SMU Classification: Restricted

Research Statement

Christoph Treude
School of Computing and Information Systems, Singapore Management University
Tel: (65) 6808 5438; Email: ctreude@smu.edu.sg
19 (Day) 12 (Month) 2025 (Year)

Background

Software systems underpin much of modern society, supporting critical activities in
areas such as communication, finance, healthcare, transportation, and scientific
research. As software becomes more pervasive and complex, the consequences of
failures, security vulnerabilities, and poor usability become increasingly severe.
Ensuring that software systems are reliable, secure, and maintainable therefore
remains a central challenge for both industry and society.

Software development is fundamentally a human-driven activity. It requires
coordination among developers with different roles and expertise, interpretation of
evolving requirements, and continuous decision-making under uncertainty. Decades
of software engineering research have shown that technical quality cannot be
separated from human and social factors such as communication, knowledge sharing,
and tooling support. Improving software quality therefore requires not only better
algorithms and tools, but also a deeper understanding of how developers work and
how they interact with those tools.

In recent years, artificial intelligence has moved from a supporting role to a central
component of software development practice. Large language models and other Al-
based techniques are now routinely used for tasks such as code completion,
documentation, vulnerability detection, requirements tracing, and testing. These tools
promise substantial gains in productivity and scalability, but they also introduce new
challenges. Al-generated outputs can be incorrect, insecure, biased, or misleading,
and their integration into developer workflows raises questions about trust,
responsibility, and control. As Al systems increasingly participate in software
development activities, software engineering must grapple with how to design,
evaluate, and govern these systems in practice.

My research addresses this shift by examining software development as a socio-
technical system in which humans and Al increasingly collaborate. Rather than
treating Al as a black-box automation layer, my work focuses on understanding
interaction patterns between developers and Al tools, measuring how Al-generated
artifacts are actually used, and identifying the conditions under which Al support
improves or degrades software outcomes. This perspective builds on empirical
software engineering traditions, while extending them to account for Al-driven
workflows and Al-mediated decision-making.

A second pillar of my work focuses on the use of Al to improve core software
engineering tasks, particularly those related to software quality and security. Al-based
techniques have demonstrated strong performance in areas such as vulnerability
detection, code analysis, documentation, and requirements tracing, yet they also
introduce new risks, including brittleness, adversarial susceptibility, privacy leakage,



SMU Classification: Restricted

and misalignment with developer intent. My research investigates both how Al
techniques can be made more effective for software engineering tasks and how their
limitations can be systematically identified and addressed. This includes treating Al-
based software engineering tools as artifacts that themselves require rigorous
evaluation, testing, and robustness analysis.

Finally, my work contributes to the emerging area of Al for science, with a particular
focus on empirical software engineering and research methodology. Many empirical
studies rely on costly and time-consuming human evaluations, which limits scale and
reproducibility. Recent advances in Al raise the possibility of augmenting or partially
automating aspects of this evaluation process. My research explores when and how
Al systems can responsibly complement human judgment in research workflows, with
the goal of improving scalability while preserving validity, transparency, and
interpretability.

Across these strands, my overarching goal is to develop principled, evidence-based
approaches for integrating Al into software engineering practice and research. By
grounding Al-driven techniques in empirical evidence, interaction-aware design, and
robustness considerations, my work aims to support the development of software
systems—and software engineering methods—that remain trustworthy, effective, and
aligned with human needs as Al becomes an integral part of the software ecosystem.

Research Area 1: Human-Al Interaction in Software Engineering

This research area focuses on how software developers interact with Al-based tools,
and how these interactions shape adoption, trust, and software outcomes. As Al
systems increasingly generate code, documentation, and analysis results, developers
are no longer merely tool users but collaborators who must interpret, evaluate, and
decide whether to rely on Al-generated artifacts. Understanding these interactions is
essential for designing Al systems that genuinely support developers rather than
introducing new sources of error, over-reliance, or cognitive overhead.

My recent work in this area examines human—Al interaction in software engineering
from complementary perspectives that combine empirical measurement, conceptual
framing, and methodological reflection.

A first line of work consists of controlled empirical studies that investigate when and
why developers adopt Al-generated code. Rather than relying on self-reported
intentions or attitudes, this work uses objective, behavioral measures of adoption,
such as code similarity between Al-generated suggestions and developers’ final
solutions. In a controlled experiment with programmers of varying expertise, we
showed that seemingly small properties of Al-generated artifacts—such as the
presence of comments—can have a significant impact on whether developers adopt
Al-generated code, regardless of their experience level [1]. These results highlight
that adoption is influenced not only by perceived correctness or productivity, but also
by factors related to comprehensibility, communication, and perceived intent.

