SMU Classification: Restricted

Research Statement

Lingxiao JIANG
School of Computing and Information Systems, Singapore Management University
Tel: (65) 6808-5113; Email: Ixjiang@smu.edu.sg
18 December 2025

Background, Research Motivation, and Central Concerns

It is important for programmers to have high productivity and ensure code quality
during software development and maintenance. Some labor-intensive activities, such
as understanding the meaning of existing code, analyzing the properties and
behaviors of the code, and identifying relevant code that needs changes, are very
commonly performed by programmers during development and maintenance. Past
studies have shown that programmers spend 20% to 80% of their time in code surfing
to search, analyze, relate, and understand the code in large complex software
systems before they are able to change the code to adjust functionalities or fix bugs
or vulnerabilities. Such code surfing activities are not limited to browsing through
code, it may also involve performing code testing and analyzing code execution logs,
searching additional documents in the internet, and participating in online discussions.
As manpower is a major component in the cost of software development and
maintenance, saving just 5% of programmers' time for more than 20 million
programmers in the world by speeding up code search, analysis, comprehension, and
change processes could lead to an improvement in productivity worth millions and
billions of dollars a year globally. With improved developer productivity and increased
degree of automation during development and maintenance, software quality can be
expected to improve too and potentially save billions of dollars annually caused by
software errors.

My main research goal is to develop new methodologies, techniques, and tools that
can help programmers to search, identify, analyze, understand, and change the code
they need and thus help to increase productivity, reduce maintenance costs, and
improve software quality. My work explores new solutions for software engineering
problems related to various aspects of code search, comprehension, analysis, testing,
debugging, repair, refactoring, translation and synthesis, and contributes to the state-
of-the-art in the literature. On one hand, | aim to address some fundamental and
inherent challenges faced by these problems, including the "program representation”
challenge that can construct efficient and effective representations capturing various
aspects of properties about software code for code search and analysis, and the
"scalability" challenge that can enable internet-scale code search and analysis. On
the other hand, | aim to understand and address practical problems faced by
programmers in real world via various kinds of "empirical studies", and provide useful
and usable solutions, such as suggesting reusable code for their coding tasks,
predicting where buggy code may be for faster debugging, and generating functioning
code that fixes the bugs. Developing new techniques enhancing traditional software
mining and program analyses in combination with recent progress in deep code
learning with generative Al, especially large language models, are important aspects
of my research to address the challenges.

My research theme is also enriched by and benefited from the growth, evolution, and
openness of software projects in the past decades, where more and more socio-

SMU Classification: Restricted

technical data in and around software projects (e.g., code itself, design documents,
code change histories, bug reports, discussions among developers, and feedback
from users) has been accumulated. Together with open-source movements in the
past decades, it is evident that much valuable knowledge has been embedded in
various parts of diverse software systems, and should be analyzed and reused for
software maintenance and development. Learning and analyzing contextual data
together with code has become a promising way to learn various programming
knowledge (e.g., design patterns, reusable code, bug fixes, common refactoring
operations, etc.) that can help to improve developer productivity, software quality and
reduce costs. Therefore, my work aims to enable "multi-modal code search and
analysis" that can utilize rich contextual information and be versatile in extracting
various kinds of reusable patterns and knowledge for different programmers' needs
under different situations.

Research Areas

Figure 1 illustrates many areas in the field of software engineering that involves
software design, development, deployment in both the forward direction and the
backward reverse engineering/reengineering.

3
;
'
'

Software Development

Code
Analysis

Requirements Specifications
Plex

B il

‘ Models Code

github #
W bitbucket e

Web Kod

Requirement Formal Modelling Verificati Software Code Testing &
Engineering Methods . b enucalion - Architecture Generation Debugging

Pr Data
Sedipse (L0 o e

(G i

H
£

Model)
Synchronization Repository Code
Mining

-
ohloh krugle jaarorge

Requirement

Reverse Engineering Traceability .
& Reengineering Evolution & Program Search

Maintenance: Comprehension ! Big Code
1

Software Mining and Analysis ,,:

Figure 1: Software Mining and Analysis within "Bidirectional" Software Engineering

My work is positioned near to the right end in this "bidirectional software engineering"
field. It is to analyze existing big code bases involving diverse kinds of software data,
to locate and extract reusable patterns and knowledge, and thus to help programmers
to ensure code quality and improve productivity. Particularly, | work on code search
and repository mining to facilitate program comprehension by programmers, and on
code analysis, testing, and debugging to facilitate software quality assurance.

