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Background 
 
Formal methods are mathematically rigorous techniques for provably correct 
specification, verification and synthesis of computing systems. Classical formal 
methods achieve impressive results in reasoning about deterministic computing 
systems and providing YES or NO answers about whether the system satisfies the 
property of interest. However, such boolean reasoning becomes insufficient in the 
presence of probabilistic uncertainty. Probabilistic systems arise in many areas of 
computer science, including randomized algorithms, stochastic networks, security 
and privacy protocols, cyber-physical systems, and robotics. The importance of 
probabilistic systems has been further proliferated by the rapid advance of artificial 
intelligence (AI) technologies, where uncertainty arises due to e.g. learning from 
data or planning under uncertainty. In the presence of probabilistic uncertainty, 
computing system behavior is no longer deterministic, and their formal analysis and 
verification require more fine-grained reasoning about the probability with which a 
property is satisfied or the average-case behavior. However, existing formal 
methods for probabilistic systems are significantly lagging behind their counterparts 
for non-probabilistic systems, both in terms of the class of properties and in terms of 
the size of systems that they can formally analyze. This raises concerns regarding 
the correctness of software and AI solutions used in safety-critical settings that 
exhibit uncertain behavior, such as critical infrastructure, aircraft and autonomous 
vehicle software, or healthcare devices. 
 
The long-term goal of my work is to contribute to laying theoretical and algorithmic 
foundations of formal reasoning about general probabilistic systems. By general 
probabilistic systems, we mean probabilistic systems that may be either finite- or 
infinite-state, going beyond the classical probabilistic model checking paradigm 
which is restricted to finite-state probabilistic systems. On the other hand, the central 
application domains that I focus on are trustworthy AI and safe autonomy. 
Reasoning about probabilistic uncertainty presents one of the key challenges in 
solving these problems, and my goal is to use formal methods to make AI and 
autonomous systems provably safe and trustworthy even in the presence of 
probabilistic uncertainty. Finally, I am also interested in broader application domains 
where formal methods for probabilistic systems can make an impact. This gives rise 
to the three research directions that I pursue: 

1. Foundations: Formal methods for probabilistic models and programs. 
2. Main application domains: Trustworthy AI and safe autonomy. 
3. Broader application domains and interdisciplinarity. 

 
My research lies at the interplay of several areas of computer science, with formal 
methods and programming languages constituting the theoretical core of my 
work, and artificial intelligence, machine learning and control theory being the 
key application domains. 
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Research Areas  
 
1. Formal Methods for Program Analysis and Verification 
 
Probabilistic system verification has for long been recognized as an important 
problem in the formal methods community. However, most existing methods and 
tools focus on probabilistic model checking and consider finite-state probabilistic 
systems, while not being readily applicable to infinite-state probabilistic systems. 
Many probabilistic systems arising in practice are infinite-state, with examples 
including any probabilistic protocol that performs sampling from a continuous 
distribution such as uniform or normal distribution, or any control or planning task in 
a continuous stochastic environment. To address this gap, recent years have seen 
increased interest in formal verification of probabilistic programs (PPs). PPs are 
classical programs extended with the ability to sample values from probability 
distributions and to condition program executions on observed data. They provide a 
universally expressive framework for specifying and writing both finite- and infinite-
state probabilistic systems. The expressivity of PPs makes them a general model for 
formal analysis since, rather than designing different verification algorithms for each 
application domain, one can write the probabilistic system of interest as a PP to be 
analyzed. However, the state of the art of formal and automated verification of 
probabilistic programs is significantly lagging behind its counterpart for non-
probabilistic programs, and closing this gap remains a challenging open problem. 
The goal of my research is to bring us closer to closing this gap and to lay  
theoretical and algorithmic foundations of formal reasoning about general (i.e. both 
finite- and infinite-state) probabilistic models and programs. 
 
