SMU Classification: Restricted

Research Statement

SHAR Lwin Khin
School of Computing and Information Systems, Singapore Management University
Tel: (65) 6828-0019; Email: lkshar@smu.edu.sg
15 December 2025

Background

With the rise of Industry 4.0, software systems are becoming more pervasive in all
industry sectors and have become increasingly complex and critical. As a result, the
issues and challenges traditionally faced in software development are becoming more
acute. They need more effective, efficient development processes, more automation,
and more scalable solutions. Therefore, software engineering research is highly
relevant and could have a significant impact to many industry sectors. However, there
is a gap between academic-research and industrial needs in software engineering. In
our software engineering research community, we tend to measure success by
counting publications, which naturally lead to academics producing papers that may
or may not be industry-relevant. A prominent software engineering researcher stated
that among the publications from the top software engineering research venues, only
a small proportion of the papers stem from industry-relevant research. My research
aims to be industry-relevant. For this to happen, it must be context-driven.

Context-driven research doesn'’t try to frame a general problem and devise universal
solutions. Rather, for a given context that is precisely defined, it makes clear working
assumptions and devises practical solutions that work in such a context. It also
considers and makes tradeoffs that make sense in the given context to achieve
practicality and scalability. Clearly, this doesn’t produce solutions that generalize
easily to any arbitrary software development environment. But this doesn’t reduce its
value because universal solutions hardly work, anyway, for different software systems
that have different contextual factors such as software complexity and characteristics,
domain-related criticality and compliance with standards, organization’s cost and time
constraints, and human factors (e.g. engineers’ background). Software from
telecommunication industry could be very much different from those of automotive
industry.

Whether the cost of a comprehensive software validation technique is justified will
depend on the criticality of the software being assessed and the standards it must
comply with. For example, in Singapore, software systems that acquire user privacy
data must comply with Personal Data Protection Act (PDPA); hence a validation
technique that specifically focuses on the PDPA will be beneficial for such systems.
That is, they require a technique that can transform the natural language form of
PDPA into a machine-analyzable form, that can extract the security and privacy
requirements embedded in the PDPA, and that can support automated or semi-
automated generation of test scenarios to validate these requirements. Although this
may sound universal, in the nutshell, an effective technique requires domain-specific
considerations — specific terms and definitions used in the PDPA must be considered
for the natural language processing; testing typically requires specific set of inputs
such as the inputs’ form and content; and any other contextual factors such as the
development process used, the cost and time constraints, etc. must be considered.

SMU Classification: Restricted

Research Areas

My research mainly focuses on security analysis of web and mobile applications, and
Cyber-Physical systems (CPS), which falls under the umbrella of software validation
and verification domain — a sub-discipline of software engineering. Particularly, | work
on detecting and analyzing security vulnerabilities, privacy issues, and anomalies.
The kinds of software artefact applicable to my research range from source code to
deployed software. My research is not limited to the use of any particular technique
but for the problems that | am addressing, | found that the combined use of static
analysis, dynamic analysis, search-based test generation, machine learning
techniques, LLMs suits the need so far. The following discusses some of the major
work that achieved high impact in my research domain:

Security Analysis of Web Applications [1-9, 26]

The work proposed in ICSE NIER track [1] is one of the pioneer works that uses
machine learning on code characteristics to predict vulnerabilities in web applications,
differently from the then-approaches that mainly focused on the use of static and
dynamic analyses only for detecting web vulnerabilities. In [1] and its subsequent
extensions [2-4], we incorporated the use of machine learning to address the
scalability and effectiveness problems of static and dynamic analyses; we proposed
approaches that predict various code injection vulnerabilities (SQL injection, cross
site scripting, remote code execution, path traversal, etc.) in web programs. Static
and dynamic analyses are first used to extract code features from web programs
containing known vulnerabilities. The extracted features reflect information about
potentially correct and incorrect validation and sanitization routines implemented in a
program. Supervised, semi-supervised, unsupervised machine learning techniques
are then applied to build vulnerability predictors based on these features and the
known, available vulnerability information. The predictors are then applied to predict
vulnerabilities in other web programs. The experimental results show that the best
predictor could detect 90% of vulnerabilities with 12% false alarm rate.