The kinds of software data used as my research subjects range from source code to
diverse kinds of code contexts. As illustrated in Figure 2, there are many kinds of
contexts surrounding a given piece of code, from its lexical and syntactic structures
to test cases and execution profiles, from its developers' interaction to users'
feedback, from its performance to operation environments, from its functionalities to
social impact and legacy. My work utilizes many contexts in the two columns towards
the right side, and some contexts in the columns on the left. Note that diverse and
comprehensive kinds of socio-technical information related to the code are important
and useful for helping programmers to search, understand, analyze, and change
code. | am also expanding further to the left side to improve the techniques and tools
| have developed and make my work more practically and socially useful.

SMU Classification: Restricted

More technically, my work ranges from static and dynamic program analysis to many
kinds of heuristic and statistical analyses, and to large-scale deep learning, data
mining, information retrieval, and empirical studies. Integration of a variety of
techniques has benefited my work to be able to handle diverse kinds of socio-
technical information, as illustrated in Figure 3. | keep looking for continued expansion
and strengthening of my interdisciplinary work. .

)/ 7\ N\
[~ Application
Code Context i vg
S ERRE Ay) o, N e N
)N Qﬁ
eGSRl L J

Competition Requirement Specification Lexes/syntax R = Natuval/g
Adoption Usage scenario Documentation Control/data flow \/ \/ \/> ‘ e Kw
Operation User interface Repository Call relation r\\t/v\/ / \ (5::;:: \

Policy influence Feedback Test case Dependencies C/S > [Rep [Test case \ “?
tati
Cultural influence Bug report Bug database Path condition <‘ analysis >\ / h:ef‘r:(?cs N
Impact and Feature request Email Thread ~ r/ \ 503@3,@&9@ /H\)\ /—'
legacy Private data Discussion Runtime o l(mwme/” Leafning, Mining 1@@[/ F\\\/
Performance Priority .. f¥\7 \\v &A\"a/l‘“/” s // C/ o \”/
r \ ’ ee
Integration Schedule N Dvn‘amic N @ @\ S | Iearm‘r’vg
Budget a"aym/_ N network/ f\ &_b// » C\ I
/\ /) (~Sa__
...... Y fee dbz/k § L
N N ¢/ paa N
/ /\7/ \ . m\m'ng/j
™\ manegement K/Jﬁ\\V N) -
-~) j e
-omputing
——— <N\\ 7 S anN
Figure 2: Contexts for Software Mining and Analysis Figure 3: Interdisciplinary topics

As such, a general theme of my work is software deep mining and analysis, especially
context-aware, multi-modal code search, analysis, testing and debugging, where
contexts can be diverse kinds of information beyond source code itself. | design and
implement new techniques and tools for extracting reusable programming knowledge
in various forms, such as directly reusable code fragments, programming patterns,
API specifications, bug signatures, and code refactoring rules, etc., so that the
techniques and tools can facilitate various software engineering tasks, such as code
refactoring, bug detection, fault localization, privacy-aware testing, and program
synthesis, and help programmers to more efficiently search, understand, analyze,
change code for implementing new functionalities or fixing bugs. | also keep
broadening potential impact of my work by (1) adapting the code search, analysis,
testing and debugging techniques to software development and maintenance
activities in high-value, infrastructural software (e.g., the generative Al models, the
Linux kernel, the Android platform, the Ethereum virtual machine, etc.) and strategic
domains related to SMU's Research Focus Areas in Digital Transformation
(https://www.smu.edu.sg/research, e.g., mobile systems and application
development and analysis, cybersecurity, financial systems, blockchain and smart
contracts, and Al systems), and (2) incorporating methodologies and techniques from
information management research to analyze the impact of the techniques on people
(including programmers, managers, and users) to form a feedback loop for improving
the usability and usefulness of my work.

More specifically, my work can be classified into two main overlapping categories:
code search & analysis, and testing & debugging, adapting various kinds of traditional
software mining and analysis techniques and new generations of Al techniques to
address the software problems and carrying out empirical studies to understand the
problems and techniques better.

Scalable Context-Aware Code Search & Analysis

SMU Classification: Restricted

During development and maintenance processes, developers need to write new code
or modify existing code. How often do they stop and search for some code written
before, and try to understand, reuse that code? Can we provide automated ways to
facilitate code search, understanding, and reuse without major interruptions to
developers' development and maintenance activities?