Methodology: Supermartingale certificates. My approach to formal and 
automated reasoning about probabilistic models and programs is based on the use 
of supermartingale certificates. Supermartingale certificates are formal and locally 
checkable proof rules for reasoning about different properties of probabilistic 
systems. Their name is due to their connection to supermartingale processes from 
advanced probability theory, which lie at the core of formal correctness guarantees 
provided by supermartingale certificates that apply to both finite- and infinite-state 
probabilistic systems. On the other hand, supermartingale certificates have a simple 
syntactic form, which allows for their fully automated computation by using classical 
template-based synthesis techniques from program verification (see non-
probabilistic program verification paragraph below) or by using deep learning (a 
novel method introduced in my work, which will be discussed in Section 2). Hence, 
supermartingale certificates provide the following three desirable features: (1) formal 
correctness guarantees, (2) applicability to both finite- and infinite-state probabilistic 
systems, and (3) fully automated reasoning. 
 
Past research highlights. Early works on formal verification via supermartingale 
certificates focused either on proving probability 1 (a.k.a. qualitative) termination and 
reachability in probabilistic programs, or on probability p ∈ [0,1] (a.k.a. quantitative) 
safety in stochastic dynamical and control systems. My work introduced the first 
supermartingale certificates and automated algorithms for a significantly larger class 
of specifications, thus enabling their broader applicability and adoption beyond 
these two contexts: 
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• Quantitative reachability, safety and reach-avoid specifications. My early 
work focused on designing supermartingale certificates for quantitative 
reachability, safety, and reach-avoid specifications, thus unifying and 
significantly generalizing previous supermartingale certificates. At the core of 
my approach lies the idea to decompose a quantitative reachability or reach-
avoid specification into (1) qualitative reachability and (2) quantitative safety 
specifications. This decomposition is achieved through the novel notion of 
stochastic invariants [1] that generalize classical program invariants to the 
setting of probabilistic models and programs. We proved that such a 
decoupling provides a sound [1] and complete [2] approach for reasoning 
about quantitative reachability and reach-avoidance. Based on this 
decoupling, we designed novel supermartingale certificates and fully 
automated algorithms for formal verification of quantitative reachability and 
reach-avoid specifications [1,2,9]. More recently, we applied this idea to cost 
(or resource) analysis in probabilistic models and programs and designed a 
supermartingale certificate for cumulative expected cost analysis and a fully 
automated algorithm for its computation [3]. This method was able to solve 
the cost analysis problem for a large class of PPs that no prior method could 
handle, including interesting and novel applications to blockchain protocols. 

 
• Quantitative omega-regular specifications. In one of our most recent 

works [24], we generalized the ideas above to design the first 
supermartingale certificate and fully automated algorithm for the general 
class of quantitative omega-regular specifications in probabilistic models and 
programs. Omega-regular specifications are a rich class of specifications that 
subsume linear temporal logic (LTL) and computation tree logic (CTL), hence 
this result makes a significant step forward in terms of the class of properties 
that formal methods for infinite-state probabilistic systems can analyze. 

 
• Compositional algorithms for qualitative reachability. Compositionality is 

one of the key factors that contributed to the scalability of modern non-
probabilistic program verifiers. However, it remains largely unexploited and 
unexplored in the context of probabilistic system verification. My work 
resulted in a compositional framework for proving probability 1 termination in 
PPs via novel generalized lexicographic ranking supermartingale (GLexRSM) 
certificates [4]. These generalize lexicographic ranking functions for non-
probabilistic programs, which are a classical certificate for proving non-
probabilistic program termination that lie at the core of many termination 
provers. This work presents a first step towards a much bigger goal of 
designing compositional certificates and algorithms for general properties in 
probabilistic models and programs. 

