
 

 1 

SMU Classification: Restricted 

Research Statement 
 

Christoph Treude 
School of Computing and Information Systems, Singapore Management University 

Tel: (65) 6808 5438; Email: ctreude@smu.edu.sg 
19 (Day) 12 (Month) 2025 (Year) 

Background 
 
Software systems underpin much of modern society, supporting critical activities in 
areas such as communication, finance, healthcare, transportation, and scientific 
research. As software becomes more pervasive and complex, the consequences of 
failures, security vulnerabilities, and poor usability become increasingly severe. 
Ensuring that software systems are reliable, secure, and maintainable therefore 
remains a central challenge for both industry and society. 
 
Software development is fundamentally a human-driven activity. It requires 
coordination among developers with different roles and expertise, interpretation of 
evolving requirements, and continuous decision-making under uncertainty. Decades 
of software engineering research have shown that technical quality cannot be 
separated from human and social factors such as communication, knowledge sharing, 
and tooling support. Improving software quality therefore requires not only better 
algorithms and tools, but also a deeper understanding of how developers work and 
how they interact with those tools. 
 
In recent years, artificial intelligence has moved from a supporting role to a central 
component of software development practice. Large language models and other AI-
based techniques are now routinely used for tasks such as code completion, 
documentation, vulnerability detection, requirements tracing, and testing. These tools 
promise substantial gains in productivity and scalability, but they also introduce new 
challenges. AI-generated outputs can be incorrect, insecure, biased, or misleading, 
and their integration into developer workflows raises questions about trust, 
responsibility, and control. As AI systems increasingly participate in software 
development activities, software engineering must grapple with how to design, 
evaluate, and govern these systems in practice. 
 
My research addresses this shift by examining software development as a socio-
technical system in which humans and AI increasingly collaborate. Rather than 
treating AI as a black-box automation layer, my work focuses on understanding 
interaction patterns between developers and AI tools, measuring how AI-generated 
artifacts are actually used, and identifying the conditions under which AI support 
improves or degrades software outcomes. This perspective builds on empirical 
software engineering traditions, while extending them to account for AI-driven 
workflows and AI-mediated decision-making. 
 
A second pillar of my work focuses on the use of AI to improve core software 
engineering tasks, particularly those related to software quality and security. AI-based 
techniques have demonstrated strong performance in areas such as vulnerability 
detection, code analysis, documentation, and requirements tracing, yet they also 
introduce new risks, including brittleness, adversarial susceptibility, privacy leakage, 



 

 2 

SMU Classification: Restricted 

and misalignment with developer intent. My research investigates both how AI 
techniques can be made more effective for software engineering tasks and how their 
limitations can be systematically identified and addressed. This includes treating AI-
based software engineering tools as artifacts that themselves require rigorous 
evaluation, testing, and robustness analysis. 
 
Finally, my work contributes to the emerging area of AI for science, with a particular 
focus on empirical software engineering and research methodology. Many empirical 
studies rely on costly and time-consuming human evaluations, which limits scale and 
reproducibility. Recent advances in AI raise the possibility of augmenting or partially 
automating aspects of this evaluation process. My research explores when and how 
AI systems can responsibly complement human judgment in research workflows, with 
the goal of improving scalability while preserving validity, transparency, and 
interpretability. 
 
Across these strands, my overarching goal is to develop principled, evidence-based 
approaches for integrating AI into software engineering practice and research. By 
grounding AI-driven techniques in empirical evidence, interaction-aware design, and 
robustness considerations, my work aims to support the development of software 
systems—and software engineering methods—that remain trustworthy, effective, and 
aligned with human needs as AI becomes an integral part of the software ecosystem. 
 
Research Area 1: Human–AI Interaction in Software Engineering 
 
This research area focuses on how software developers interact with AI-based tools, 
and how these interactions shape adoption, trust, and software outcomes. As AI 
systems increasingly generate code, documentation, and analysis results, developers 
are no longer merely tool users but collaborators who must interpret, evaluate, and 
decide whether to rely on AI-generated artifacts. Understanding these interactions is 
essential for designing AI systems that genuinely support developers rather than 
introducing new sources of error, over-reliance, or cognitive overhead. 
 
My recent work in this area examines human–AI interaction in software engineering 
from complementary perspectives that combine empirical measurement, conceptual 
framing, and methodological reflection. 
 
A first line of work consists of controlled empirical studies that investigate when and 
why developers adopt AI-generated code. Rather than relying on self-reported 
intentions or attitudes, this work uses objective, behavioral measures of adoption, 
such as code similarity between AI-generated suggestions and developers’ final 
solutions. In a controlled experiment with programmers of varying expertise, we 
showed that seemingly small properties of AI-generated artifacts—such as the 
presence of comments—can have a significant impact on whether developers adopt 
AI-generated code, regardless of their experience level [1]. These results highlight 
that adoption is influenced not only by perceived correctness or productivity, but also 
by factors related to comprehensibility, communication, and perceived intent. 
 