One aspect of my research is to detect and analyze similar code fragments (a.k.a.
code clones) in large programs. Our studies and others' have noticed that large
programs often contain more than 20% cloned code, which often leads to
unnecessarily redundant maintenance cost and more subtle software defects that
should be avoided. Detecting code clones, tracking their migration and evolution
among large programs, and managing them properly have many important
applications, such as code refactoring, optimization, and bug detection. My research
proposes new, general detection techniques, based on both program syntax and
semantics (e.g., parse trees, dependency graphs, and functional behaviors), that can
scalably and accurately detect code clones and enable the mentioned applications on
million-line programs. Sample work includes scalable syntactic and semantic clone
detections [Tool/Deckard, ICSE2007, ICSE2008, ISSTA2009], clone-based detection
of code inconsistency bugs [FSE2007, ICSE2012], and code refactorings
[ISSTA2014, FSE2014]. With the advancement of Al-based code clone detection, |
analyze the robustness and alignment of Al models with respect to human developers
using causal interpretation [EMSE2025].

Another aspect of my research is to efficiently retrieve code intended by developers
(a.k.a. code queries) to help developers locate useful code quickly. How can
developers easily express their code query intentions? How can high level intentions
which may be described in natural languages be linked to source code? How can
complex code structures and functionality be searched quickly to match the
intentions? Can we utilize the social interactions among developers to help improve
search results? My research combines techniques from program analysis, information
retrieval, data mining, and natural language processing to tackle the problems.
Sample work includes topic-enriched code search [WCRE2011a], concern
localization [WCRE2011b], socio-technical data for code search and analysis
[ICSM2012, APSEC2012, SAC2013, CSMR2013a, CSMR2013b, HICSS2015],
cross-language code search [IWSM2016, ASE2016, IEICEJournal2017], and API
recommendation [Tool/LibraryGurul].

A fundamental aspect of my work on code search and analysis is to explore new ways
to represent code that can capture essential meaning of the code and enable efficient
and accurate search and analysis. Preliminary results have been obtained for certain
code analysis tasks, such as algorithm classification and cross-language API
mappings, by using combinations of program analysis and deep neural networks
[ICSE2018NIER, SANER2019, FSE2019, AAAI2021, ICSE2021, SIGIR2021].

Future Research Directions.

When more diverse kinds of data related to projects accumulate from various
application domains, there are new challenges facing software mining & analysis. We

SMU Classification: Restricted

need to take an interdisciplinary approach (Figures 2 & 3) to take all such data into

consideration and provide better results for users:

¢ How can we define a flexible notion of "clones" that can be tailored to developers
with varying experience and applications of different purposes?

e Given data from heterogeneous sources of heterogeneous formats, such as
source code repositories, discussion forums, online blogs, etc., how can we
organize such raw data in a way best suitable for cross-data search?

¢ How can we design new software mining & analysis algorithms that can efficiently
run across various raw data? Or would it be better to run different algorithms on
different data and then combine results?

e When low-level code fragments and programming knowledge (such as API usage
patterns) are extracted and accumulated, how can we organize and translate them
into high-level concepts that can be easier for developers to understand and
reuse?

e What would be the unified interface that can be expressive enough for developers
to describe what they want and enable developers to search and analyze software
across various sources and abstraction levels?

e How can we put search and analysis results into the developers' social contexts
and facilitate them to understand, help, and learn from each other?

¢ Can we understand better how developers learn and interact with each other, and
use such knowledge to guide the design and development of our techniques?

e For specific domains, such as mobile applications, web applications, smart
contracts, and enterprise information systems, what may be the domain-specific
characteristics that could be exploited to facilitate adoption of code search and
analysis techniques in the domains?

e For mobile systems and applications and other domains, can we adapt the
techniques to identify similarities and differences among various parts that may be
involved in different architectures, semantics and functionalities? What kinds of
programming patterns can we identify for Android apps to facilitate code reuse,
refactoring, optimization, and security and privacy protection?

e For Al systems, are the reuse patterns of code, data, and models similar to or
different from traditional software systems? How to detect, manage, and reuse
code. Data, and models in ways that improve Al systems development productivity
and quality?

Context-Aware Automated Testing and Debugging

During development and maintenance processes, testing & debugging activities are
also essential for ensuring software quality and reliability. Such activities are often
labor-intensive and account for more than 50% of the cost in software development.
A main theme in my research in this aspect is to utilize various kinds of data, including
software code itself and rich contextual data about the code (e.g., history of code
changes, execution profiles of the program, and socio-technical information that
relates to the complex interactions between people and technology in software
development processes) for better testing and debugging.