A second line of work contributes conceptual foundations for studying developer—Al
interaction. As Al tools have diversified rapidly, interaction patterns have become
increasingly heterogeneous, ranging from passive auto-completion to conversational



SMU Classification: Restricted

assistance and workflow-triggered interventions. To support systematic study and
comparison of these tools, we proposed a taxonomy of developer—Al interaction types
that characterizes how interactions are initiated, how Al responds, and how
developers react to Al output [2]. This taxonomy provides a shared vocabulary for
analyzing interaction design choices, comparing tools, and situating empirical findings
within a broader interaction landscape. Related perspective work further explores how
such interaction patterns may evolve as Al systems become more autonomous and
integrated into development environments.

A third line of work examines how Al systems themselves can participate in software
engineering research workflows, particularly in evaluation tasks that traditionally
require human judgment. Human-subject studies are essential but costly, and they
often limit scale and reproducibility. In this line of work, we explored whether large
language models can partially replace or complement human annotators for
subjective software engineering tasks, such as judging code-related artifacts. Our
results show that, for some tasks, model-human agreement approaches human-—
human agreement, while for others it does not, motivating mixed human—Al evaluation
strategies rather than full automation [3]. This work provides concrete guidance on
when Al can responsibly support human judgment and when human expertise
remains indispensable.

Taken together, these studies frame human—Al interaction as a measurable,
designable, and evaluable aspect of software engineering, rather than an incidental
byproduct of tool adoption.

Looking ahead, my research in this area will focus on adaptive interaction strategies
that adjust Al behavior based on developer context, task characteristics, and prior
interaction history; on mechanisms for human control and oversight in Al-assisted
development, including the communication of uncertainty and alternatives; and on
extending empirical studies beyond short, isolated tasks to longitudinal and workflow-
level settings. Understanding these longer-term effects is critical for assessing how
Al tools influence learning, collaboration, and division of labor within software teams.

Research Area 2: Al for Software Engineering (AI4SE)

This research area focuses on the design, evaluation, and stress-testing of Al-based
techniques for core software engineering tasks, with particular emphasis on software
quality, security, and reliability. While recent advances in machine learning and large
language models have led to strong performance on tasks such as vulnerability
detection, code completion, and documentation support, their deployment in practice
raises important questions about robustness, trustworthiness, and unintended side
effects. My work in this area treats Al-based software engineering tools as software
systems in their own right—systems that must be carefully evaluated, analyzed for
failure modes, and improved using principled engineering approaches.

A central theme of my recent work has been the use of Al for software vulnerability
detection. Existing learning-based approaches have demonstrated promising
accuracy but often provide coarse-grained results that are difficult for developers to
act upon. In collaborative work, we proposed techniques that move beyond file- or
function-level classification toward fine-grained vulnerability localization, enabling Al



SMU Classification: Restricted

systems to identify specific code statements that contribute to a vulnerability. By
reformulating vulnerability detection as a sequential decision-making problem and
applying reinforcement learning, this work captures interactions among multiple
statements rather than treating them independently, leading to more actionable
results for developers [4].

Beyond improving effectiveness, my research also investigates the robustness of Al-
based software engineering tools. As these tools are increasingly deployed in real-
world settings, understanding their susceptibility to adversarial manipulation becomes
critical. In this line of work, we studied black-box adversarial attacks on vulnerability
detectors, focusing on realistic scenarios where model internals and confidence
scores are not accessible. We demonstrated that state-of-the-art detectors can be
evaded using semantics-preserving code transformations, exposing fundamental
weaknesses in current approaches and highlighting the need for robustness-aware
evaluation protocols [9].

Closely related to robustness is the issue of privacy and memorization in code
language models. Al-based code completion systems are trained on large corpora
that may include sensitive or proprietary code, raising concerns about unintended
data leakage. My work in this area develops membership inference attacks tailored
to code models, using adversarial prompting strategies to infer whether specific code
snippets were present in a model’s training data. These techniques provide a
systematic way to assess memorization behavior and privacy risks, and they
contribute to broader efforts around responsible and compliant use of code language
models [6]. Related work on Al-generated code further explores how static analysis
and feedback loops can be used to improve Al outputs beyond surface-level
correctness.

