Research Statement

Chris Poskitt
School of Computing and Information Systems
Singapore Management University
Tel: (65) 6828-1376; Email: cposkitt@smu.edu.sg
16th December 2025

Research Overview

My research focuses on engineering correct and secure software systems, aiming to make them
reliable and trustworthy, especially in contexts where dependability is crucial. | am particularly
interested in adapting traditional software quality techniques to non-traditional and complex
systems such as autonomous vehicles, critical infrastructure, and (more recently) Al agents. | work at
the intersection of theory and practice, applying rigorous software theory to develop practical
solutions for emerging domains. For instance, using signal temporal logic to formally define traffic
laws, then fuzzing to find ways an autonomous vehicle could inadvertently violate them. Additionally,
| explore how insights from my research can be translated to the classroom and help prepare the
next generation of software engineers.

Theory - < >
.
s Causal reasoning ‘\ Signal Temporal Logic
Software Engineering < < R
. [} L) [} =
& Testing . R . _ Correct & Secure
v Code mutation % s Benchmark generation
) < ' < Software Systems
Cybersecurity s - P>

A A
“ Refactoring
A

Computing 4
Education

Security

integratior

\ 4

Some of the key overarching questions my research aims to address include:

e How can traditional approaches for software quality be generalised to complex
cyber-physical systems?

e How do we build defence mechanisms for critical infrastructure that effectively
detect/prevent attacks?

e How do we intelligently fuzz cyber-physical systems to uncover rare (but feasible) scenarios
that violate safety properties?

e How can undergraduate curricula better prepare students to engineer correct, secure, and
maintainable code?

mailto:cposkitt@smu.edu.sg

Recent Research Highlights

In the following, | summarise some recent results from projects | have collaborated on.

Fuzzing, Enforcing, and Repairing Autonomous Vehicles
Our research on autonomous vehicles adapts rigorous
software engineering techniques to the problem of driving
safety, spanning specification, testing, enforcement,
explanation, and repair. We began by formalising traffic
laws using signal temporal logic and developing
LawBreaker [1], a fuzzing framework for systematically
uncovering law violations by autonomous driving systems
(ADS). We then moved from detection to prevention with
REDriver [2], a runtime enforcement framework that
monitors planned trajectories and applies minimal, gradient-based corrections when violations are
predicted. To explain why violations and accidents occur, we proposed ACAV [3], which performs
automated causal analysis on AV accident records to identify the events responsible for safety
failures. Most recently, in FixDrive [4], we closed the loop by introducing an automated repair
framework that analyses near-misses/violations and generates general, interpretable driving-strategy
repairs. FixDrive leverages multimodal large language models to translate critical moments from
driving records into high-level rules that generalise beyond individual incidents, integrate with
existing ADS architectures, and can be computed efficiently offline, enabling practical and iterative
improvement of autonomous driving behaviour.

1. LawBreaker: An Approach for Specifying Traffic Laws and Fuzzing Autonomous Vehicles, Y.
Sun, C.M. Poskitt, J. Sun, Y. Chen, Z. Yang. ASE'22

2. REDriver: Runtime Enforcement for Autonomous Vehicles, Y. Sun, C.M. Poskitt, Z. Zhang, and
J. Sun. ICSE’24

3. ACAV: A Framework for Automatic Causality Analysis in Autonomous Vehicle Accident
Recordings, H. Sun, C.M. Poskitt, Y. Sun, J. Sun, and Y. Chen. ICSE’24

4. FixDrive: Automatically Repairing Autonomous Vehicle Driving Behaviour for 50.08 per
Violation, Y. Sun, C.M. Poskitt, K. Wang, and J. Sun. ICSE'25

Engineering Robust Cyber-Physical Systems

Our research on cyber-physical systems (CPS), particularly
in the context of critical infrastructure, focuses on
strengthening system dependability through principled
testing, semantic foundations, and adaptive defence. We
first addressed the problem of inadequate test diversity in
industrial control systems by developing a causality-guided
fuzzing approach [5] that identifies the minimal causal
events responsible for unsafe physical states and actively
steers the search toward causally distinct tests,
substantially improving coverage on a real-world water
treatment system. To underpin rigorous analysis and testing of CPS software, we introduced K-ST [6],
a formal executable semantics for the Structured Text language used in PLCs, enabling systematic
validation of compiler correctness and uncovering previously unknown defects. More recently, we
have shifted from testing in isolation to strengthening CPS defences themselves: in Evo-Defender [7],

we proposed an evolutionary attacker—defender framework in which guided fuzzing and incremental
learning are coupled to iteratively harden anomaly detectors against increasingly subtle and diverse
attacks, achieving significantly improved detection on realistic CPS testbeds. Complementing these
technical contributions, we conducted a systematic literature review of CPS security modelling [8],
synthesising the fragmented landscape of threat and attack modelling approaches and identifying
fundamental gaps in how existing methods capture the dynamic, multi-stage, and cross-domain
nature of real CPS attacks.