Testing & debugging may also be viewed as a special kind of code search, as it aims
to search for potential bugs in code, although the techniques can be quite different.
My sample work includes profile-based fault localization [ASE2007, FSE2008,
ICSM2010, ASE2011, ASE2012b, JSEPJournal2014, ASEJournal2015], privacy-

SMU Classification: Restricted

aware testing & debugging [PLDI2011, ASE2012a], investigation of community-scale
uses of testing [ISSRE2013, QSIC2013], Android system and app analysis [ASE2016,
ICPC2017, ASE2022, ASE2023], and more recently on faster and more capable
symbolic execution techniques [Tool/FastKLEE, CCS2023] and various emerging
applications, such as blockchain and smart contracts [Tool/SmartEmbed,
Tool/MandoGuru, DSAA2022, FSE2022, ISSTA2023, MSR2023b, NDSS2023,
TIFS2025, TOSEM2025], internet of things [APSEC2020], Arduino programming
[MSR2023a], and intelligent systems [ICSME2020, SANER2025b]. With the
advancement of Al techniques, | also adapt such techniques for testing and
debugging problems [TSE2024a, SANER2025a, SANER2025b, TIFS2025,
TOSEM2025].

Future Research Directions.

Testing & debugging has been traditionally focused on software itself. However, with
various software data available in hand, | believe the research will become more and
more interdisciplinary as well (Figures 2 & 3). Static and dynamic program analysis
may still be the major techniques for this purpose, many techniques from different
areas will be drawn up to help utilize various data available and improve testing &
debugging. | am very interested in making progresses in adapting techniques from
data mining, deep learning, natural language processing, information management,
and even social science and economics, to address practical software engineering
problems. At the same time, | aim to make the analysis techniques, especially the
ones based on deep learning more easily understandable by developers [ASE2019,

ICSE2021, SIGIR2021, DSAA2022, MSR2023b, ASE2024, TSE2024a,

SANER2025a, SANER2025b, TIFS2025, TOSEM2025].

e How can we incorporate data beyond code, such as user feedback, developer
experience, project team organization, etc., into the decision making for testing &
debugging?

e How can we improve the scalability of traditional program analysis techniques with
new data mining, deep learning, natural language processing, and information
management & analysis techniques, especially for large enterprise systems?

e How can we design testing & debugging techniques that are general enough to
handle many kinds of software errors and their variants? Or do we need different
kinds of tailored techniques for different kinds of errors?

e How can we tailor general testing & debugging techniques for specific kinds of
issues (e.g., security vulnerabilities of specific patterns, performance degradations
and/or private leaks of mobile applications or smart contracts) that may be
extracted from Context-Aware Code Search & Analysis?

e How can we incorporate domain knowledge or programming patterns specific to
certain systems (e.g., event-driven architectures for mobile applications, web
applications and blockchain virtual machines) into the testing & debugging
processes to make the processes more efficient and effective for those systems?

e How can we protect software users' privacy while using their feedback and data
for testing & debugging, which may involve information, risk, policy management
issues?

e How could traditional testing and debugging techniques be adapted for Al systems
with unclear specifications or non-deterministic and statistical behaviors? How
should Al systems be certified in more reliable ways?

SMU Classification: Restricted

Summary

| believe that social contexts and relevance are very important for the ultimate success
of these software engineering studies. There could be many various directions to go
with the studies, and | will keep exploring and seeking the most impactful directions.
| will keep focusing on in-depth research in the techniques themselves, not only in the
techniques of my own core areas in traditional software mining and program analyses,
but also in the techniques of many related areas for diverse, multi-modal contextual
data, especially the latest progress in generative Al and large language models for
software, and at the same time aim to broaden potential applications of the techniques
in various domains (e.g., mobile systems and application development and analysis,
drones and internet of things, cybersecurity, financial systems, blockchain and smart
contracts, Al systems), incorporate them into the many different phases of software
engineering processes that involve interaction with developers, managers and users,
evaluate the techniques in real-world settings, and establish ties with the software
industry and ultimately help the industry to speed up development, save developer
time, improve software quality, and reduce bugs and maintenance costs.

Selected Publications and Outputs

[Tool/Deckard] Lingxiao Jiang. Main developer and maintainer for DECKARD: A Scalable Code Clone and
Clone-Related Bug Detection Tool, open-sourced at https:/github.com/skyhover/Deckard, and
EgMiner/DyClone: A dynamic code clone detection tool, open-sourced at
https://github.com/skyhover/dyclone

[Tool/LibraryGuru] Weizhao Yuan, Hoang Huu Nguyen, Lingxiao Jiang, and Yuting Chen. LibraryGuru: API
Recommendation for Android Developers. In the 40th International Conference on Software Engineering
(ICSE) 2018 Demonstrations Track, May 27 - June 3, Gothenburg, Sweden. Tool available at:
http://libraryguru.info.