Across these contributions, a recurring insight is that performance metrics alone are
insufficient for evaluating Al-based software engineering tools. Accuracy
improvements must be considered alongside robustness, security, privacy, and
downstream developer use, particularly when these tools are applied in security- or
safety-critical contexts.

My future research in this area will further integrate robustness and security
considerations into the design of Al-based software engineering techniques; explore
verification-oriented and hybrid approaches that combine learning-based methods
with symbolic reasoning or explicit program representations; and investigate
governance and accountability mechanisms for Al-assisted software development,
including auditing, traceability, and compliance.

Research Area 3: Al for Science (Al4Science)

This research area focuses on the use of Al as a methodological instrument to support
scientific inquiry, with an emphasis on empirical software engineering. Empirical
studies in software engineering frequently rely on human judgment to evaluate tools,
techniques, and artifacts. While such evaluations are essential for external validity,
they are often expensive, time-consuming, and difficult to scale. These constraints
limit the size of studies, the diversity of participants, and the reproducibility of results.
Recent advances in large language models raise the question of whether Al can



SMU Classification: Restricted

responsibly support parts of the scientific process itself, particularly in evaluation and
data annotation tasks.

My work in this area explores how Al can be integrated into research workflows
without undermining scientific rigor. Rather than aiming to replace human judgment
wholesale, this research investigates mixed human-Al approaches that balance
scalability with validity, and that make the limitations of Al explicit rather than implicit.

A central contribution of my recent work is an empirical investigation into whether
large language models can substitute for human annotators in software engineering
research tasks. Many evaluations in our field involve subjective judgments, such as
assessing the quality of code summaries, deciding whether a warning is actionable,
or judging the intent of a code change. In this work, we systematically compared
annotations produced by humans and by state-of-the-art language models across a
range of software engineering datasets and tasks [3]. Our findings show that the
suitability of Al as a proxy for human judgment depends strongly on the task,
motivating selective and transparent use of Al rather than blanket automation.

This research contributes methodological guidance that is directly applicable to
empirical software engineering, where evaluation cost is a persistent bottleneck, and
it connects to broader work on reproducibility and transparency in scientific software.
By treating Al as a research instrument whose behavior must be understood,
validated, and reported, this work supports more repeatable and inspectable study
designs.

Looking forward, my research in Al for science will focus on principled frameworks for
mixed human-Al evaluation pipelines, on enabling large-scale and longitudinal
empirical studies that are currently infeasible due to cost constraints, and on
examining the epistemic implications of Al participation in scientific workflows. This
includes clarifying assumptions, limitations, and reporting practices for Al-assisted
research.

Overall, this research area positions Al as a tool for improving the practice of science
itself. By carefully integrating Al into empirical workflows, my work aims to reduce
practical barriers to high-quality empirical research while preserving the
methodological standards that underpin credible scientific knowledge.

Selected Publications and Outputs

[1] Changwen Li, Christoph Treude, and Ofir Turel. Do comments and expertise still
matter? An experiment on programmers’ adoption of Al-generated JavaScript code.
Journal of Systems and Software, 2026.

[2] Christoph Treude and Marco A. Gerosa. How Developers Interact with Al: A
Taxonomy of Human-Al Collaboration in Software Engineering. Forge 25:
Proceedings of the 2nd International Conference on Al Foundation Models and
Software Engineering, 2025.



SMU Classification: Restricted

[3] Toufiqgue Ahmed, Premkumar Devanbu, Christoph Treude, and Michael Pradel.
Can LLMs Replace Manual Annotation of Software Engineering Artifacts?. MSR 25:
International Conference on Mining Software Repositories, 2025.

[4] Yuan Jiang, Zhichen Qu, Christoph Treude, Xiaohong Su, and Tiantian Wang.
Enhancing Fine-Grained Vulnerability Detection with Reinforcement Learning. IEEE
Transactions on Software Engineering, 2025.

[5] Yuan Jiang, Shan Huang, Christoph Treude, Xiaohong Su, and Tiantian Wang.
Shield Broken: Black-Box Adversarial Attacks on LLM-Based Vulnerability
Detectors. IEEE Transactions on Software Engineering, 2026.

[6] Yuan Jiang, Zehao Li, Shan Huang, Christoph Treude, Xiaohong Su, and
Tiantian Wang. Effective Code Membership Inference for Code Completion Models
via Adversarial Prompts. ASE ‘25: International Conference on Automated Software
Engineering, 2025.



	Background
	Selected Publications and Outputs