A second line of work contributes conceptual foundations for studying developer–AI 
interaction. As AI tools have diversified rapidly, interaction patterns have become 
increasingly heterogeneous, ranging from passive auto-completion to conversational 



 

 3 

SMU Classification: Restricted 

assistance and workflow-triggered interventions. To support systematic study and 
comparison of these tools, we proposed a taxonomy of developer–AI interaction types 
that characterizes how interactions are initiated, how AI responds, and how 
developers react to AI output [2]. This taxonomy provides a shared vocabulary for 
analyzing interaction design choices, comparing tools, and situating empirical findings 
within a broader interaction landscape. Related perspective work further explores how 
such interaction patterns may evolve as AI systems become more autonomous and 
integrated into development environments. 
 
A third line of work examines how AI systems themselves can participate in software 
engineering research workflows, particularly in evaluation tasks that traditionally 
require human judgment. Human-subject studies are essential but costly, and they 
often limit scale and reproducibility. In this line of work, we explored whether large 
language models can partially replace or complement human annotators for 
subjective software engineering tasks, such as judging code-related artifacts. Our 
results show that, for some tasks, model–human agreement approaches human–
human agreement, while for others it does not, motivating mixed human–AI evaluation 
strategies rather than full automation [3]. This work provides concrete guidance on 
when AI can responsibly support human judgment and when human expertise 
remains indispensable. 
 
Taken together, these studies frame human–AI interaction as a measurable, 
designable, and evaluable aspect of software engineering, rather than an incidental 
byproduct of tool adoption. 
 
Looking ahead, my research in this area will focus on adaptive interaction strategies 
that adjust AI behavior based on developer context, task characteristics, and prior 
interaction history; on mechanisms for human control and oversight in AI-assisted 
development, including the communication of uncertainty and alternatives; and on 
extending empirical studies beyond short, isolated tasks to longitudinal and workflow-
level settings. Understanding these longer-term effects is critical for assessing how 
AI tools influence learning, collaboration, and division of labor within software teams. 
 
Research Area 2: AI for Software Engineering (AI4SE) 
 
This research area focuses on the design, evaluation, and stress-testing of AI-based 
techniques for core software engineering tasks, with particular emphasis on software 
quality, security, and reliability. While recent advances in machine learning and large 
language models have led to strong performance on tasks such as vulnerability 
detection, code completion, and documentation support, their deployment in practice 
raises important questions about robustness, trustworthiness, and unintended side 
effects. My work in this area treats AI-based software engineering tools as software 
systems in their own right—systems that must be carefully evaluated, analyzed for 
failure modes, and improved using principled engineering approaches. 
 
A central theme of my recent work has been the use of AI for software vulnerability 
detection. Existing learning-based approaches have demonstrated promising 
accuracy but often provide coarse-grained results that are difficult for developers to 
act upon. In collaborative work, we proposed techniques that move beyond file- or 
function-level classification toward fine-grained vulnerability localization, enabling AI 



 

 4 

SMU Classification: Restricted 

systems to identify specific code statements that contribute to a vulnerability. By 
reformulating vulnerability detection as a sequential decision-making problem and 
applying reinforcement learning, this work captures interactions among multiple 
statements rather than treating them independently, leading to more actionable 
results for developers [4]. 
 
Beyond improving effectiveness, my research also investigates the robustness of AI-
based software engineering tools. As these tools are increasingly deployed in real-
world settings, understanding their susceptibility to adversarial manipulation becomes 
critical. In this line of work, we studied black-box adversarial attacks on vulnerability 
detectors, focusing on realistic scenarios where model internals and confidence 
scores are not accessible. We demonstrated that state-of-the-art detectors can be 
evaded using semantics-preserving code transformations, exposing fundamental 
weaknesses in current approaches and highlighting the need for robustness-aware 
evaluation protocols [5]. 
 
Closely related to robustness is the issue of privacy and memorization in code 
language models. AI-based code completion systems are trained on large corpora 
that may include sensitive or proprietary code, raising concerns about unintended 
data leakage. My work in this area develops membership inference attacks tailored 
to code models, using adversarial prompting strategies to infer whether specific code 
snippets were present in a model’s training data. These techniques provide a 
systematic way to assess memorization behavior and privacy risks, and they 
contribute to broader efforts around responsible and compliant use of code language 
models [6]. Related work on AI-generated code further explores how static analysis 
and feedback loops can be used to improve AI outputs beyond surface-level 
correctness. 
 