[Tool/SmartEmbed] Zhipeng Gao, Vinoj Jayasundara, Lingxiao Jiang, Xin Xia, David Lo, and John C. Grundy.
SmartEmbed: A Tool for Checking Smart Contracts with Structural Code Embedding. Accepted by IEEE
Transactions on Software Engineering (TSE), 2020. Tool available at:
https://github.com/beyondacm/SmartEmbed

[Tool/FastKLEE] Haoxin Tu, Lingxiao Jiang, Xuhua Ding, He Jiang. FastKLEE: faster symbolic execution via
reducing redundant bound checking of type-safe pointers. ESEC/SIGSOFT FSE 2022: 1741-1745
https://github.com/haoxintu/FastKT EE

[Tool/MandoGuru] Hoang H. Nguyen, Nhat-Minh Nguyen, Hong-Phuc Doan, Zahra Ahmadi, Thanh-Nam
Doan, and Lingxiao Jiang. MANDO-GURU series: vulnerability detection for smart contract source code and
bytecode via heterogeneous graph deep graph learning, available at https://github.com/MANDO-Project Last
update 2023/12.

[EMSE2025] Shamsa Abid; Xuemeng Cai; Lingxiao Jiang: Measuring model alignment for code clone detection
using causal interpretation. Empirical Software Engineering 30(2): 46 (2025)

[SANER2025a] Xuemeng Cai; Lingxiao Jiang: Adapting Knowledge Prompt Tuning for Enhanced Automated
Program Repair. SANER 2025: 360-371

[SANER2025b] Zhi Chen; Lingxiao Jiang: Evaluating Software Development Agents: Patch Patterns; Code
Quality; and Issue Complexity in Real-World GitHub Scenarios. SANER 2025: 657-668

[TIFS2025] Wei Ma; Junjie Shi; Jiaxi Qiu; Cong Wu; Jing Chen; Lingxiao Jiang; Shangqing Liu; Yang Liu;
Yang Xiang: Detecting DeFi Fraud With a Graph-Transformer Language Model. IEEE Transactions on
Information Forensics and Security (TIFS) 20: 10051-10065 (2025)

[TOSEM2025] Nhat-Minh Nguyen; Hoang H. Nguyen; Long Le Thanh; Zahra Ahmadi; Thanh-Nam Doan;
Daoyuan Wu; Lingxiao Jiang. MANDO-LLM: Heterogeneous Graph Transformers with Large Language
Models for Smart Contract Vulnerability Detection. ACM Transactions on Software Engineering and
Methodology (TOSEM) 2025

[TSE2024a] Haoxin Tu, Zhide Zhou, He Jiang, Imam Nur Bani Yusuf, Yuxian Li, Lingxiao Jiang: Isolating
Compiler Bugs by Generating Effective Witness Programs With Large Language Models. IEEE Trans.
Software Eng. 50(7): 1768-1788 (2024)

[ASE2024] Zhi Chen, Lingxiao Jiang: Promise and Peril of Collaborative Code Generation Models: Balancing
Effectiveness and Memorization. ASE 2024.

https://github.com/skyhover/Deckard
https://github.com/skyhover/dyclone
http://libraryguru.info/
https://github.com/beyondacm/SmartEmbed
https://github.com/haoxintu/FastKLEE
https://github.com/MANDO-Project%20Last%20update%202023/12
https://github.com/MANDO-Project%20Last%20update%202023/12

SMU Classification: Restricted

[ASE2023] Vikas Kumar Malviya, Yan Naing Tun, Chee Wei Leow, Ailys Tee Xynyn, Lwin Khin Shar,
Lingxiao Jiang: Fine-Grained In-Context Permission Classification for Android Apps Using Control-Flow
Graph Embedding. ASE 2023: 1225-1237

[CCS2023] Pansilu Pitigalaarachchi, Xuhua Ding, Haiqing Qiu, Haoxin Tu, Jiaqi Hong, Lingxiao Jiang: KRover:
A Symbolic Execution Engine for Dynamic Kernel Analysis. CCS 2023: 2009-2023

[ISSTA2023] Yuzhou Fang, Daoyuan Wu, Xiao Yi, Shuai Wang, Yufan Chen, Mengjie Chen, Yang Liu,
Lingxiao Jiang: Beyond "Protected" and "Private": An Empirical Security Analysis of Custom Function
Modifiers in Smart Contracts. ISSTA 2023: 1157-1168

[MSR2023a] Imam Nur Bani Yusuf, Diyanah Binte Abdul Jamal, Lingxiao Jiang: Automating Arduino
Programming: From Hardware Setups to Sample Source Code Generation. MSR 2023: 453-464