  
• Non-probabilistic program verification. When it comes to automating PP 

verification, my work builds upon the classical template-based synthesis 
method from non-probabilistic program verification, which reduces program 
verification to a constraint-solving problem. However, my work also led to 
some new state of the art approaches for non-probabilistic program 
verification and to new algorithms and tooling support for template-based 
synthesis. We proposed the first method for detecting non-termination bugs 
in polynomial arithmetic programs that provides relative completeness 
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guarantees [5]. This means that the method is guaranteed to catch non-
termination bugs of a certain form. These appealing theoretical guarantees 
translate to excellent practical performance. Our prototype RevTerm 
outperforms all termination tools that competed in the TermComp'19 
competition, both in terms of the number of detected non-termination bugs 
and in terms of runtime. I also worked on differential cost analysis where the 
goal is to compute a bound on the difference in cost usage between two 
program versions and detect potential performance regressions induced by 
code change. To address this problem, we proposed the first sound method 
for differential cost analysis that does not require two program versions to be 
syntactically aligned but is applicable to general program pairs [5]. This work 
has sparked interest in both academia and industry -- it was featured in the 
Amazon Science blog and was presented at the Infer Practitioners 2021 
workshop that is organized by the Infer static analyzer team at Meta. Finally, 
our recent work [5] introduces a method for program verification with respect 
to linear temporal logic (LTL) properties. Again, it gives rise to the first 
method that provides relative completeness guarantees for polynomial 
arithmetic programs, while also showing excellent practical performance and 
outperforming state of the art tools. My work also led to novel algorithms for 
more efficient template-based synthesis [25] and to PolyQEnt [26] which is 
the first tool that automates the reduction performed by template-based 
synthesis from polynomial templates to polynomial constraint-solving. 

 
Future perspective. Recent years have seen great progress in PP verification. 
However, there is still a large gap between modern non-probabilistic program 
verifiers and existing methods for probabilistic model and program verification. My 
long-term goal is to bring us closer to closing this gap and to advance the theory 
and automation of formal analysis of probabilistic models and programs along three 
different axes: 

• Programming language expressivity. Prior work on automated PP 
verification has predominantly focused on programs with numerical 
datatypes. However, many important applications of PPs involve arrays and 
heap operations. One of my future research goals is to study how we could 
extend the above methods to PPs with arrays and heap operations. 

• Compositional algorithms for PP verification. While recent years have 
seen a rapid growth of interest in PP verification, existing automated methods 
are mostly capable of handling academic examples and do not scale to large 
PPs. The key reason behind this scalability bottleneck is that existing 
algorithms for PP verification are not compositional, meaning that they need 
to perform a one-shot analysis of the whole PP. In contrast, compositionality 
is one of the key factors that contributed to the scale at which modern 
program verifiers perform. As one of my future research directions, I plan to 
explore the possibility of performing compositional PP verification. 

• Relational PP verification. Much of the existing work on (infinite-state) 
probabilistic model and program verification focuses on properties such as 
termination, reachability, safety, or cost. These are all examples of unary 
properties that are defined with respect to a single program and a single 
program execution. However, there are also many important applications in 
which one needs to consider relational properties that are defined with 
respect to a program or an execution pair. An important example of a 
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relational property is program equivalence, which is significant in the context 
of PP compiler correctness. In two recent works, we proposed the first 
automated method for equivalence refutation in PPs that provides formal 
correctness guarantees [27,28]. 

 
 
2. Formal Methods for Trustworthy AI and Safe Autonomy 
 
The tremendous success of AI has sparked interest in deploying AI-enabled 
solutions in a broad range of application domains, with safety-critical applications 
such as cyber-physical systems not being an exception. However, the lack of 
correctness guarantees and interpretability of many learned models raises serious 
concerns regarding their safety and trustworthiness. To eliminate these concerns 
and to provide the necessary level of trust, we need methods that help ML 
algorithms learn models that are correct with respect to the desired specification and 
allow us to guarantee that the learned models are truly correct. My work on this front 
focuses on the development of methods for guaranteed safe AI-enabled autonomy, 
by combining (1) neural control methods which leverage the power of deep learning 
to solve challenging control problems that have been out of the reach of classical 
control methods with (2) formal methods that can provide formal guarantees on the 
correctness of learned neural controllers. 
 
Methodology: Neural control with certificates. Neural control with certificates is a 
promising approach to formally ensuring the correctness of neural controllers that 
has seen a surge of interest within both control theory and AI communities. The key 
idea behind this paradigm is that neural controllers should not be learned and 
verified alone -- rather, they should be learned and verified together with a neural 
certificate of their correctness. A certificate function, which provides a formal proof 
that the property of interest is satisfied, is parametrized as a neural network and 
learned jointly with the neural controller. This is achieved by designing a loss 
function which incorporates the defining properties of the certificate function, whose 
minimization then gives rise both to a neural controller and a neural certificate. This 
way, the learning process is guided towards learning a neural controller that 
satisfies the specification of interest. Formal guarantees on the neural controller are 
then provided by checking that the neural certificate satisfies all certificate 
conditions. My work builds upon this paradigm to design methods for guaranteed 
safe AI-enabled autonomy. 
 