Vulnerability predictors have been shown to be effective, but they only predict
vulnerable code sections. They do not provide comprehensive information on the
deficiencies of the implementations that cause vulnerabilities. Therefore, to
complement the above prediction approaches and to assist the developers in auditing
the code, in [5, 6], | have also worked on a static analysis-based approach that
specifically extracts security-relevant code slices for security auditing purposes. It also
provides guidelines to carry out security audits based on the extracted code slices.
This work addressed the technical and scalability challenges of precisely extracting
the code slices for Java-based web programs.

In [8, 9], we extended this security auditing research in the area of improving the
constraint solvers. This also augments existing vulnerability detection approaches.
Given code slices, a powerful constraint solver will be able to tell precisely what inputs
can cause the vulnerabilities. We developed such a constraint solver addressing the
challenges of solving complex string operations and mixed (integer and string)
operations in a scalable and effective way. For scalability, we built several finite-state
machines (FSMs) that model various Java string operations, which avoid the need for
resolving such operations into basic set of operations that are often recursive and

SMU Classification: Restricted

complex to solve; and then incorporated a search-based input generation algorithm
into the FSMs-based constraint solver for effectiveness. The tool that implements the
approach was evaluated on an industrial code base provided by HITEC Luxembourg
(www.hitec.lu).

In [26], we focus on supply chain analysis of vulnerable software versions. Given a
vulnerability fixing commit of a software project, we identity vulnerability introducing
commit based on code similarity using a hybrid of static program analysis and LLM’s
reasoning capability. This project leads us to detect 202 incorrect vulnerable open
source software versions in NVD reports.

Security Analysis of Mobile Applications [10-13, 15, 16, 21]

Even though security and privacy are often mentioned together, and many
approaches claimed to address both issues at the same time, there are some subtle
differences that pose specific challenges for addressing privacy concerns properly.
Security has commonly accepted definitions and properties; for example, a secure
communication system can be defined as the one that has confidentiality, integrity,
and availability properties. By contrast, privacy is hard to be defined appropriately as
it could mean differently to different people. To address this problem, in the scope of
Android apps, in [10], we proposed an approach that reports anomalous data flows to
users for them to make informed decisions. Firstly, using natural language processing
and clustering techniques, our approach forms clusters of apps where each cluster
contains a group of similar trusted, benign apps according to their functional
descriptions; the approach then learns their normal behaviors by analyzing the call
graphs of the app code and by running diverse test cases. We combined static
analysis and genetic algorithm-based test generation so as to observe diverse
behaviors as many as possible. Lastly, give a test app, the approach compares its
behaviors against those of the apps in the same cluster. In [11], we extend the
approach in [10] to detect permission re-delegation vulnerabilities that could leak
privacy data. In [12], we proposed an approach that maps user interfaces in Android
apps to permission uses so that users can make an informed privacy decisions when
they interact with the apps. Even when privacy requirements are well-defined by
stakeholders for privacy-sensitive systems, it is often the case that the requirements
are only visible in the requirement documents; there is no traceability between the
privacy specifications and the actual implementations. Hence, in this context, | have
worked on a European industrial & academic research project called EDLAH2
(http://edlah2.eu), which attempts to address this problem. In this work, we developed
a modeling method for specifying the security and privacy requirements in a traceable
way [13].

Given that there is plethora of machine learning-based approaches for detecting
mobile malware, | also worked on empirical studies to compare the malware detection
performance of various types of features, classifiers (conventional classifiers and
deep learning classifiers) [15, 21] and data preprocessing techniques [16].

