactive debugging assistant that combines fault localisation with LLM-generated hints and quizzes

to support novice debuggers while mitigating over-reliance on AI-generated fixes. Finally, to support

independent learning beyond coding tasks, we introduced Slide++ [12], a platform that automatically

augments lecture slides with credible and relevant supplementary resources. Together, these works

reflect a cohesive agenda centred on scaffolding learning through principled use of automation and

AI, while preserving student agency and skill development.

9.​ Fixing Your Own Smells: Adding a Mistake-Based Familiarisation Step When Teaching Code

Refactoring, I. Tan and C.M. Poskitt. SIGCSE’24

10.​Simulated Interactive Debugging, Y. Noller, E. Chandra, S. Chandrashekar, K. Choo, C.

Jegourel, O. Kurniawan, and C.M. Poskitt. ASE’25 NIER

11.​Designing for Novice Debuggers: A Pilot Study on an AI-Assisted Debugging Tool, O.

Kurniawan, E. Chandra, C.M. Poskitt, Y. Noller, K.T.W. Choo, and C. Jegourel. Koli Calling’25

12.​Towards Automated Slide Augmentation to Discover Credible and Relevant Links, D.

Dinushka, C.M. Poskitt, K.C. Koh, H.N. Mok, and H.W. Lauw. AIED’24 LBR

Reasoning about Graph Manipulations
As part of my PhD, I investigated formal techniques for

reasoning about programs whose behaviour is naturally

modelled using graphs and algebraic graph transformations.

Although this is no longer my primary research focus, I

continue to contribute to this area. In particular, in recent

work [13,14], we generalised Peter O’Hearn’s incorrectness

logic to graph programs. Unlike traditional program logics,

which establish properties that must hold for all executions,

incorrectness logic is designed to prove the existence of

specific executions, making it especially well suited to graph

programs, where high nondeterminism is intrinsic to the computation model. This work provides a

principled foundation for reasoning about bug existence and may serve as a basis for sound symbolic

execution and bug-finding techniques for graph-based programming languages.

13.​Monadic Second-Order Incorrectness Logic for GP 2, C.M. Poskitt and D. Plump. JLAMP'23

14.​ Incorrectness Logic for Graph Programs, C.M. Poskitt. ICGT'21

	Research Statement
	
	Chris Poskitt
	School of Computing and Information Systems​Singapore Management University
	Tel: (65) 6828-1376; Email: cposkitt@smu.edu.sg
	 16th December 2025
	
	Research Overview
	
	Recent Research Highlights
	Fuzzing, Enforcing, and Repairing Autonomous Vehicles
	Engineering Robust Cyber-Physical Systems
	Software Engineering Education
	Reasoning about Graph Manipulations