Past research highlights. While neural control with certificates has received 
significant attention over the past few years, prior methods were restricted to 
deterministic control tasks and did not take environment uncertainty into account. 
My work addresses this issue by giving rise to the first framework for neural 
stochastic control with certificates. This is achieved through a novel combination of 
the neural control with certificates paradigm and the supermartingale certificates for 
probabilistic models and programs. This combination highlights an application on my 
foundational work on formal methods for probabilistic models and programs in 
Section 1 to a timely and relevant problem in trustworthy AI and safe autonomy: 

• Neural stochastic control with supermartingale certificates. Our work 
resulted in the first framework for neural stochastic control with certificates in 
discrete-time stochastic control systems [8,9,10,11,12]. As mentioned above, 
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this is achieved through a novel combination of the neural control with 
certificates paradigm and the supermartingale certificates for probabilistic 
models and programs. The framework is applicable to neural stochastic 
control with respect to several classes of specifications, including 
quantitative reachability, safety, reach-avoidance and qualitative stability 
[8,9,10,11]. More recently, we extended this framework to a compositional 
framework for neural control with respect to specifications written in the 
SpectRL specification logic, which allows all sequential and boolean 
combinations of reach-avoid specifications [12]. Our implementation is able 
to successfully learn and formally verify neural controllers and 
supermartingale certificates for a range of highly non-linear stochastic 
control tasks and properties that were beyond the reach of prior methods. 
Furthermore, the method can also be used to formally verify neural 
controllers learned via other methods, or as we showed most recently to 
even repair incorrect neural controllers [29]. 

  
• Feed-forward neural network verification. While my primary focus is on 

certified learning and formal verification of neural controllers, in my work I 
also considered certified learning and formal verification of feed-forward 
neural networks with respect to adversarial robustness and safety 
specifications. There is a large body of work on analyzing these two 
properties in feed-forward neural networks. However, most works consider 
real arithmetic idealizations of neural networks in which the values of all 
neurons are treated as real numbers and where rounding errors in 
computations or inherent uncertainty in network’s prediction are ignored. Our 
work considers two popular architectures that address these problems, 
namely quantized neural networks (QNNs) [13,14] and Bayesian neural 
networks (BNNs) [15]. 

 
Future perspective. The synergy of ML and formal methods has the potential to 
revolutionize control under safety constraints and how we design autonomous 
systems. On one hand, deep learning allows us to fit neural controllers to extremely 
complicated environments by learning from data. On the other hand, formal 
methods allow us to guarantee the correctness of neural controllers, ultimately 
making them safe and trustworthy. My research goal is to realize the potential of this 
synergy of ML and formal methods for guaranteed safe AI-enabled autonomy, by 
advancing it along three axes: 

• Neural control with certificates under richer specifications. My past 
work on neural control with certificates considered some of the most 
relevant specifications in control theory, such as reach-avoidance or 
stability. However, one can specify many other different control tasks. 
Designing new methods for each new specification is not a feasible 
approach, and ideally we would like to have a single framework for a 
sufficiently expressive specification logic which would then be applicable to 
the whole family of control tasks. To that end, my first goal for future work 
is to extend the above framework to neural stochastic control with 
certificates under a probabilistic specification logic, such as pLTL or pCTL. 
In recent work [24], we introduced the first supermartingale certificates for 
quantitative omega-regular specifications, which may provide the 
necessary theoretical foundations for solving this challenge. 
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• Multi-agent systems. Semantically, stochastic control systems are 
Markov decision processes (MDPs). Thus, the analyses discussed above 
can be viewed as quantitative analyses for infinite-state MDPs. This raises 
a natural question of whether we can use supermartingale certificates to 
formally analyze infinite-state systems that involve more than one agent, 
i.e. infinite-state stochastic games. The aim of this research direction is to 
explore the possibility of combining neural control and supermartingale 
certificates towards obtaining formal guarantees in multi-agent systems 

• Safe reinforcement learning with certificates. In controller synthesis 
tasks, one typically assumes a model of the system and solves the 
problem with respect to the model. In contrast, the goal of reinforcement 
learning is to learn good controllers from data alone, without assuming the 
knowledge of the model. My goal here is to explore how we could improve 
the performance of existing safe reinforcement learning algorithms by 
building on the above ideas and making them learn not only controllers, 
but also certificates of correctness for the safety property of interest. 