[MSR2023b] Hoang H. Nguyen, Nhat-Minh Nguyen, Chunyao Xie, Zahra Ahmadi, Daniel Kudendo, Thanh-
Nam Doan, Lingxiao Jiang: MANDO-HGT: Heterogeneous Graph Transformers for Smart Contract
Vulnerability Detection. MSR 2023: 334-346

[NDSS2023] Xiao Yi, Yuzhou Fang, Daoyuan Wu, Lingxiao Jiang: BlockScope: Detecting and Investigating
Propagated Vulnerabilities in Forked Blockchain Projects. NDSS 2023

[ASE2022] Vikas Kumar Malviya, Chee Wei Leow, Ashok Kasthuri, Yan Naing Tun, Lwin Khin Shar, Lingxiao
Jiang: Right to Know, Right to Refuse: Towards Ul Perception-Based Automated Fine-Grained Permission
Controls for Android Apps. ASE 2022: 186:1-186:6

[DSAA2022] Hoang H. Nguyen, Nhat-Minh Nguyen, Chunyao Xie, Zahra Ahmadi, Daniel Kudendo, Thanh-
Nam Doan, Lingxiao Jiang: MANDO: Multi-Level Heterogeneous Graph Embeddings for Fine-Grained
Detection of Smart Contract Vulnerabilities. DSAA 2022: 1-10

[FSE2022] Xiao Yi, Daoyuan Wu, Lingxiao Jiang, Yuzhou Fang, Kehuan Zhang, Wei Zhang: An empirical study
of blockchain system vulnerabilities: modules, types, and patterns. ESEC/SIGSOFT FSE 2022: 709-721

[AAAI2021] Nghi Duy Quoc Bui, Yijun Yu, and Lingxiao Jiang. TreeCaps: Tree-based Capsule Networks for
Source Code Processing. In the 35th AAAI Conference on Artificial Intelligence (AAAI), 2021. Open-
sourced available at: https://github.com/bdqnghi/treecaps

[ICSE2021] Nghi Duy Quoc Bui, Yijun Yu, and Lingxiao Jiang. InferCode: Self-Supervised Learning of Code
Representations by Predicting Subtrees. In the IEEE/ACM 43th International Conference on Software
Engineering (ICSE), 2021. Open-sourced available at: https://github.com/bdqnghi/infercode

[SIGIR2021] Nghi Duy Quoc Bui, Yijun Yu, and Lingxiao Jiang. Self-Supervised Contrastive Learning for Code
Retrieval and Summarization via Semantic-Preserving Transformations. In 44th International ACM SIGIR
Conference on Research and Development in Information Retrieval (SIGIR), 2021.

[APSEC2020] Lwin Khin Shar, Ta Nguyen Binh Duong, Lingxiao Jiang, David Lo, Wei Minn, Glenn Kiah Yong
Yeo, Eugene Kim. SmartFuzz: An Automated Smart Fuzzing Approach for Testing SmartThings Apps.
APSEC 2020: 365-374

[ICSME2020] Muhammad Hilmi Asyrofi, Ferdian Thung, David Lo, Lingxiao Jiang. CrossASR: Efficient
Differential Testing of Automatic Speech Recognition via Text-To-Speech. ICSME 2020: 640-650

[ASE2019] Nghi Duy Quoc Bui, Yijun Yu, and Lingxiao Jiang. AutoFocus: Interpreting Attention-based Neural
Networks by Code Perturbation. In the 34th IEEE/ACM International Conference on Automated Software
Engineering (ASE), pp. 38-41, 2019.

[FSE2019] Nghi Duy Quoc Bui, Yijun Yu, and Lingxiao Jiang. SAR: Learning Cross-Language APl Mappings
with Little Knowledge. In 27th ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering (ESEC/FSE), pp. 796-806, 2019.

[SANER2019] Nghi Duy Quoc Bui, Yijun Yu, and Lingxiao Jiang. Bilateral Dependency Neural Networks for
Cross-Language Algorithm Classification. In the 26th IEEE International Conference on Software Analysis,
Evolution and Reengineering (SANER), pp. 422-433, 2019.

[ICSE2018NIER] Nghi Duy Quoc Bui and Lingxiao Jiang. Hierarchical learning of cross-language mappings
through distributed vector representations for code. In the 40th International Conference on Software
Engineering: New Ideas and Emerging Results, pp. 33-36, 2018.

[IEICEJournal2017] Xiao Cheng, Zhiming Peng, Lingxiao Jiang, Hao Zhong, Haibo Yu, and Jianjun Zhao.
CLCMiner: Detecting Cross-Language Clones without Intermediates. In IEICE Transaction on Information
and Systems, vol. 100-D(2), pp. 273-284, 2017.