5. Finding Causally Different Tests for an Industrial Control System, C.M. Poskitt, Y. Chen, J. Sun,
and Y. Jiang. ICSE’23

6. K-ST: A Formal Executable Semantics of the Structured Text Language for PLCs, K. Wang, J.
Wang, C.M. Poskitt, X. Chen, J. Sun, and P. Cheng. TSE’23

7. Developing a Strong CPS Defender: An Evolutionary Approach, Q. Hu, C.M. Poskitt, J. Sun, and
Y. Chen. RAID’25

8. Security Modelling for Cyber-Physical Systems: A Systematic Literature Review, S. Huang, C.M.
Poskitt, and L.K. Shar. TCPS’25

Software Engineering Education
Our research in software engineering education

focuses on designing learning interventions and ot o the
. failed test
tools that help students actively develop core cases
o a5l Brief explanation [RE.
engineering skills—such as refactoring, debugging, about failed test
and independent learning—rather than passively
consuming solutions. In one line of work [9], we 1€
addressed the challenge of teaching code
. . . Offering Features
refactoring to novices through a mistake-based o Help Debug

the Problem

approach in which students first construct
functionally correct but intentionally “smelly” code

before refactoring it, improving familiarity, confidence, and transfer to their own practice. In a
complementary strand, we investigated how students learn to debug programs, proposing Simulated
Interactive Debugging [10], an Al-assisted approach that guides students step-by-step through the
debugging process without revealing solutions. Building on this, we developed CodeHinter [11], an
interactive debugging assistant that combines fault localisation with LLM-generated hints and quizzes
to support novice debuggers while mitigating over-reliance on Al-generated fixes. Finally, to support
independent learning beyond coding tasks, we introduced Slide++ [12], a platform that automatically
augments lecture slides with credible and relevant supplementary resources. Together, these works
reflect a cohesive agenda centred on scaffolding learning through principled use of automation and
Al, while preserving student agency and skill development.

9. Fixing Your Own Smells: Adding a Mistake-Based Familiarisation Step When Teaching Code
Refactoring, |. Tan and C.M. Poskitt. SIGCSE’24

10. Simulated Interactive Debugging, Y. Noller, E. Chandra, S. Chandrashekar, K. Choo, C.
Jegourel, O. Kurniawan, and C.M. Poskitt. ASE’25 NIER

11. Designing for Novice Debuggers: A Pilot Study on an Al-Assisted Debugging Tool, O.
Kurniawan, E. Chandra, C.M. Poskitt, Y. Noller, KTW. Choo, and C. Jegourel. Koli Calling’25

12. Towards Automated Slide Augmentation to Discover Credible and Relevant Links, D.
Dinushka, C.M. Poskitt, K.C. Koh, H.N. Mok, and H.W. Lauw. AIED’24 LBR

Reasoning about Graph Manipulations
As part of my PhD, | investigated formal techniques for
reasoning about programs whose behaviour is naturally

modelled using graphs and algebraic graph transformations.

Although this is no longer my primary research focus, |
continue to contribute to this area. In particular, in recent
work [13,14], we generalised Peter O’Hearn’s incorrectness
logic to graph programs. Unlike traditional program logics,
which establish properties that must hold for all executions,
incorrectness logic is designed to prove the existence of
specific executions, making it especially well suited to graph

handler

State —in* lock

Ref_Var

Data

Processor

lock
'
Processor

name = "PHILOSOPHER"

current

Action

lock_1="r_1"

points_to

name = "FORK"
¥

Processor
name = "FORK"
x

lock

Processor

handler

name = "PHILOSOPHER"

tate current state

Action

PR
out* State - in+ lock

lock 1="r 2%

out* State

programs, where high nondeterminism is intrinsic to the computation model. This work provides a
principled foundation for reasoning about bug existence and may serve as a basis for sound symbolic
execution and bug-finding techniques for graph-based programming languages.

13. Monadic Second-Order Incorrectness Logic for GP 2, C.M. Poskitt and D. Plump. JLAMP'23

14. Incorrectness Logic for Graph Programs, C.M. Poskitt. ICGT'21

	Research Statement
	
	Chris Poskitt
	School of Computing and Information Systems​Singapore Management University
	Tel: (65) 6828-1376; Email: cposkitt@smu.edu.sg
	 16th December 2025
	
	Research Overview
	
	Recent Research Highlights
	Fuzzing, Enforcing, and Repairing Autonomous Vehicles
	Engineering Robust Cyber-Physical Systems
	Software Engineering Education
	Reasoning about Graph Manipulations