Security Analysis of Cyber-Physical Systems [17-20, 22-25]

In the earlier work [14], | worked on malware behavior modeling using bounded
feature space to deal with the scalability issue of signature-based malware detection
approaches.

http://www.hitec.lu/
http://edlah2.eu/

SMU Classification: Restricted

Security Analysis of Cyber-Physical Systems: | have also conducted research on
anomaly detection in Cyber-Physical systems, in collaboration with HTX Singapore
(https://www.htx.gov.sg/). Differently from traditional computing platforms, loT
computing platforms typically consist of diverse apps and devices ranging from
sensors and cameras to smart cars and drones, and diverse communication
protocols. And entities in loT computing platform are highly automated, interactive,
and inter-dependent. IoT devices may also be remote and have limited computing
resources. Due to immaturity, loT computing platforms are also progressive. These
unique characteristics make security analysis very challenging. Current approaches
and tools are not yet adequate to these challenges [22]. In [17], we have developed
an automated fuzzing approach for detecting anomalies in Samsung SmartThings loT
platform, which takes into consideration the interplays between SmartThings apps,
devices, and user inputs. In [18-19, 24], we proposed a machine learning-based
analysis approach that detects anomalous drone behaviors in flight log data. The
approach aims to detect anomalies such as sensor fault, actuator fault, configuration
errors and bugs in drone control program. During a flight mission, drones typically log
flight states, which could reflect anomalies. Hence, we train a LSTM-based deep
learning model on the normal flight logs, which can then be used to detect anomalies
in real time flight logs. In [20], we proposed an automated approach for configuring
unsupervised learning systems in the context of detecting anomalies in Cyber-
Physical systems. In [25], we study self-admitted technical debts in drone code
repositories and comment on the security implications of those debts. In [26], we study
current security modelling approaches for CPS and identify research gaps.

In software engineering and empirical studies, it is important that tools that
implements the proposed approaches and other software artefacts are made
available to researchers for replication and extension. We have implemented several
tools and made them available at

e LLM-driven vulnerability analysis for web apps: https://titancaproject.github.io/
Security auditing tool for web apps: https://github.com/julianthome
Mobile apps security analysis tool: https://biniamf.github.io/PREV/
Fuzzing tool for SmarThings apps: https://github.com/sharlwinkhin
Anomaly detection tool for drones and empirical studies:
https://github.com/Jesper20
e Fuzzing tool for drones: https://github.com/weiminn

Future Plan

Going forward, my long term plan is to improve the practice of software engineering
through a context-driven research and produce a meaningful impact on industrial
practice. | aim to realize this vision by conducting context-driven research in security
testing & analysis in general with industrial collaborations, developing effective,
efficient, (semi-)automated, and scalable solutions for testing their complex software
systems under precise contexts.

As a short term plan, for the next two years, | plan to conduct translational research
in the context of anomaly analysis of Cyber-Physical systems and vulnerability
analysis of web applications through translational grants with industrial collaborators.

https://www.htx.gov.sg/
https://titancaproject.github.io/
https://github.com/julianthome
https://biniamf.github.io/PREV/
https://github.com/sharlwinkhin
https://github.com/Jesper20
https://github.com/weiminn

SMU Classification: Restricted

Selected Publications and Outputs

[1] L.K. Shar and H.B.K. Tan. Mining input sanitization patterns for predicting SQL injection
and cross site scripting vulnerabilities. ICSE 2012.

[2] L.K. Shar et al. Mining SQL injection and cross site scripting vulnerabilities using hybrid
program analysis. ICSE 2013.

[3] L.K. Shar et al. Web application vulnerability prediction using hybrid program analysis
and machine learning. TDSC 2015.

[4] L.K. Shar and H.B.K. Tan. Predicting SQL injection and cross site scripting vulnerabilities
through mining input sanitization patterns. IST 2013.

[5] J. Thome, L.K. Shar, and L. Briand. Security Slicing for Auditing XML, XPath, and SQL
Injection Vulnerabilities. ISSRE 2015.

[6] J. Thome, L.K. Shar, D. Bianculli, and L. Briand. Security slicing for auditing common
injection vulnerabilities. JSS 2018.