[ICPC2017] Hoang Huu Nguyen, Lingxiao Jiang, Thanh Tho Quan: Android repository mining for detecting
publicly accessible functions missing permission checks, In 25th IEEE International Conference on Program
Comprehension (ICPC), pp. 324-327, 2017.

[AST2016] Joseph J. K. Chan, Lingxiao Jiang, Kiat Wee Tan and Rajesh K. Balan. Graph-Aided Directed Testing
of Android Applications for Checking Runtime Privacy Behaviours. In 11th International Workshop on
Automation of Software Test (AST), pp. 57-63, 2016.

[TWSM2016] Xiao Cheng, Lingxiao Jiang, Hao Zhong, Haibo Yu and Jianjun Zhao. On the Feasibility of
Detecting Cross-Platform Code Clones via Identifier Similarity. In the proceedings of the 5th International
Workshop on Software Mining (IWSM), pp. 39-42, 2016.

https://github.com/bdqnghi/treecaps
https://github.com/bdqnghi/infercode

SMU Classification: Restricted

[ASE2016] Xiao Cheng, Zhiming Peng, Lingxiao Jiang, Hao Zhong, Haibo Yu and Jianjun Zhao. Mining
Revision Histories to Detect Cross-Language Clones without Intermediates. In 31st IEEE/ACM International
Conference on Automated Software Engineering (ASE), pp. 696-701, 2016.

[HICSS2015] Youngsoo Kim and Lingxiao Jiang. The Knowledge Accumulation and Transfer in Open-Source
Software (OSS) Development. In the proceedings of the 48th Hawaii International Conference on System
Sciences (HICSS), pp. 3811-3820, 2015.

[ASEJournal2015] Ferdian Thung, Lucia, David Lo, Lingxiao Jiang, Foyzur Rahman and Premkumar T.
Devanbu. To What Extent Could We Detect Field Defects? An Extended Empirical Study of False Negatives
in Static Bug Finding Tools. Journal of Automated Software Engineering (AUSE), 22(4):561-602, 2015.

[JSEPJournal2014] Lucia, David Lo, Lingxiao Jiang, Ferdian Thung and Aditya Budi. Extended comprehensive
study of association measures for fault localization. Journal of Software: Evolution and Process (JSEP),
26(2):172-219, 2014.

[ISSTA2014] Narcisa Andreea Milea, Lingxiao Jiang and Siau-Cheng Khoo. Scalable detection of missed cross-
function refactorings. In International Symposium on Software Testing and Analysis (ISSTA), pp. 138-148,
San Jose, CA, USA, 2014.

[FSE2014] Narcisa Andreea Milea, Lingxiao Jiang and Siau-Cheng Khoo. Vector Abstraction and Concretization
for Scalable Detection of Refactorings. In 22nd ACM SIGSOFT International Symposium on Foundations of
Software Engineering (FSE), pp. 86-97, Hong Kong, 2014.

[ISSRE2013] Tegawende F. Bissyande, David Lo, Lingxiao Jiang, Laurent Reveillere, Jacques Klein and Yves
Le Traon. Got Issues? Who Cares About It? A Large Scale Investigation of Issue Trackers from GitHub. In
the proceedings of the IEEE 24th International Symposium on Software Reliability Engineering (ISSRE), pp.
188-197, 2013.

[QSIC2013] Pavneet Singh Kochhar, Tegawende F. Bissyande, David Lo and Lingxiao Jiang. An Empirical
Study of Adoption of Software Testing in Open Source Projects. In the proceedings of the 13th International
Conference on Quality Software (QSIC), pp. 103-112, 2013.

[CSMR2013a] Ferdian Thung, Tegawende F. Bissyande, David Lo and Lingxiao Jiang. Network Structure of
Social Coding in GitHub. In the proceedings of the 17th European Conference on Software Maintenance and
Reengineering (CSMR), pp. 323-326, Genova, Italy, 2013.

[SAC2013] Shaowei Wang, David Lo and Lingxiao Jiang. An Empirical Study on Developer Interactions in
StackOverflow. In the 28th Symposium on Applied Computing (SAC), pp. 1019-1024, Coimbra, Portugal,
2013.

[CSMR2013b] Shaowei Wang, David Lo and Lingxiao Jiang. Understanding Widespread Changes: A
Taxonomic Study. In the proceedings of the 17th European Conference on Software Maintenance and
Reengineering (CSMR), pp. 5-14, Genova, Italy, 2013.

[ICSE2012] Lucia, David Lo, Lingxiao Jiang and Aditya Budi. Active refinement of clone anomaly reports. In
34th International Conference on Software Engineering (ICSE), pp. 397-407, 2012.