 
 
3. Formal Policy Synthesis in Markov Models 
 
The work in the previous section uses the synergy of ML and FM to solve control 
problems in continuous stochastic environments that are beyond the reach of 
classical control theory and formal methods approaches. In this section, we consider 
an orthogonal problem of solving control problems in finite-state stochastic 
environments. Formal methods have been used extensively in this area, particularly 
in solving risk-averse planning problems in finite-state Markov models such as 
MDPs, POMDPs and stochastic games. In finite-state Markov models, formal 
methods achieve impressive scalability and can synthesize policies with formal 
guarantees on a rich class specifications belonging to classical temporal logics such 
as pLTL or pCTL. For instance, one can synthesize policies which guarantee that 
‘’the probability of a system run ever reaching an unsafe state is at most 0.01%’’. 
Such specifications are defined over system runs. 
 
However, existing methods do not allow synthesis of policies with guarantees on 
specifications defined over probability distributions over system states that the 
system semantics induce at each time step. In this view, we treat Markov models as 
discrete-time transformers which give rise to a new probability distribution over 
states at each time step, and specify properties with respect to these distributions. 
For instance, existing methods cannot solve formal policy synthesis problem with 
respect to the specification ‘’at every time, the probability of the system being in an 
unsafe state is at most 0.01%’’. As it turns out, this specification is not expressible in 
pCTL*. However, such safety constraints naturally arise in certain applications such 
as control of chemical networks, robot swarms or traffic networks. The problem that 
has recently captivated my interest is how to enable formal policy synthesis in 
Markov models with respect to distributional specifications such as the one above. 
 
Formal policy synthesis with respect to distributional specifications. My work 
on this problem resulted in the first automated method for formal policy verification 
and synthesis in finite-state MDPs with provable guarantees on distributional 
reachability, safety and reach-avoidance specifications [16,17], such as the example 
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above. As we show in our work, this turns out to be an incredibly hard problem that 
may even require randomized and infinite memory policies. In order to solve this 
problem, our method combines insights from template-based synthesis and 
invariant generation in programs and it simultaneously synthesizes a policy together 
with a distributional certificate that formally proves distributional specification. Our 
method reduces to two algorithms that differ in their efficiency and generality – the 
first which considers positional policies but allows for a more efficient synthesis, and 
the second can synthesize symbolic representations of infinite-memory policies. In 
the most recent work, we extended our method to a framework for general 
distributional omega-regular specifications [30]. 
 
 
4. Broader Perspective and Interdisciplinarity 
 
While my two primary research areas are formal methods for program analysis and 
verification and formal methods for trustworthy AI and safe autonomy, I am also 
interested in other application domains where probabilistic system verification can 
make an impact. To that end, I enjoy engaging in discussions and collaborating with 
researchers from diverse areas. This has lead to some exciting research and novel 
applications of probabilistic system verification. 
 
One thread of my past work is on bidding games on graphs, which provide a natural 
model for stateful and ongoing auctions. Bidding games have been used to model 
auctions for online advertisement slots, scheduling of concurrent processes, and 
there were even efforts to formalize some blockchain attacks as bidding games. In 
my work, I studied several bidding mechanisms as well as games with partially 
observable bids [18,19,20,21], resulting e.g. in a somewhat surprising use of 
martingale theory for the design of optimal bidding strategies [19]. I also contributed 
to the study of social balance on networks in statistical physics, where the analysis 
can be reduced to studying Markov chains and evolutionary graph theory [22]. 
Finally, in collaboration with cryptography researchers, we showed that the analysis 
of selfish mining attacks on efficient proof system blockchains (e.g. those based on 
Proof-of-Stakeand Proof-of-Space protocols) can be modeled as a probabilistic 
model checking problem. This lead to the first fully automated analysisof selfish 
mining attacks on efficient proof system blockchains and some very interesting 
observations of practical relevance [23]. In contrast, all prior analyses were based 
on tedious pen-and-paper work, which quickly becomes intractable. 
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