[7] J. Thome, L.K. Shar, D. Bianculli, L. Briand. JoanAudit: A Tool for Auditing Common
Injection Vulnerabilities. ESEC/FSE 2018.

[8] J. Thome, L. K. Shar, D. Bianculli, and L. Briand. Search-driven String Constraint Solving
for Vulnerability Detection. ICSE 2017.

[9] J. Thome, L.K. Shar, D. Bianculli, L. Briand. An Integrated Approach for Effective Injection
Vulnerability Analysis of Web Applications through Security Slicing and Hybrid Constraint
Solving. TSE 2018.

[10] B.F. Demissie, M. Ceccato, and L.K. Shar. AnFlo: Detecting Anomalous Sensitive
Information Flows in Android Apps. MobileSoft 2018.

[11] B.F. Demissie, B.F., M. Ceccato, L.K. Shar. Security analysis of permission re-
delegation vulnerabilities in Android apps. EMSE 2020.

[12] V.K. Malviya, C.W. Leow, A. Kasthuri, Y.N. Tun, L.K. Shar, Right to Know, Right to
Refuse: Towards Ul Perception-Based Automated Fine-Grained Permission Controls for
Android Apps. ASE 2022.

[13] X.P.Mai, A. Goknil, L.K. Shar, F. Pastore, L. Briand, S. Shaame. Modeling Security
and Privacy Requirements: a Use Case-Driven Approach. IST 2018.

[14] M. Chandramohan, H.B.K. Tan, L.C. Briand, L.K. Shar and B. M. Padmanabhuni. A

scalable approach for malware detection through bounded feature space behavior
modeling. ASE 2013.

[15] L.K. Shar et al. Experimental comparison of features and classifiers for Android
malware detection. MobileSoft 2020.

[16] L.K. Shar et al. Empirical evaluation of minority oversampling techniques in the
context of Android malware detection, APSEC 2021.

[17] L.K. Shar et al. SmartFuzz: An Automated Smart Fuzzing Approach for Testing
SmartThings Apps, APSEC 2020.

[18] L.K. Shar et al., DronLomaly: Runtime Detection of Anomalous Drone Behaviors via
Log Analysis and Deep Learning, APSEC 2022.

[19] W. Minn, Y.N. Tun, L.K. Shar, L. Jiang, DronLomaly: Runtime Log-based Anomaly
Detector for DJI Drones, ICSE Demonstrations 2024.

[20] L.K. Shar et al. AutoConf: Automated Configuration of Unsupervised Learning
Systems Using Metamorphic Testing and Bayesian Optimization, ASE 2023.

[21] L.K. Shar et al. Experimental comparison of features, analyses, and classifiers for
Android malware detection. EMSE 2023.

[22] V.K Malviya, W. Minn, L.K. Shar, L Jiang. Fuzzing drones for anomaly detection: A

SMU Classification: Restricted

systematic literature review. Computers & Security 2024.

[23] I Tan, W. Minn, C.M. Poskitt, L.K. Shar, and L. Jiang. "Runtime Anomaly Detection
for Drones: An Integrated Rule-Mining and Unsupervised-Learning Approach." In
International Conference on Engineering of Complex Computer Systems, 2025.

[24] L.Rantala, L.K. Shar, M.V. Mantyla, W. Minn, and Y.N. Tun. "Studying SATD in drone
systems with Human-Al collaboration." Journal of Systems and Software (2025).

[25] S.Huang, C.M. Poskitt and L.K. Shar. "Security modelling for cyber-physical systems:
A systematic literature review." ACM Transactions on Cyber-Physical Systems (2025).

[26] Y. Cheng, T. Zhang, L.K. Shar, S. Yang, C. Dong, D. Lo, S. Lv, Z. Shi, and L. Sun.
"VERCATION: Precise Vulnerable Open-source Software Version Identification based on
Static Analysis and LLM." IEEE Transactions on Software Engineering (2025).

	Background
	Research Areas
	Selected Publications and Outputs