[ASE2012a] Lucia, David Lo, Lingxiao Jiang and Aditya Budi. kbe-Anonymity: Test Data Anonymization for
Evolving Programs. In the proceedings of the 27th IEEE/ACM International Conference on Automated
Software Engineering (ASE), pp. 262-265, 2012.

[ICSM2012] Ferdian Thung, David Lo and Lingxiao Jiang. Detecting Similar Applications with Collaborative
Tagging. In the proceedings of the 28th IEEE International Conference on Software Maintenance (ICSM),
pp. 600-603, 2012.

[APSEC2012] Ferdian Thung, David Lo and Lingxiao Jiang. Diffusion of Software Features: An Exploratory
Study. In the 19th Asia-Pacific Software Engineering Conference (APSEC), pp. 368-373, 2012.

[ASE2012b] Ferdian Thung, Lucia, David Lo, Lingxiao Jiang, Foyzur Rahman and Premkumar T. Devanbu. To
What Extent Could We Detect Field Defects? ---An Empirical Study of False Negatives in Static Bug Finding
Tools. In the proceedings of the 27th IEEE/ACM International Conference on Automated Software
Engineering (ASE), pp. 50-59, 2012.

[PLDI2011] Aditya Budi, David Lo, Lingxiao Jiang and Lucia. kb-Anonymity: A Model for Anonymized
Behavior-Preserving Test and Debugging Data. In the proceedings of the 32nd ACM SIGPLAN conference
on Programming Language Design and Implementation (PLDI), pp. 447-457, 2011.

[WCRE2011a] Shaowei Wang, David Lo and Lingxiao Jiang. Code Search via Topic-Enriched Dependence
Graph Matching. In the proceedings of the 18th Working Conference on Reverse Engineering (WCRE), pp.
119-123, 2011.

[ASE2011] Shaowei Wang, David Lo, Lingxiao Jiang, Lucia and Hoong Chuin Lau. Search-Based Fault
Localization. In the proceedings of the 26th IEEE/ACM International Conference on Automated Software
Engineering (ASE), pp. 556-559, Lawrence, Kansas, USA, 2011.

[WCRE2011b] Shaowei Wang, David Lo, Zhenchang Xing and Lingxiao Jiang. Concern Localization using
Information Retrieval: An Empirical Study on Linux Kernel. In the proceedings of the Working Conference
on Reverse Engineering (WCRE), pp. 92-96, 2011.

SMU Classification: Restricted

[ICSM2010] Lucia, David Lo, Lingxiao Jiang and Aditya Budi. Comprehensive Evaluation of Association
Measures for Fault Localization. In the proceedings of the IEEE International Conference on Software
Maintenance (ICSM), pp. 1-10, Timisoara, Romania, 2010.

[ISSTA2009] Lingxiao Jiang and Zhendong Su. Automatic mining of functionally equivalent code fragments via
random testing. In 18th International Symposium on Software Testing and Analysis (ISST)A, pp. 81-92,
20009.

[ICSE2008] Mark Gabel, Lingxiao Jiang and Zhendong Su. Scalable detection of semantic clones. In the
International Conference on Software Engineering (ICSE), pp. 321-330, 2008.

[FSE2008] Lingxiao Jiang and Zhendong Su. Profile-guided program simplification for effective testing and
analysis. In the proceedings of the 16th ACM SIGSOFT International Symposium on Foundations of
Software Engineering (FSE), pp. 48-58, 2008.

[ICSE2007] Lingxiao Jiang, Ghassan Misherghi, Zhendong Su and Stephane Glondu. DECKARD: Scalable and
Accurate Tree-Based Detection of Code Clones. In 29th International Conference on Software Engineering
(ICSE), pp. 96-105, 2007.

[ASE2007] Lingxiao Jiang and Zhendong Su. Context-aware statistical debugging: from bug predictors to faulty
control flow paths. In 22nd IEEE/ACM International Conference on Automated Software Engineering (ASE),
pp. 184-193, 2007.

[FSE2007] Lingxiao Jiang, Zhendong Su and Edwin Chiu. Context-based detection of clone-related bugs. In the
6th joint meeting of the European Software Engineering Conference and the ACM SIGSOFT Symposium on
the Foundations of Software Engineering (ESEC/FSE), pp. 55-64, 2007.

10

	Background, Research Motivation, and Central Concerns
	Research Areas
	Scalable Context-Aware Code Search & Analysis
	Future Research Directions.

	Context-Aware Automated Testing and Debugging
	Future Research Directions.

	Summary
	Selected Publications and Outputs