Across these contributions, a recurring insight is that performance metrics alone are 
insufficient for evaluating AI-based software engineering tools. Accuracy 
improvements must be considered alongside robustness, security, privacy, and 
downstream developer use, particularly when these tools are applied in security- or 
safety-critical contexts. 
 
My future research in this area will further integrate robustness and security 
considerations into the design of AI-based software engineering techniques; explore 
verification-oriented and hybrid approaches that combine learning-based methods 
with symbolic reasoning or explicit program representations; and investigate 
governance and accountability mechanisms for AI-assisted software development, 
including auditing, traceability, and compliance. 
 
Research Area 3: AI for Science (AI4Science) 
 
This research area focuses on the use of AI as a methodological instrument to support 
scientific inquiry, with an emphasis on empirical software engineering. Empirical 
studies in software engineering frequently rely on human judgment to evaluate tools, 
techniques, and artifacts. While such evaluations are essential for external validity, 
they are often expensive, time-consuming, and difficult to scale. These constraints 
limit the size of studies, the diversity of participants, and the reproducibility of results. 
Recent advances in large language models raise the question of whether AI can 



 

 5 

SMU Classification: Restricted 

responsibly support parts of the scientific process itself, particularly in evaluation and 
data annotation tasks. 
 
My work in this area explores how AI can be integrated into research workflows 
without undermining scientific rigor. Rather than aiming to replace human judgment 
wholesale, this research investigates mixed human–AI approaches that balance 
scalability with validity, and that make the limitations of AI explicit rather than implicit. 
 
A central contribution of my recent work is an empirical investigation into whether 
large language models can substitute for human annotators in software engineering 
research tasks. Many evaluations in our field involve subjective judgments, such as 
assessing the quality of code summaries, deciding whether a warning is actionable, 
or judging the intent of a code change. In this work, we systematically compared 
annotations produced by humans and by state-of-the-art language models across a 
range of software engineering datasets and tasks [3]. Our findings show that the 
suitability of AI as a proxy for human judgment depends strongly on the task, 
motivating selective and transparent use of AI rather than blanket automation. 
 
This research contributes methodological guidance that is directly applicable to 
empirical software engineering, where evaluation cost is a persistent bottleneck, and 
it connects to broader work on reproducibility and transparency in scientific software. 
By treating AI as a research instrument whose behavior must be understood, 
validated, and reported, this work supports more repeatable and inspectable study 
designs. 
 
Looking forward, my research in AI for science will focus on principled frameworks for 
mixed human–AI evaluation pipelines, on enabling large-scale and longitudinal 
empirical studies that are currently infeasible due to cost constraints, and on 
examining the epistemic implications of AI participation in scientific workflows. This 
includes clarifying assumptions, limitations, and reporting practices for AI-assisted 
research. 
 
Overall, this research area positions AI as a tool for improving the practice of science 
itself. By carefully integrating AI into empirical workflows, my work aims to reduce 
practical barriers to high-quality empirical research while preserving the 
methodological standards that underpin credible scientific knowledge. 

Selected Publications and Outputs 
 
[1] Changwen Li, Christoph Treude, and Ofir Turel. Do comments and expertise still 
matter? An experiment on programmers’ adoption of AI-generated JavaScript code. 
Journal of Systems and Software, 2026. 
 
[2] Christoph Treude and Marco A. Gerosa. How Developers Interact with AI: A 
Taxonomy of Human-AI Collaboration in Software Engineering. Forge ‘25: 
Proceedings of the 2nd International Conference on AI Foundation Models and 
Software Engineering, 2025. 
 



 

 6 

SMU Classification: Restricted 

[3] Toufique Ahmed, Premkumar Devanbu, Christoph Treude, and Michael Pradel. 
Can LLMs Replace Manual Annotation of Software Engineering Artifacts?. MSR ‘25: 
International Conference on Mining Software Repositories, 2025. 
 
[4] Yuan Jiang, Zhichen Qu, Christoph Treude, Xiaohong Su, and Tiantian Wang. 
Enhancing Fine-Grained Vulnerability Detection with Reinforcement Learning. IEEE 
Transactions on Software Engineering, 2025. 
 
[5] Yuan Jiang, Shan Huang, Christoph Treude, Xiaohong Su, and Tiantian Wang. 
Shield Broken: Black-Box Adversarial Attacks on LLM-Based Vulnerability 
Detectors. IEEE Transactions on Software Engineering, 2026. 
 
[6] Yuan Jiang, Zehao Li, Shan Huang, Christoph Treude, Xiaohong Su, and 
Tiantian Wang. Effective Code Membership Inference for Code Completion Models 
via Adversarial Prompts. ASE ‘25: International Conference on Automated Software 
Engineering, 2025. 


	Background
	Selected Publications and Outputs

